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Higher-order statistics based 
multifractal predictability measures 
for anisotropic turbulence and 
the theoretical limits of aviation 
weather forecasting
Arun Ramanathan   & A. n. V. Satyanarayana  *

Theoretical predictability measures of turbulent atmospheric flows are essential in estimating how 
realistic the current storm-scale strategic forecast skill expectations are. Atmospheric predictability 
studies in the past have usually neglected intermittency and anisotropy, which are typical features 
of atmospheric flows, rendering their application to the storm-scale weather regime ineffective. 
furthermore, these studies are frequently limited to second-order statistical measures, which do not 
contain information about the rarer, more severe, and, therefore, more important (from a forecasting 
and mitigation perspective) weather events. Here we overcome these rather severe limitations by 
proposing an analytical expression for the theoretical predictability limits of anisotropic multifractal 
fields based on higher-order autocorrelation functions. The predictability limits are dependent on the 
order of statistical moment (q) and are smaller for larger q. Since higher-order statistical measures take 
into account rarer events, such more extreme phenomena are less predictable. While spatial anisotropy 
of the fields seems to increase their predictability limits (making them larger than the commonly 
expected eddy turnover times), the ratio of anisotropic to isotropic predictability limits is independent 
of q. Our results indicate that reliable storm-scale weather forecasting with around 3 to 5 hours lead 
time is theoretically possible.

Prediction and predictability of the future states of complex systems have always been a significant area of interest in 
numerous scientific disciplines1–13. As far as the field of aviation weather forecasting is concerned, knowledge of the 
location and intensity of hazardous convective weather about 2 to 6 hours in advance is vital for air traffic planning 
with minimal weather delays or diversions14. While weather forecasts with about two hours lead time are referred to 
as tactical forecasts, those forecasts with around six hours lead time are known as strategic forecasts by the aviation 
community. The desired strategic forecasting accuracy may not be achievable using current Numerical Weather 
Prediction (NWP) techniques15, suggesting that instead of some ad-hoc engineered solution, a more fundamental 
improvement in the understanding of the storm-scale atmospheric predictability limits is vital16. Determining the 
theoretical predictability limits of the storm-scale atmosphere is crucial in knowing if the shortcomings of current 
strategic mesoscale forecasts are just artifacts of the forecasting techniques used or if we have reached the intrinsic 
storm-scale atmospheric predictability limit (suggesting that the feat of reliable strategic aviation weather forecasting 
is theoretically impossible). Earlier works on atmospheric predictability, namely Lorenz’s pioneering chaos theory 
approach17 are not valid in the storm-scale regime as they are unsuitable for systems with a huge number of degrees 
of freedom18,19 whereas the theoretical predictability limits from his seminal scaling approach20 neglect intermit-
tency and anisotropy which are typical features of atmospheric flows21–23. Although subsequent dynamical systems 
based studies24,25 use much more generalized Lyapunov exponents, recent scaling based predictability studies19,22,26–29  
neither assume homogeneity nor isotropy of atmospheric fields and incorporate intermittency and anisotropy 
within generalized emergent scaling laws30 that are much more amenable for application in the storm-scale atmos-
phere. The statistics adopted by earlier atmospheric predictability studies29 are both second-order (depending on the 
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square) and also two-point (depending on the separation or lag between two points) that do not take into account 
the intermittency of the turbulent field nor information about more extreme weather events (this inverse relation-
ship between the statistical order q and probability of occurrence of events with fluxes beyond a certain threshold is 
further explained mathematically in the Results section). Higher-order statistics based predictability measures also 
need to be considered for overcoming these drawbacks and exploring the whole range of multifractal singularities. 
In this study an approach based on scaling laws that seem to be ubiquitous in nature31–34 is used as explained in the 
Results section to obtain predictability estimates of the storm-scale atmospheric regime that are discussed in detail 
followed by a brief conclusion in the Discussion section.

Results
Since the concepts of both prediction and predictability of complex systems are now widely accepted to be prob-
abilistic35–40, we utilize a stochastic Generalized Scale-invariant (GSI) multifractal27,30,41–44 based methodology 
here. Atmospheric space-time scaling laws are of the general form30
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where Δf(ΔR) is the fluctuation of the nonconservative turbulent field f across a space-time vector displacement 
(lag) or scale ΔR = (Δx, Δy, Δz, Δt), R = (r, t) is the space-time position vector, r = (x, y, z) is the spatial position 
vector and the angular bracket denotes ensemble averaging. The scaling exponent H is the order of fractional inte-
gration (H > 0) or differentiation (H < 0), whereas ϕ is the normalized ηth power of some conservative turbulent 
flux field ε. In other words, H is the conservation or fluctuation exponent, whereas η is the exponent of the con-
servative turbulent flux. The anisotropic space-time scale function [[R]] is the general solution of the anisotropic 
functional scale equation
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where Tλ is the scale changing (transformation) operator, Gst and Gs are the space-time and spatial generator 
matrices, Ht is the dynamic exponent or the space-time anisotropy parameter, Hz is the vertical stratification 
exponent, λ is the scale ratio, and c,d,e,f are the generalized scale invariance (GSI) parameters44. The spatial ellip-
tical dimension Del,s equals the trace of the matrix Gs, whereas the space-time elliptical dimension Del,st is the trace 
of the matrix Gst. Following Marsan et al.26,27 the canonical space-time scale function in real (physical) space can 
be taken as
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where |Δr| is the isotropic spatial scale function, L is the integral length scale (usually taken as the size of the largest 
eddy), and T is the eddy turnover time corresponding to L. The main difference between real space and Fourier 
space scale functions is that they are symmetric with respect to different generators: Gs and Gs

T (this superscript ‘T’ 
indicates the transpose of a matrix, not to be confused with the integral time scale T or the scale transformation 
operator Tλ). For spatially isotropic, self-affine cases or GSI cases with no differential rotation of structures (e = 0), 
Gs is symmetric so that =G Gs s

T. The Fourier space scale function (indicated by the subscript FS) corresponding to 
the real space scale function can, therefore, be taken as
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where |k| is the isotropic spatial scale function in Fourier space, k = (kx, ky, kz) is the wavevector, Ki and Ωi are the 
(angular) wavenumber and (angular) frequency corresponding to the integral length and time scales (L and T), 
respectively. Even though this study prefers the theoretical physics convention of using angular frequency ω and 
angular wavenumber k (although the word angular is often dropped in the manuscript for convenience) in the 
Fourier space instead of the alternate spectroscopy convention of using frequency and spectroscopic wavenum-
ber, both conventions result in the same final outcome as long as they are used consistently. Although real and 
Fourier space scale functions are equivalent in a scaling sense, they are generally not identical. The canonical scale 
functions in Eqs. (3 and 4) are simply convenient approximations.

Semi-fourier space scale functions. Taking into consideration, the scaling anisotropy between space and time 
(based on the Kolmogorov-Obukhov law45,46) suggested by earlier studies19,47, ω| | ∝ | |k Ht can be squared on both sides 

and non-dimensionalized using Ωi and Ki to get ∝ .
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 Since a spatial-scale dependent but position inde-

pendent expression for predictability limit is what is needed, it is advantageous to work in semi-Fourier space, fully 
exploiting this spatial position independence property. The purpose of squaring, is to obtain an expression for ω H1/ t in 
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terms of |Δt|, that can be raised to power 2 and used in Eq. (4) to replace the ω| | H2/ t term. To do this ∝
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which when squared and substituted in Eq. (4) as discussed above gives
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2 2  as usual, and the subscript ‘SFS’ denotes the semi-Fourier space. Using 
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q (derived in the Methods section) with Eq. (6) implies that Δ ∝ Δ β−� �k kE t t( , ) ( , )c SFSq
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theoretical predictability limits of q-th order statistical moments. The polyspectrum is defined as a 
generalized spectrum of order q (for q = 2, 4, etc. the polyspectrum is the spectrum, tri-spectrum, etc.), and due to 
statistical stationarity, the total polyspectrum = Δ + Δk k kE E t E t( ) ( , ) ( , )T c Dq q q

 where ΔkE t( , )Dq
 and ΔkE t( , )cq

 
are the decorrelated and correlated polyspectra, respectively. At Δt = 0, =kE ( , 0) 0Dq

 and =k kE E( , 0) ( )C Tq q
. 

Following the pioneering work of Lorenz20, that defines the predictability limit as the time until which errors in 
prediction have not exceeded a prechosen magnitude which for practical purposes should be considerably greater 
than typical observational errors but less than the magnitude of difference between randomly chosen states of the 
system, here the theoretical predictability limit Δtp is taken as the time when the correlated polyspectrum equals 
decorrelated polyspectrum (i.e. ΔkE t( , )Dq

 is 50% of kE ( )Tq
). Applying the outcome of the Methods section along 

with Eq. (6) in this definition results in
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 and β η η= + − +qH K q qK1 ( ) ( )q . Equation (7) when solved for Δtp(q) results in the analytical 
expression
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This predictability limit obtained in a spatially isotropic framework can be directly translated to that of a spa-
tially anisotropic framework by simply replacing the spatially isotropic function |k| by a GSI scale function ||k||FS 
and the integral length, time scales (L,T) by the sphero-scale ls (the spatial scale where structures are roundish), 
sphero-time lst (the turnover time corresponding to ls) respectively resulting in the analytical expression for the 
predictability limit Δtp(q) of the q-th order statistical moment of the atmospheric field considered:
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having linear GSI parameters c = e = f = 0, d = 1, horizontal trivial anisotropy parameter a and vertical scaling 
anisotropy parameter Hz. The sphero-scale ls is the scale at which the structures of the field are approximately 
roundish, the sphero-time lst is the turnover time of eddies of size ls, whereas ks and kst are the sphero-wavenumber 
and sphero-frequency, respectively. Since ε= −T L/ Ht

1
3 (ε  is the spatially averaged energy flux) and |k| is inde-

pendent of L, Eq. (8) is independent of L. Equation (9) on the other hand depends on ls since ||k||FS depends on ls 
(although ε= −l l/st s

Ht
1
3). The critical ratio μ of the correlated polyspectra to that of the total polyspectra (the 

polyspectrum is a generalized spectrum of order q as described earlier) specifies how much error in prediction is 
acceptable, a and Hz are the trivial (non-scaling) horizontal and scaling vertical anisotropy parameters respec-
tively, whereas Ht is the space-time anisotropy parameter. The scaling moment function K(q) is given as 

−
α

α
−

q q( )C
1

1 , where C1 is the codimension of the mean, and α is the index of multifractality. The basic cascade 
equation for a scale by scale conserved multifractal field is given as: ε λ=λ

q K q( ), where the angular brackets 
denote ensemble averaging, q the order of the statistical moment, and the scale ratio λ= Largest scale/interme-
diate scale. The scaling moment function K(q) that describes how the statistical properties of each moment 
behave under scale transformations48 is also the (base λ, Laplace) second characteristic function (SCF). The 
smoothness parameter H is used to obtain non-conservative observed fields from conservative multifractal 
cascade processes, whereas η is the exponent of the conservative turbulent flux (not to be confused with the 
Kolmogorov scale usually denoted by η in turbulence literature). The significance of η is that for observed 
non-conservative fields such as the velocity shear across a scale l, based on the physical notion of eddy turnover 
time or purely dimensional considerations are directly proportional to the η-th power of the conservative fields 
such as the energy flux density (for the case of horizontal wind shear η = 1/3). Spatial GSI scale functions are 
denoted by || ||, and in Fourier space (kx, ky, kz) as ||k||FS, where the wave vector k = (kx, ky, kz) has the Euclidean 
norm = | | + | | + | |k k k k( )x y z

2 2 2 1/2.

empirical-parameter based estimate of predictability limits. Empirical estimates of multifractal 
parameters α = 1.5,C1 = 0.15 used by earlier works26 and η= . = =H H0 33, 1/3, 2/3t  suggested by the 
Kolmogorov-Obukhov law45,46 are used along with horizontal, vertical anisotropy parameters a = 1.6 (an 
ECMWF interim flux based estimate49), Hz = 5/9 (following Schertzer and Lovejoy50), a typical storm-scale 
sphero-scale of 100 m (determined from CloudSat data by Lovejoy et al.51), μ = 0.5 (following the critical ratio 
used by Schertzer and Lovejoy19,22) in Eq. (9) for assessing the predictability limits of horizontal wind fields. In 
this study, the isotropic wind fields have a = 1, Hz = 1; horizontally anisotropic fields have a = 1.6, Hz = 1; whereas 
the horizontally and vertically anisotropic wind fields have a = 1.6, Hz = 5/9. For such horizontally and vertically 
anisotropic wind fields in the convective regime which is typically 100 km in the horizontal30 and 10 km in the 
vertical, the maximum predictability limits occur at the largest scales of the regime (100 km,100 km,10 km) as can 
be inferred from Eq. (9) and are about 5 hrs and 4 hrs for q = 2 and q = 4 respectively. The limits derived using 
larger q values are smaller as expected (as illustrated by Fig. 1), since rarer events are less predictable19,22. Fields 
with a larger sphero-scale of 1000 m have predictability limits that are smaller (the maximum values are about 
4hrs and 3hrs for q = 2 and q = 4 respectively) than those of fields with 100 m spheroscale, as anticipated (as illus-
trated by Fig. 2). This is a consequence of the sub- and super-spheroscales being dominated by the buoyancy 
variance flux and energy flux respectively50, and systems with stratiform dynamics having lesser buoyancy vari-
ance flux than those with convective dynamics30. Finally, these figures also show that anisotropy improves pre-
dictability in accordance with earlier spectra based assessments.

probability of occurrence. The scaling moment function, K(q) is related to the codimension of the order 

of singularities, γ = +γ α
α α

α
α− −( )c C( )

C1
( 1) 1 1

1
 via the Legendre transform52, γ γ= −

γ
K q q c( ) max( ( )). The γ that 

maximizes qγ − c(γ) is denoted by γq and is the solution of the equation c′(γq) = q, where c′(γ) is the first deriv-
ative of the codimension of order of singularities in γ. For q = 2, 4 the corresponding γ2,γ4 are computed using 
this equation with empirical estimates of α,C1 (as discussed earlier). By substituting these order of singularity 
values, the corresponding codimension of order of singularities are then computed. The probability of occur-
rence of events above a scaling threshold30, ε λ λ≥λ

γ γ−~Pr( ) c( )q q  is then obtained for different scales but with 
the largest scale being 10000 km (since in the atmosphere, the scales typically vary from 1mm to 10000 km). A 
straightforward mathematical simplification of the above discussion shows that γ = αc C q( )q 1  (where both α and 
C1 are positive), implying that larger the statistical order q larger the codimension of singularities γc( )q  corre-
sponding to that order and therefore smaller the probability of occurrence of flux events with order of singular-
ities exceeding γq. This means that higher-order statistical moments are more representative of less probable or 
extreme events.

Discussion
Figures 1 and 2, although informative do not directly show how the predictability limits are affected due to 
anisotropy at super-spheroscales (scales larger than the sphero-scale) and sub-spheroscales (scales smaller 
than the spheroscale). Since this sphero-scale ls is the same in all three directional planes, it is independent 
of the direction. Therefore, it is necessary to get the predictability limit into a similar direction independ-
ent format. To do this Δtp has to become independent of both the azimuthal and polar angles, and angular 
averaging seems to be the simplest way of doing this in a more generalized manner (this loss of directional 
information along with the scale being limited by the smallest of the three scales are the drawbacks of doing 
this). Angular averaging Eq. (9) for further investigation, results in the angular averaged predictability limit 
[Δtp(q)]AA given by
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Figure 1. Theoretical predictability limits of spatially isotropic and anisotropic (with 100 m sphero-scale) 
horizontal wind fields. The wind fields have multifractal parameters α = . = . = .C H1 5, 0 15, 0 33,1  and 
anisotropy parameters as discussed in the text. The wavenumbers kx, ky, kz have units of km−1 and are in the x, y, 
z directions respectively, whereas the predictability limits are in hours. The horizontal wavenumbers represent a 
scale range from 1 to 100 km, whereas the vertical wavenumber represents a scale range from 1 to 10 km (scales 
smaller than 1 km are not shown here as their predictability limits are less than 1 hour). The two rows differ only 
by the order of autocorrelation q used in deriving the predictability limits. (a) spectra based predictability limits 
(q = 2) of an isotropic horizontal wind field as a function of logarithmic wavenumber. (b) same as a, but for 
vertically anisotropic cases. (c) same as a, but for horizontally and vertically anisotropic cases. (d–f) are same as 
(a–c) but for q = 4. Comparing figures (a–c) with (d–f) shows that higher-order predictability limits are smaller 
than lower-order ones. Since higher-order statistical moments represent more extreme events, these figures 
indicate that such events are less predictable. Comparing figures (a–c) with each other and figures (d–f) with 
each other illustrates that fields that are more anisotropic are more predictable.
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Figure 2. Theoretical predictability limits of spatially isotropic and anisotropic (with 1000 m sphero-scale) 
horizontal wind fields. The wind fields have multifractal parameters α = . = . = .C H1 5, 0 15, 0 33,1  and 
anisotropy parameters as discussed in the text. The wavenumbers kx, ky, kz have units of km−1 and are in the x, y, 
z directions respectively, whereas the predictability limits are in hours. The horizontal wavenumbers represent a 
scale range from 1 to 100 km, whereas the vertical wavenumber represents a scale range from 1 to 10 km (scales 
smaller than 1 km are not shown here as their predictability limits are less than 1 hour). The two rows differ only 
by the order of autocorrelation q used in deriving the predictability limits. (a) spectra based predictability limits 
(q = 2) of an isotropic horizontal wind field as a function of logarithmic wavenumber. (b) same as a, but for 
vertically anisotropic cases. (c) same as a, but for horizontally and vertically anisotropic cases. (d–f) are same as 
a, b, c but for q = 4. Comparing figures (a–c) with (d–f) shows that higher-order predictability limits are smaller 
than lower-order ones. Since higher-order statistical moments represent more extreme events, these figures 
indicate that such events are less predictable. Comparing figures (a–c) with each other and figures (d–f) with 
each other illustrates that fields that are more anisotropic are more predictable. Comparing Fig. 1 with this 
figure shows that fields with larger sphero-scales are less predictable.
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where θ and φ are the polar and azimuthal angles, respectively. It is sufficient to consider only non-negative wav-
enumbers kx, ky and kz since the Fourier space scale function ||k||FS we use is an even function, as can be seen from 
Eq. (9), due to which the results are symmetric in the negative part. Therefore, we consider only the first quadrant 

π( )0,
2

 where (sinφ cosθ), (sinφ sinθ) and (cosφ) are all non-negative. Figure 3a) shows the spectra based angular 
averaged predictability limits (q = 2) of a horizontal wind field with ls = 100 m, as a function of logarithmic wave-
number. The probability of occurrence shows the probability distribution of energy fluxes (ε) above the scaling 
threshold30 (λγ, where λ = Largest scale

Intermediate scale
 is the scale ratio and γ is the order of singularity) given by 

ε λ λ≥λ
γ γ−~Pr( ) c( ) (where c(γ) is the codimension of the order of singularities and is related to K(q)), corre-

sponding to wavenumbers 100,100.5,101.0,101.5,102.0,102.5. The angular averaged predictability limits of the iso-
tropic, horizontally isotropic, vertically anisotropic, horizontally and vertically anisotropic wind fields are 
denoted by Δ
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, respectively. At scales around 10 km, about 5% of the energy 
fluxes contribute to the second-order statistical moment, and the horizontally and vertically anisotropic horizon-
tal wind field corresponding to these fluxes has an angular averaged predictability limit of 3.1hrs. Figure 3b) is the 
same as 3a), but for q = 4. The scale ratio λ = =

Δ( )r
L
l

L  is the ratio of the largest scale L (10,000 km) to the 

intermediate scale l (ranging from 10 m to 10 km), whereas the wavenumber = = πkk
l

2  (here also l ranges 
from 10 m to 10 km). In other words λ ∝ ∝ k

l
1  (although they are not exactly equal in these figures, they are 

both related through l). At scales around 10 km, about 0.025% of the energy fluxes contribute to the fourth-order 
statistical moment, and the horizontally and vertically anisotropic horizontal wind field corresponding to these 
fluxes has an angular averaged predictability limit of 2.7 hrs. Vertical stratification seems to improve predictability 
only in the subsphero-wavenumbers. Figure 4 is the same as Fig. 3 but is for a 1000 m sphero-scale. At scales 
around 10 km, about 5% of the energy fluxes contribute to the second-order statistical moment, and the horizon-
tally and vertically anisotropic horizontal wind field corresponding to these fluxes has an angular averaged pre-
dictability limit of 2.5 hrs. Figure 4b) same as 4a), but for q = 4. At scales around 10 km, about 0.025% of the 
energy fluxes contribute to the fourth-order statistical moment, and the horizontally and vertically anisotropic 
horizontal wind field corresponding to these fluxes has an angular averaged predictability limit of 2.2 hrs.

Finally, Fig. 5 shows the importance of sphero-scales. The two panels differ only by the sphero-scale ls, and 
the ratios of the angular averaged predictability limits are independent of the order of statistical moment q. In 
Fig. 5a) ls = 100 m, at scales around 10 km, about 5% and 0.025% of the energy fluxes contribute to the second and 
fourth-order statistical moments and the horizontal wind field corresponding to these fluxes when subject to both 
horizontally and vertically anisotropic has an angular averaged predictability limit that is 2.15 times the isotropic 
limit. Figure 5b) is the same as a), but has ls = 1000 m. At scales around 10 km, about 5% and 0.025% of the energy 
fluxes contribute to the second and fourth-order statistical moments and the horizontal wind field corresponding 
to these fluxes when subject to both horizontally and vertically anisotropic has an angular averaged predictability 
limit that is 1.75 times the isotropic limit. Vertical stratification enhances and diminishes predictability in the sub-
sphero and supersphero-wavenumbers. Horizontal stratification improves predictability over all scales, although 
the improvement is not very significant. Figure 5a,b) show that wind fields with smaller spheroscales are better 
predictable as they are less dominated by convective dynamics.

In conclusion, (i) the super and subsphero-scale predictability is enhanced and diminished correspondingly 
for scaling anisotropy, (ii) for trivial anisotropy, predictability over the entire scale range is improved in accord-
ance with spectra based estimates, (iii) reliably forecasting convectively less dominant systems that are more prob-
able to occur with around 5 hours lead time seems to be theoretically possible (in case of less probable events this 
lead time is reduced to 4 hours), iv) whereas reliably forecasting convectively more active systems that are more 
probable to occur with around 4 hours lead time seems to be theoretically possible (in case of less probable events 
this lead time is reduced to 3 hours). Although convective scale numerical models are capable of reliably forecast-
ing events with stronger large-scale forcing (organized convection) sometimes even out to 4 hours (around the 
theoretical limit proposed for convectively active and more probable events) in some cases (when initialized with 
high-resolution Doppler radar observations), their ability to predict air-mass type storms (unorganized convection)  
is still quite low53–56 (not even close to the theoretical limit proposed here for convectively active and more 
extreme or less probable events). Even recent predictability studies57,58 using storm-scale ensemble forecasting 
systems conclude that these convective-allowing sophisticated NWP models perform poorly (the predictability 
of scales smaller than 100 km is totally lost at around 1hr - which is quite low compared to the theoretical limits 
proposed in this present study) especially for quantitative precipitation forecasting, and that further effort is 
therefore needed in improving the basic understanding storm-scale weather predictability. The results of this 
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study, demonstrates that the current expectations of reliable aviation weather forecasts with 2 to 6 hrs lead times 
(i.e., strategic aviation weather forecasting) are not totally unrealistic subject to the incorporation of multifractal 
cascade dynamics based modeling strategies (especially for unorganized convective weather phenomena which 
are difficult to forecast using conventional convective scale NWP models).

Methods
estimation of the scaling exponent of correlation polyspectra. Following earlier studies27,29 and 
using Eq. (1), the q-th order structure function, for even integer q can be written using the binomial theorem as

∑

Δ Δ = + Δ −

= − + Δ
=

−( )
R R R R

R R R

f f f
q
n f f

( ( )) ( ( ) ( ))

( 1) ( ( )) ( ( )) ,
(11)

q q

n

q
n q n n

0

due to statistical translational invariance (the terms (R + ΔR) and R are interchangeable in 
+ ∆ −R R Rf f( ( )) ( ( ))q n n ). The space-time vector lag ΔR = (Δx, Δy, Δz, Δt), and the angular brackets indicate 

ensemble averaging, whereas =
−( )q

n
q

q n n
!

( ) ! !
. Equation (11) implies that the total statistical moment of order q 

(i.e. + Δ +R R Rf f( ( )) ( ( ))q q ) equals the sum of the decorrelated (i.e. Δ ΔRf( ( ))q ) and correlated (i.e. 
∑ − + Δ=

− + −( ) R R Rq
n f f( 1) ( ( )) ( ( ))n

q n q n n
1
1 1 ) moments of order q. As per the (q − 1)d-dimensional Wiener- 

Khinchin theorem59,60, the generalized (q − 1)th order autocorrelation function Δ Δ… −( )R Ru , , q1 1  and the cor-

Figure 3. Angular averaged theoretical predictability limits of spatially isotropic and anisotropic (with 
100 msphero-scale) horizontal wind fields. The wind field has multifractal parameters 
α = . = . = .C H1 5, 0 15, 0 33,1  and anisotropy parameters, as discussed in the text. The subscripts 
ip,hap,vap,hvap denote isotropic, horizontally anisotropic, vertically anisotropic, horizontally and vertically 
anisotropic cases, whereas the subscript AA indicates angular averaging. While the angular averaged 
predictability limits is in hours, the wavenumber k is in km−1 and corresponds to scales ranging from 10 m to 
10 km. The two panels differ only by the order of autocorrelation q used in deriving the predictability limits.  
(a) spectra based angular averaged predictability limits (q = 2) as a function of logarithmic wavenumber. The 
probability of occurrence shows the probability distribution of energy fluxes above the scaling threshold (λγq, 
where λ = = =

Δrl
Largest scale

Intermediate scale
10, 000 km 10, 000 km  is the scale ratio, l ranges from 0.01 km to 10 km, and γq is the 

order of singularity corresponding to the order of moment q) given by ε λ λ≥λ
γ γ−~Pr( ) c( )q q  (where c(γ) is the 

codimension of the order of singularities and is related to K(q) as shown in Sect 4.3), corresponding to 
wavenumbers 100,100.5,101.0,101.5,102.0,102.5 (see text). The wavenumber = = πkk

l
2  (l ranges from 0.01 km to 

10 km). In other words λ ∝ ∝ k
l
1  (although λ and k are not exactly equal in these figures, they are both related 

through l). (b) same as a, but for polyspectra based angular averaged predictability limits (q = 4). The curves in 
both figures (a,b) show that fields which are more anisotropic are more predictable (over scales larger than the 
sphero-scale ls) and that larger events are more probable and predictable, whereas comparison between these 
two figures indicates that more extreme events (less probable) are less predictable.
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responding generalized correlation polyspectral ((q − 1)th order) density61 … −K KP ( , , )c q1 1q
 (the subscript cq of 

the polyspectral density means that it is the correlated polyspectral density and is dependent on the order of the 
statistical moment q, but it does not mean that it is of the q-th order) are related to each other via the (q − 1)d 
dimensional inverse Fourier transform

∫ ∫

Δ Δ… = + Δ … + Δ

= … .. …

− −

Δ +…+ Δ
− −−

− −( )
(12)

R R R R R R R

K K K K

u f f f

e P d d

( , , ) ( ) ( ) ( )

( , , )R K R

q q

D

i K
c q

d d
q

1 1 1 1

1 1 1 1q d
q q

q( 1)
1 1 1 1

where the whole domain of integration is over the region in D(q−1)d (since here we deal with three-dimensional 
space and one-dimensional time, d = 4) as there are (q − 1) of these d-dimensional integrals. Due to the assump-
tion of statistical translational invariance the right-hand side is independent of R and is dependent only on the 
lags Δ Δ… −R R, , q1 1. When (q − n) of these (q − 1) lags are equal to ΔR, and the remaining (n − 1) lags are zero 
Eq. (12) becomes

∫ ∫+ Δ = … …− − Δ
−

R R R K K Kf f e P d d( ( )) ( ( )) ( ) (13)
K Rq n n

D

i q n
c

d d( )( )
q d q( 1)

Using Eq. (13) in the binomial expansion given by Eq. (11) results in

Figure 4. Angular averaged theoretical predictability limits of spatially isotropic and anisotropic (with 1000 m 
sphero-scale) horizontal wind fields. The wind field has multifractal parameters α = . = . = .C H1 5, 0 15, 0 33,1  
and anisotropy parameters, as discussed in the text. The subscripts ip,hap,vap,hvap denote isotropic, 
horizontally anisotropic, vertically anisotropic, horizontally and vertically anisotropic cases, whereas the 
subscript AA indicates angular averaging. While the angular averaged predictability limits is in hours, the 
wavenumber k is in km−1 and corresponds to scales ranging from 10 m to 10 km. The two panels differ only by 
the order of autocorrelation q used in deriving the predictability limits. (a) spectra based angular averaged 
predictability limits (q = 2) as a function of logarithmic wavenumber. The probability of occurrence shows the 
probability distribution of energy fluxes above the scaling threshold (λγq, where 
λ = = =

Δrl
Largest scale

Intermediate scale
10, 000 km 10, 000 km  is the scale ratio, l ranges from 0.01 km to 10 km, and γq is the order 

of singularity corresponding to the order of moment q) given by ε λ λ≥λ
γ γ−~Pr( ) c( )q q  (where c(γ) is the 

codimension of the order of singularities and is related to K(q) as shown in Sect 4.3), corresponding to 
wavenumbers 100,100.5,101.0,101.5,102.0,102.5 (see text). The wavenumber = = πkk

l
2  (l ranges from 0.01 km to 

10 km). In other words λ ∝ ∝ k
l
1  (although λ and k are not exactly equal in these figures, they are both related 

through l). (b) same as a, but for polyspectra based angular averaged predictability limits (q = 4). The curves in 
both figures (a,b) show that fields which are more anisotropic are more predictable (over scales larger than the 
sphero-scale ls) and that larger events are more probable and predictable, whereas comparison between these 
two figures indicates that more extreme events (less probable) are less predictable. Comparing Fig. 3 with this 
figure shows that fields with smaller sphero-scales are more predictable.
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Following a procedure similar to that used in the derivation of spectra37 based predictability limits, the scaling 
exponent of Pcq

 is derived, as shown here. From the generalized scaling law Eq. (1), it follows that

ξ η ηΔΔ Δ = = − +ξ� �R Rf q qH K q qK( ( )) ; ( ) ( ) ( ), (15)q q( )

Using the anisotropic functional scale equation30 (i.e., Eq. 2) in Eq. (15) gives

λΔ Δ = Δ Δλ
ξ−R Rf T f( ( )) ( ( )) , (16)q q q( )

whereas using Eq. (14) in Eq. (16) results in
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where λ=
∼

λ
T G is the Fourier space scaling operator with the Fourier space generator matrix G, K = (k, ω) is the 

Fourier space wave vector and Del is the elliptical space-time dimension. The scale invariance of the scalar product 
K.ΔR implies that =G GT. From Eq. (17)

Figure 5. Ratio of the angular averaged theoretical predictability limits of anisotropic horizontal wind fields to 
that of isotropic horizontal wind fields. The wind fields have multifractal parameters 
α = . = . = .C H1 5, 0 15, 0 33,1  and anisotropy parameters, as discussed in the text. The two panels differ only 
by the sphero-scale ls. The subscripts ip,hap,vap,hvap denote isotropic, horizontally anisotropic, vertically 
anisotropic, horizontally and vertically anisotropic cases, whereas the subscript AA indicates angular averaging. 
The wavenumber k = |k| is in km−1 and corresponds to scales ranging from 10 m to 10 km. The ratios of the 
angular averaged predictability limits are independent of the order of statistical moment q and, therefore, of 
how probable the occurrence of the event is. (a) the spatially anisotropic fields have ls = 100 m. (b) same as a, but 
the spatially anisotropic fields have ls = 1000 m. The probability of occurrence values in Fig. (a,b) are the same as 
those in Figs. 3 and 4. Vertical stratification enhances and diminishes predictability in the subsphero and 
supersphero-wavenumbers. Horizontal stratification improves predictability over all scales. Wind fields with 
smaller spheroscales are better predictable. Larger events are more probable and have larger anisotropic to 
isotropic angular averaged predictability limit ratios.
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where . Δ
∼

λ λK RT T  has been replaced by . ΔK R (since ′Δ = ΔλR RT  and ′ =
∼

λK KT  and scale invariance of the 
scalar product means that ′ ′. Δ = . ΔK R K R). Equation (18) when compared with Eq. (14), results in
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D q
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q

el
q

The general solution of this functional equation (Eq. (19)) [found by adopting a procedure following chapter 
7 of Lovejoy and Schertzer30, similar to that subsequently used in Appendix A of Ramanathan et al.43, and using it 
along with the anisotropic functional scale equation] is ∝ ξ− −� �K KP ( )c FS

D q( )
q

el , so that the scaling exponent of Pcq
 

is ξ− −D q( ( ))el . The q-th order correlated polyspectrum is therefore ∝ ∝ β− + −� � � �K K K KE P( ) ( ) ,c FS
D

c FS
1

q
el

q
q  

where β ξ η η= + = + − +q qH K q qK1 ( ) 1 ( ) ( )q  is the polyspectral exponent (H and η are the conservation or 
fluctuation exponent and exponent of the conservative turbulent flux respectively, whereas = −

α
α

−
K q q q( ) ( )C

1
1  

is the moment scaling function [not to be confused with the Fourier space wave vector K = (k, ω)]). By repeating 
the above steps but for spatial scaling laws instead of space-time scaling laws and assuming statistical stationarity, 
it follows that the total polyspectrum ∝ β−kETq

q.
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