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Background. The research analyzed a group of patients to develop a statistical nomogram and a web-based survival rate predictor
for the comprehensive estimate of the overall survival (OS) of children with acute myeloid leukemia. Methods. Between 1999 to
2015, we used the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database to evaluate and
randomly divide 440 children diagnosed with AML into the population of training (n = 309) and validation (n = 131). The
analysis of Lasso Cox was used to identify separate predictive variables. We have used essential forecasting considerations to
construct a nomogram and a web-based calculator focused on Cox regression analysis. Nomogram validation was tested
through discrimination and calibration. Results. Compared to the multivariate training cohort models, a nomogram integrating
gender, age of diagnose, WBC at diagnosis, bone marrow leukemic blast percentage, and chromosomal abnormalities [t(8; 21),
inv(16)] were designed for the prediction of OS. We also developed a predictive survival nomogram and a web-based calculator.
C-indexes validated internally and checked externally were 0.747 and 0.716. The calibration curves have shown that the
nomogram might accurately forecast 3-year and 5-year OS. Conclusions. A nomogram effectively predicts survival in children
with AML. This prognostic model can be used in clinical practice.

1. Background

Acute myeloid leukemia (AML) is a disease of the hemato-
poietic stem cells (HSC), marked by irregular development
and immature blast cell proliferation in the bone marrow
[1, 2]. Childhood AMLs account for nearly 20% of child-
hood leukemia and >50% of fatalities in the aforementioned
populations [3, 4]. Several contributing factors, including
toxic exposures, chemotherapy or radiation treatment, mye-
lodysplastic syndrome, and genetic factors, have led to AML
pathogenesis [5–7]. Despite considerable progress in discov-
ering pediatric AML pathophysiology, survival rates in
patients have not significantly improved and nearly more

than half of children diagnosed with AML suffering from
recurrence.

In recent decades, AML has improved diagnosis and
treatment but the overall survival rate (OS) is still low, less
than 50% [8, 9]. The cytogenetic karyotype and molecular
defects in the diagnosis are known to be the most important
predictive factors for OS. Forecast probability stratification
should be improved as it can establish successful diagnostic
and therapeutic approaches.

Nomograms are accepted as a viable substitute method
that can allow clinicians to accurately predict individuals
[10, 11]. By adding clinically relevant variables, the survival
rate can be measured accurately [12, 13]. Nevertheless,
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nomograms for the estimation of children’s survival with
AML have not yet been fully established.

In this research, we established a prognostic nomogram
based on the TARGET population data to predict individual-
ized survival in children with AML.

2. Methods

2.1. Patient Selection. We downloaded clinical information
from the TARGET project database for AML patients
(http://ocg.cancer.gov/). The criteria for AML were identified
between 1999 and 2015. Criteria for exclusion were as fol-
lows: unclear gender, uncertain age of diagnose, unknown
WBC at diagnosis, unknown bone marrow leukemic blast
percentage (BM blast percentage), and unclear chromosomal
results including t(8; 21), inv(16). As our mathematical
research method, we used R software (3.5.2). The optimum
diagnostic age cutoff value was 3489 days. 70% of all patients
have been randomly chosen to form the Nomogram Con-
struction Training Cohort, and the remaining 30% have been
validated.

2.2. Ethical Approval. Because the identified patient informa-
tion is not included in the TARGET database, no ethical con-
sent is needed.

2.3. Training and Validation Cohort. The whole population
was divided by the random sample process into the training
or validation population (ratio, ~ 3 : 1). The training popula-
tion was used to assess the predictive model and the statistical
probability stratification. The validation population was used
to verify the model prediction.

2.4. Statistical Analysis. Categorical measurements were rep-
resented as counts and percentages. Continuous measure-
ments were represented as mean and range. The t-test was
used to continuous measurements, while the Chi-square

was used to compare ones. Statistically significant was P <
0:05. The primary endpoint was overall survival (OS). OS
was described as an interval from diagnostic to death or last
follow-up, regardless of the cause of death. The optimum
age cutoff value was calculated by the R program package
“survminer”.

We used the Lasso Cox regression model [14], defining
individual operating system risk factors, as well as the
“glmnet” package. Using the “rms package” program, nomo-
grams and calibration plots were developed. We used the
“shiny” and “DynNom” packages to create a web-based sur-
vival rate calculator that estimated overall survival rates
(http://www.shinyapps.io/) dynamically. The nomogram
measurement was carried out using the concordance index
(C-index) and calibration curves. The C-index represents
the nomogram’s capacity to discriminate. The larger the C-
index, the more accurate the model. For the analysis of the
observed and predicted nomogram probabilities, calibration
plots were used. The precision of the 3-year and 5-year
nomogram survival was assessed by the ROC (receiver oper-
ating characteristic) curve.

3. Results

3.1. Patient Characteristics. In the TARGET database, we
found 440 eligible patients (1999-2015). The median OS
was 1547 days (range 1-3113 days). The OS rates for 3 years
and 5 years were 70.9% and 44.3%, respectively. In Table 1,
the demographic and clinical features of the population in
training (n = 309), the validation population (n = 131), and
all patients (n = 440) are illustrated.

3.2. Identification of Independent Risk Factors. Lasso Cox also
used the training population to evaluate regression and clas-
sify individual risk factors impacting the OS (Figure 1). With
increases in λ, the coefficient of variables decreased. The

Table 1: Clinical characteristics of patients with AML.

Variables
All patients Training cohort Validation cohort
(N = 440) (n = 309) (n = 131)

Age

<14 312 (70.9%) 224 (72.5%) 88 (67.2%)

≥14 128 (29.1%) 85 (27.5%) 43 (32.8%)

Gender

Male 231 (52.5%) 161 (52.1%) 70 (53.4%)

Female 209 (47.5%) 148 (47.9%) 61 (46.6%)

White blood cell

<100 363 (82.5%) 254 (82.2%) 109 (83.2%)

≥100 77 (17.5%) 55 (17.8%) 22 (16.8%)

BM leukemic blast percentage

<90% 333 (75.7%) 255 (82.5%) 78 (59.5%)

≥90% 107 (24.3%) 54 (17.5%) 53 (40.5%)

Chromosomal abnormalities

t(8; 21) 79 (17.9%) 58 (18.8%) 21 (16.1%)

Inv(16) 57 (12.9%) 39 (12.6%) 18 (13.7%)
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excluded variable parameters were compressed to 0 when λ
was optimum. Variables < 0 have therefore been chosen. As
a result, a total of 6 predictive factors (gender, age of diag-
nose, WBC at diagnosis, BM blast percentage, chromosomal
abnormalities [t(8; 21), inv(16)]) were included in the predic-
tive model. These factors were applied to the nomogram.

3.3. Nomogram. A nomogram that incorporates all the rele-
vant independent factors was established for estimation of 3
years and 5 years OS, based on the reduced multivariate

models of the training population (Figure 2). This model
revealed the inv(16) translocation mainly contributed to the
prognosis, followed by t(8; 21) translocation, WBC at diagno-
sis, age of diagnose, etc. Each factor received a score on the
scale of points. By applying the scores to the overall scale, we
might estimate the probability of 3-year and 5-year survival.

The calculator predicted patients’ survival based on their
clinical characteristics and based on these findings, we devel-
oped a dynamic web-based calculator (https://dxyjiang
.shinyapps.io/AMLpredict/), to predict OS in AML patients
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Figure 1: Identification of predictive factors using the Lasso Cox regression. (a) The vertical line was plotted at the given λ, selected by cross-
validation. For the optimal λ, 6 features of them with a nonzero coefficient were selected. (b) The penalization coefficient λ in the Lasso model
was adjusted using cross-validation and the minimum criterion. The vertical black lines define the optimal λ.
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by nomogram (Figure 3). For e.g., the OS rate for 5 years was
approximately 96% for one patient aged 14, diagnosed with
WBC of approximately 100 ≥ 109/L, BMblast percentage ≥
90%, and t(8; 21) and inv(16) positive.

3.4. Nomogram Validation. Internal analysis shows that the
nomogram can estimate the OS correctly with a 0.747 C-
index. Similarly, the external validation of the C-index was
0.716. The calibration statistics showed an outstanding corre-
lation between the values for the 3-year and 5-year OS pre-
dicted and observed in both the population of training and
the validation cohort (Figure 4).

3.5. Survival Curves for Prognostic Factors. Finally, we exam-
ined and developed curves of survival between the prognostic
variables in the nomogram and the OS (Figure 5). We
observed that age of diagnose, WBC at diagnosis, inv(16),
and calculated risk scores wascorrelated with overall survival.

4. Discussion

As precision medicine develops quickly, physicians may cre-
ate personalized diagnosis and follow-up plans for patients
who need more accurate and easy models of survival [15,
16]. As a predictive tool, the nomogram can offer the most
precise forecasts by means of a simple, easy to understand
and easy to use in clinical procedure [17, 18]. The long-
term survival of patients with various malignancies has been
regularly estimated by demographic and clinical characteris-
tics in a simple nomogram [19, 20].

AML is one of the most severe malignancies in childhood
with different kinds of molecular and cellular heterogeneity
[21, 22]. The standard cure of AML is the hematopoietic stem
cell transplantation and chemotherapy, but the prognosis of
childhood AML is suboptimal because of its elevated recur-
rence and mortality [23, 24]. Nomograms in recent research
are typically more precise and convenient compared with
conventional staging systems. In addition, web-based
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survival rate calculators were used to improve predictive
model approachability. Recently, several reports have dem-
onstrated nomograms for estimating AML adult patients’
long-term survival outcomes [25, 26]. To our knowledge,

few nomograms have been recorded to estimate the OS for
children with AML. Hence, 440 patients were studied for
the detection of OS-impact variables and a nomogram
dependent calculator to effectively forecast prognostics for
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Figure 4: ROC curves and calibration plots of the nomogram in training and validation cohorts. (a) ROC curves for discrimination in the
training set. (b) Calibration plot of observed and predicted probabilities for the nomogram in the 3-year training set. (c) Calibration plot
of observed and predicted probabilities for the nomogram in the 5-year training set. (d) ROC curves for discrimination in the validation
set. (e) Calibration plot of observed and predicted probabilities for the nomogram in the 3-year validation set. (f) Calibration plot of
observed and predicted probabilities for the nomogram in the 5-year validation set.
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children with AML. Successful statistic evaluation was used
to provide data for clinical consultation, pretreatment deci-
sion-making, and follow-up approaches.

The association between variables namedmulticollinearity
has become a major issue in multivariate regression analysis
[27]. We used the Lasso Cox regression approach rather than
the conventional step-by-step process to tackle possible collin-
earity. The regression of Lasso Cox minimizes and reduces
correlations thus offering a conclusive final model [28, 29].

The statistical model, which contained the aforemen-
tioned 13 individual risk factors, was extremely reliable in
its survival prediction. C-index and validation plots have

been used to test the predictive preciseness of the model
and ensure the predictive precision of the nomogram. Both
C-indices were >0.7 and demonstrated outstanding accuracy
between predicted and actual survival. Nonetheless, given its
high precision, the inconvenience of this model can limit its
clinical use. We therefore have built a web-based survival risk
calculator based on children AML’s prediction nomograms.
This tool accomplished a successful visualization, and the
OS of children with AML was statistically predicted. Finally,
an addition to the nomogram was created to differentiate
patients at various mortality rates through prognostic risk
stratification.
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We identified 13 clinicopathological characteristics capa-
ble of predicting OS for AML children including gender, age
of diagnose, WBC at diagnosis, BM blast percentage, and
chromosomal abnormalities [t(8; 21), inv(16)]. Several stud-
ies have shown that age of diagnose and WBC at diagnosis
were important predictive factors [30, 31], while the mecha-
nism remains clear. Further studies are required to identify
the mechanisms.

The TARGET database required detailed clinical infor-
mation such as chemotherapy, which restricted our study of
therapeutic modalities’ impacts and prognostic complica-
tions. Furthermore, due to the retrospective aspect of the
analysis, there was a data selection element. The online calcu-
lator set up in this thesis can be updated and serves as a foun-
dational resource for further analysis.

5. Conclusion

Large data analysis is an important source of clinical prog-
nostic indicators. Some of the latest analyzes of clinical data
were focused on the SEER database. The TARGET database
is part of the National Cancer Institute project and is barely
published on its clinical data. The prognostic nomogram of
childhood AML was developed based on the clinical evidence
of the patients. Precise assessments of childhood AML will
help physicians determine the current state of the individual,
choose effective care choices, and establish better follow-up
plans.
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