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ABSTRACT: Water is a precious commodity for plant growth and
metabolism; however, its scarcity and saline sand conditions have a
drastic effect on plant growth and development. The main
objective of the current study was to understand how silicon (Si)
application might help Black gram (Vigna mungo L.) against the
negative impacts of salt stress and drought. The treatments of this
study were: no silicon = 0 mg/kg; silicon = 40 mg/kg; control = no
stress; drought stress = 50% field capacity (FC); salinity = 10
dSm−1; drought + salinity = 10 dSm−1 + 50% field capacity (FC).
The findings showed that the application of silicon in the sand
significantly affected growth indices such as leaf area (LA), shoot
fresh weight (SFW), shoot dry weight (SDW), and shoot length
(SL). Root length (RL) increased significantly up to 55.9% in
response to drought stress. Applying Si to the sand increased the root length (RL) by 53.9%. In comparison to the control, the turgor
potential of leaves decreased by 10.3% under salinity, while it increased by 44.7% under drought stress. However, the application of
silicon to the sand significantly improved the turgor potential of leaves by 98.7%. Under both drought and salt stress, gas exchange
characteristics and photosynthetic pigments dramatically decreased. Applying 40 mg/kg silicon to sand improved the gas exchange
characteristics, protein contents, and photosynthetic pigments of plants under drought and salt stress, such as levels of chlorophyll
(a, and b) increased by 18% and 26%, respectively. Under control conditions, the hydrogen peroxide (H2O2) concentration was
lower but increased during periods of drought and salinity stress. The concentrations of peroxidase (POD), superoxide dismutase
(SOD), and catalase (CAT) were decreased by salt and drought stress and increased by sand application of silicon at a rate of 40
mg/kg. Application of silicon at 40 mg/kg sand rate improved the growth and development under control and stress conditions.
Overall, this study provides an extensive understanding of the physiological mechanisms underlying the black gram’s ability to
withstand under salt stress and drought stress by application of Si which will serve as a roadmap for future cellular research.

■ INTRODUCTION
Abiotic stress including drought has a detrimental effect on
biotic life globally.1 Drought has multiple dimensions, making
it difficult to forecast and track its effects.2 As per UNCCD
COP-15, the effects of drought stress are on the rise and have
impacted around 2.3 billion people, leading to a loss of over
$120 billion in socio-economic terms.3 Pakistan is one of the
areas listed in the study that has been impacted by water stress
during the past two years (2020−2022). The agricultural land
of Pakistan was affected by water scarcity up to 11% in 2014
and is expected to have an average debt of 31% by 2025.
Compared to other provinces in Pakistan, Sindh and
Baluchistan are particularly vulnerable to drought.4 Around
41% of the earth’s surface is made up of dry zones, which are
identified by low average yearly precipitation to potential
evapotranspiration ratios.5

It has been discovered that drought stress negatively affects
germination as well as other growth phases.6 Drought has a
significant impact on the germination of seeds in a variety of
crops, which is an important stage in the life cycle of plants.7

This effect is most noticeable in the way that dry seeds absorb
water. For the process of imbibition of seeds and subsequent
germination, the sand moisture content is crucial. A specific
amount of moisture is necessary for the germination of the

Received: May 19, 2024
Revised: August 7, 2024
Accepted: August 8, 2024
Published: August 20, 2024

Articlehttp://pubs.acs.org/journal/acsodf

© 2024 The Authors. Published by
American Chemical Society

37231
https://doi.org/10.1021/acsomega.4c04727

ACS Omega 2024, 9, 37231−37242

This article is licensed under CC-BY-NC-ND 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Waheed+Ahmad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ejaz+Ahmad+Waraich"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Arslan+Haider"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nasir+Mahmood"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tahrim+Ramzan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Saud+Alamri"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Manzer+H.+Siddiqui"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Manzer+H.+Siddiqui"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mohd.+Sayeed+Akhtar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.4c04727&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04727?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04727?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04727?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04727?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/9/35?ref=pdf
https://pubs.acs.org/toc/acsodf/9/35?ref=pdf
https://pubs.acs.org/toc/acsodf/9/35?ref=pdf
https://pubs.acs.org/toc/acsodf/9/35?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.4c04727?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


seeds and subsequent growth. On the other hand, the lack of
moisture either entirely prevents or severely retards the
development of seedlings. By slowing the pace at which
seeds absorb water during the germination process, water stress
lowers the rate and percentage of germination. It has been
discovered that reactive oxygen species (ROS) cause oxidative
stress in plants, which disrupts several physiological
functions.8,9

It often faces abiotic challenges such as salinity, dehydration,
and other conditions, though it grows well in semiarid habitats.
Increased sand salinity due to global climate change could pose
a serious danger to lentil production worldwide.10 According
to data from the FAO Land and Plant Nutrition Management
Service, salinity affects more than 6% of the world’s land.
Forty-five million hectares (19%) of the 230 Mha of irrigated
land currently under cultivation are damaged by salt, while 32
million hectares (2%) of the 1500 Mha agricultural land are
affected by salt to varied degrees. Salinity affects irrigated lands,
and as a result, 1.5 Mha of agricultural land is lost annually, and
these lands are no longer suitable for cultivation. In 2050, 50%
of cultivated lands will be in danger of disappearing if the
present conditions continue.11 Sand salinity is caused by an
increase in the amount of groundwater with high amounts of
salt, ineffective irrigation and drainage systems, and excessive
fertilizer use.12 Salinity suppresses physiological and morpho-
logical traits in grain legumes, resulting in a yield drop of 12−
100%.13 Additionally, it has an impact on reproductive growth,
reducing the quantity of flowers and pollen production and
leading to smaller grain pods. In salinity-affected sands, where
germination and seedlings are most susceptible to salt stress,
poor stand establishment poses a barrier to sustainable crop
legume production.14 Because salt stress causes osmotic stress
on developing seeds or toxicity of Na+ and Cl− ions, it lowers
and delays seedling germination, resulting in insufficient
growth and biomass production.15

The seeds of the self-pollinating Vigna mungo (L.) grain have
a high protein content. Through the uptake of atmospheric
nitrogen fixed by legume crops, it modifies the physical
characteristics and enhances the fertility of the sand. Globally
eaten, black gram comes in fourth place in terms of acreage
and output in India, behind green gram, pigeon pea, and
chickpea.16 About 20% of the world’s pulse supply is derived
from the black gram, an Indian legume crop that grows in a
short amount of time (90−120 days).17 Around the world,
India is noted for having the highest production and
consumption of black gram, making it the third most
important pulse.18 Due to its high nutritional content, it is
also utilized in cosmetics, nutraceuticals, medical preparations,
and sustainable agricultural systems. Due to some factors,
including stress, black gram production has not increased
during the past ten years.19 Typical characteristics of drought
stress include its gradual onset, elusive nature, lack of a single
indication, difficulty in quantifying, and projected 50%
worldwide decline in crop yield.20

To combat drought and other abiotic challenges, plants can
use a variety of defense strategies.21 Plants produce
antioxidants as one of their defensive strategies against the
damaging effects of drought.22 Furthermore, a variety of
proteins and amino acids that are produced by plants are
involved in their defense mechanisms.2 Application of silicon
(Si), is one of the many techniques that is crucial in both biotic
and abiotic stressors.23 Silicon is the most prevalent element in
Earth’s outermost layer and is well-known for enhancing plant

performance in stressful environments.24 Additionally, it has
been demonstrated that applying exogenous silicon increases
the relative water content and promotes the growth of
seedlings.25 Applications of silicon boost photosynthetic rate,
antioxidant defense system in crops.26 By upregulating the
physiological mechanism of the plant, silicon treatment under
drought enhances root growth in plants.27 Applications of
silicon in various crops under abiotic stressors have been
reported that plants exposed to salt stress need to use more
energy within their cells in order to keep their cytosolic K+

concentration high and their Na+ concentration low. Applying
silicon can reduce the amount of Na+ that builds up in the
roots and/or shoots.28 It was suggested that the main
mechanism of silicone-enhanced salt tolerance in this species
is the decrease of both Na+ and Cl− levels but the increase of
K+ in salt-stressed barley roots, with Na+ and K+ being more
uniformly distributed across the entire root section.28

On the other hand, very little is known about the combined
effects of salinity and drought stress in the context of black
gram under silicon applications. Enhancing the yield and area
under cultivation of black gram requires an understanding of
the biochemical and root morphological responses to silicon
treatment under salinity and drought stress. This study
hypothesized that the application of silicon may help plants
in alleviating the deteriorating effects of drought and salt stress.
Keeping in view the above-mentioned facts, the current study
was conducted with following objectives

• To study the effects of salinity and drought stress on
growth, physiology, biochemical, and root attributes of
black gram.

• To determine the ameliorative role of sand applied
silicon to improve the morpho-physiological and root
attributes of black gram under drought and salinity stress

■ MATERIALS AND METHODS
Crop Husbandry. An experiment was conducted in the

wirehouse of the old Botanical Garden at the University of
Agriculture, Faisalabad. Seed of the Vigna mungo variety
(Bittale-2017 and Noor-2019) were acquired from the Ayub
Agricultural Research Institute, Faisalabad. The treatments of
this study were: no silicon = 0 mg/kg; silicon = 40 mg/kg;
control = no stress; drought stress = 50% FC; salinity = 10
dSm−1; drought + salinity = 10 dSm−1 + 50% FC. The
experiment was conducted under a completely randomized
design (CRD) and three replications. To do this, black gram
was planted in 16 cm by 11 plastic pots that were filled with 1.5
kg of sand in each pot. With mean maximum temperatures of
35 and 44 °C and mean minimum temperatures of 30 and 32
°C, humidity level 26 and 36% during the summer seasons of
2022−23. The study area had a subtropical climate; pots were
kept under direct sunlight (Figure 1).
The field capacity was estimated, and irrigation was foregone

in order to prolong the drought. The required moisture
content was maintained on a weight basis. Two days before the
salt stress was imposed, the last treatments were applied.
Specifically, 48 h later, Hoagland solution was used to apply
salinity stress every day for a month at two different
concentrations (0 and 10 dSm−1 NaCl). To reduce EC and
pH fluctuations throughout the salinity stress application, the
pots’ culture media were rinsed 5 days apart with tap water.
Nearly 10 viable seeds of the same weight and size were
planted in each of the 24 pots. Half of the pots were treated
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with silicon (Na2SiO3) at a concentration of 40 mg/kg of sand;
the remaining half was left untreated in the face of salinity and
drought. The total silicon content in sodium silicate is 8.72%.
By changing 40 mg of silicon to grams, 0.04 g of sodium
silicate was taken. As a result, 1 kg of sand required 0.458 g of
sodium silicate to provide 40 mg of silicon. Five plants
remained in each pot following the 14-day thinning period.
Observations regarding growth, water relations, gaseous
exchange, and biochemical attributes were observed following
the application of drought and salinity stress.

Growth Parameters. Three plants from each experimental
unit were selected randomly to measure the growth
parameters. The leaf area of the plants was determined
manually. Using a scale, the length of the shoot was measured
from the sand’s surface to the tip. Next, the entire plant was
carefully taken out of the dirt, and its roots and shoots were
divided using scissors after the pots had been filled with water.
Using a digital weighing balance, the shoots and roots’ weights
were determined. Following a 72 h oven drying process at 65
°C for shoot and root samples, the dry weight of the plant was
determined using a digital scale.

Chlorophyll Content. The immature seedlings were used
to gather samples and were weighed. They were then
transferred to an Eppendorf tube and macerated with 3.0 mL
of 80% acetone. The material was then centrifuged for seven
min at 12 000 rpm. Finally, measurements at wavelengths of
470, 645, 652, and 663 nm were conducted using the ELISA
plate reader.29

= × ×V WChl. a 12. 9(Ab663) 2. 69(Ab645) /1000

= × ×V WChl. b 22.9(Ab645) 4.68(Ab663) /1000

= +TotalChl. Chl. a Chl. b

= × × ×A V A PCarotenoidscontent( g/g) (mL) 10 / (g)4

where “A″ stands for absorbance (nm), “V″ for extracted
volume (mL), and “W″ for fresh leaf tissue weight (g).

Water Relations. The youngest and fully developed leaves
of black gram plants were taken from each treatment in order
to calculate the leaf water potential. ELE-International, Tokyo,
Japan’s RIMAD-2 Scholander-type pressure chamber was used
in accordance with the protocol outlined by Ahmad et al.
(2017).30 The modified approach Karrou and Maranville
(1995).31 was employed to determine the relative water
content (RWC). The turgid weights of samples (0.5 g) were
measured after being saturated in 100 mL of distilled water for
24 h at 4 °C in the dark. The samples were then oven-dried for
48 h at 65 °C, and their dry weight was noted. The following

formula is used to calculate the relative water content (RWC)
of plant tissue in units of percentage:

= ×RWC (FM DM)/(TM DM) 100

Where, FM, DM, and TM were the fresh, dry, and turgid
weights, respectively.

Biochemical Parameters. Activities of Antioxidant
Enzymes The updated procedures by Chance and Maehly
(1955) were employed to measure the activity of catalase and
peroxidase.32

Using a cooled mortar and pestle, the samples were ground
in 2 mL of 0.1 M phosphate buffer (pH 7.8). Centrifugation at
12 000 rpm for 15 min came next, and 0.2 mL of sample, 1 mL
of 0.05 M phosphate buffer (pH 7), 1 mL of H2O2, and 0.8 mL
of distilled water were added to create the reaction mixture.
Last, absorbance was measured every 30 s for 3 min at 240 nm.
Using a cooled mortar and pestle, 2 mL of 0.1 M phosphate

buffer (pH 7.8) was used to macerate the seedlings.
Centrifugation at 12 000 rpm for 15 min then add, 0.2 mL
of extract, 1 mL of 0.1 M phosphate buffer (pH 6.1), 0.5 mL of
H2O2, 0.5 mL of guaiacol, and 0.8 mL of distill water were
added to create the reaction mixture. Last, absorbance was
measured for 3 min at intervals of 15 seconds at 470 nm.

= × × × × ×
×

POX (final initial) 3 1000/26.6 3 1 0.2

freshweight (1)

Histochemical Examination of H2O2 and O2 in Leaves Using
DBT and NBT and 3,30-diaminobenzidine (DAB) staining
techniques were used to identify the production of superoxide
anion (O2−) and H2O2, respectively.
The Spitz and Oberly, 2001 modified procedure was

employed to note the superoxide activity.33 In order to
macerate the seedlings, 2 mL of 50 mM phosphate buffer (pH
7) was added. For 30 min, the mixture was centrifuged at 13
000 rpm. A 50 μL amount of extract, 2.15 mL of 50 mM
phosphate buffer (pH 7.8), 0.2 mL of methionine, 0.2 mL of
NBT, 0.2 mL of EDTA, and 0.2 mL of riboflavin solution were
added to create a reaction mixture. The samples were put
below fluorescent light for 10 min after the test tubes were
shaken. The test tubes were subsequently covered with a black
cloth, and all lights were turned off. At 560 nm, the reaction
mixture’s absorbance was finally detected.

Total Soluble Protein. Utilizing a modified technique, the
total soluble protein content was measured.34 A 5.0 mL aliquot
of 10 mM phosphate buffer (PPB) (pH 7) containing 4%
polyvinylpyrrolidone (PVP) was used to macerate the
seedlings. For 15 min, this mixture was centrifuged at 12 000
rpm. After addition of 20 μL of extract and 980 μL of Bradford
reagent, the reaction mixture was ready to be incubated for 15
min at room temperature. At 595 nm, the value was finally
measured.

Total Phenolics. A 0.5 g sample was obtained, macerated
in 5 mL of 80% ethanol, and then centrifuged for 20 min at 10
000 rpm. A 0.5 mL portion of plant sample, 2.5 mL of 10%
Folin-Ciocalteu Reagent (FCR), and 2.5 mL of 7.5% NaHCO3
were added to create the reaction mixture. After that, this
mixture spent 45 min in a water bath at 45 °C. The absorbance
was measured at 765 nm following incubation. Lastly, gallic
acid was used to create the conventional graph.35

Root Analysis Parameters. We used WinRhizo software
and an Epson scanner to scan roots in order to evaluate

Figure 1. Accumulated environmental conditions, including max-
imum and minimum temperature (°C), relative humidity (%), and
rainfall (mm), for experimental year 2022.
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characteristics linked to roots, such as root length, surface area,
projected area, and root volume.

Statistical Analysis. Three factors were used in the
Complete Randomized Design (CRD) structure of this
experiment. At the 5% probability level, the treatment means

Table 1. Effect of Silicon Treatment and Stress Conditions on Growth Attributes of the Black Grama

treatments
shoot.length

(cm)
shoot.fresh
weight (g)

shoot.dry weight
(g)

root.fresh
weight (g)

root.dry weight
(g) leaf.area (cm2)

no silicon control 19.41 ± 0.54a 0.46 ± 0.01b 0.17 ± 0.008a 0.45 ± 0.01a 0.03 ± 0.001b 4.39 ± 0.05a
drought stress 18.53 ± 0.64a 0.33 ± 0.01cd 0.12 ± 0.005bc 0.50 ± 0.02a 0.03 ± 0.002b 3.20 ± 0.008b
salinity 13.60 ± 0.50b 0.26 ± 0.01e 0.08 ± 0.005c 0.09 ± 0.005b 0.01 ± 0.0005c 2.4 ± 0.04cd
salinity + drought 10.83 ± 0.08c 0.24 ± 0.008e 0.08 ± 0.005c 0.08 ± 0.005b 0.008 ± 0.005c 1.98 ± 0.07d

silicon (40 mg/kg) control 19.06 ± 0.65a 0.55 ± 0.02a 0.19 ± 0.01a 0.45 ± 0.02a 0.03 ± 0.001b 4.14 ± 0.18a
drought stress 19.1 ± 0.76a 0.36 ± 0.008c 0.12 ± 0.008b 0.49 ± 0.03a 0.04 ± 0.002a 3.33 ± 0.07b
salinity 13.77 ± 0.41b 0.30 ± 0.01de 0.12 ± 0.005bc 0.09 ± 0.006b 0.008 ± 0.005c 3.15 ± 0.04b
salinity + drought 12.43 ± 0.41bc 0.28 ± 0.01de 0.10 ± 0.006bc 0.11 ± 0.008b 0.01 ± 0.0005c 2.64 ± 0.09c

aValues (mean ± standard error), LSD = least significant difference; values sharing the same case letter or without lettering for a parameter do not
differ significantly (p ≤ 0.05) by the LSD test. No silicon = 0 mg/kg; silicon = 40 mg/kg; control = no stress; drought stress = 50% FC; salinity =
10 dSm−1; drought + salinity = 10 dSm−1 + 50% FC.

Table 2. Effect of Silicon Treatment and Stress Conditions on Photosynthetic and Biochemical Attributes of Black Grama

treatments chlorophyll a chlorophyll b total chlorophyll SOD POD CAT

no silicon control 1.27 ± 0.02ab 0.82 ± 0.02a 0.36 ± 0.01b 19.22 ± 0.62e 2.01 ± 0.11f 11.21 ± 0.41f
drought stress 0.67 ± 0.02c 0.69 ± 0.02a 0.24 ± 0.01de 24.67 ± 1.20de 3.14 ± 0.13d 26.41 ± 0.42d

salinity 0.36 ± 0.01d 0.41 ± 0.01b 0.23 ± 0.01de 30.44 ± 1.22cd 3.51 ± 0.08cd 31.72 ± 1.46bc
salinity + drought 0.18 ± 0.005e 0.36 ± 0.01b 0.21 ± 0.00e 35.36 ± 1.82bc 3.96 ± 0.08b 36.6 ± 0.91b

Silicon (40 mg/kg) control 1.39 ± 0.01a 0.78 ± 0.03a 0.44 ± 0.01a 25.36 ± 0.75d 2.56 ± 0.05e 18.59 ± 0.77e
drought stress 1.22 ± 0.03b 0.76 ± 0.04a 0.42 ± 0.00a 33.79 ± 1.21bc 3.69 ± 0.03bc 31.08 ± 0.85cd

salinity 1.22 ± 0.04b 0.82 ± 0.02a 0.29 ± 0.01c 37.94 ± 1.15bc 3.92 ± 0.03bc 42.72 ± 1.44a
salinity + drought 1.28 ± 0.04ab 0.70 ± 0.03a 0.27 ± 0.01cd 43.06 ± 1.58a 4.51 ± 0.09a 47.7 ± 1.62a

aValues (mean ± standard error), LSD = least significant difference; values sharing the same case letter or without lettering for a parameter do not
differ significantly (p ≤ 0.05) by the LSD test. No silicon = 0 mg/kg; silicon = 40 mg/kg; control = no stress; drought stress = 50% FC; salinity =
10 dSm−1; drought + salinity = 10 dSm−1 + 50% FC.

Figure 2. Impact of silicon (T0 = control, T1 = drought stress, T2 = salinity stress (EC= 10 dSm−1), T3= drought + salinity stress) on water
potential (−MPa), osmotic potential (−MPa), relative water content (%), and turgor potential (Mpa) on black gram. Error bars above means
indicate the ± SE. Means sharing the same letter in both varieties do not differ significantly at p ≤ 0.05. No silicon = 0 mg/kg; silicon = 40 mg/kg;
control = no stress; drought stress = 50% FC; salinity = 10 dSm−1; drought + salinity = 10 dSm−1 + 50% FC.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c04727
ACS Omega 2024, 9, 37231−37242

37234

https://pubs.acs.org/doi/10.1021/acsomega.4c04727?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04727?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04727?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04727?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c04727?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


were compared using Tukeyś HSD all-pairwise comparison
test. Following the conclusion of the research trial, the data
collected from plant samples were statistically analyzed and
graphically represented using the following software: Microsoft
Excel (Version 2016) (Microsoft Corporation, Redmond, WA,
USA), R-studio (Version 4.3.3), Originpro (2022), and
Statistix 8.1 (Analytical Software, Statistix, Tallahassee, FL,
USA).

■ RESULTS
The results revealed that silicon application significantly (p <
0.05) improved the morphological and physiological character-
istics under drought and salinity stress in black gram (Tables
1,2 and Figures 2,3 and 4).

Growth Parameters. Statistical analysis showed that
application of silicon at 40 mg/kg significantly improved the
growth characteristics of black gram under different stress
conditions compared to control (Table 1). Drought and
salinity stress declined the growth indices of black gram plants
and more reduction in morphological characters was recorded
in black gram under drought and salinity combined stress
where no silicon was added. The root length was improved up
to 55.5% under drought stress and 53.9% under combined
drought and salinity stress conditions as compared with
nonstress conditions. Various growth parameters like leaf area,
shoot and root fresh and dry weight, and shoot length were
significantly reduced under salt stress up to 42.1, 28.6, and
53.8, 69.1, and 71.2, and 43%, and combined stress up to 52.2,
43.1, 53.8, and 81.8, 77.5, and 45% as compared with nonstress
conditions. However, growth attributes leaf area, shoot and
root fresh and dry weight, and shoot length were significantly
improved under salt stress up to 31.5, 13.5, and 50, 44.7, and
27.2, and 13.5% while under combined stress improved up to

33.6, 14.7, 33.3, and 41.6, 50, and 14.7% with silicon @ 40 mg
application as compared to no silicon application (Table 1).
Among the interactions, Si × Stress was significant for root
length. Two-way interaction of Si × Stress was highly
significant for leaf area, and the interaction of Si × Stress
was highly significant for root dry weight of black gram plants.

Photosynthetic and Antioxidant Attributes. Statistical
analysis showed that silicon application at 40 mg/kg
significantly improved the antioxidant activities and reduction
of photosynthetic attributes of black gram under different
stress conditions compared to control without Si (Table 2).
Drought and salinity stress showed an adverse effect on
antioxidants and photosynthetic attributes of black gram plants
and more reduction in activity of antioxidants and photo-

Figure 3. Impact of silicon (T0 = control, T1 = drought stress, T2 = salinity stress (EC= 10 dSm−1), T3= drought + salinity stress, on root
projected area (cm2), surface area (cm2), average root diameter (mm) and root volume (cm3) and estimated root tips on black gram. Error bars
above means indicate the ± SE. Means sharing the same letter in both varieties do not differ significantly at p ≤ 0.05. No silicon = 0 mg/kg; silicon
= 40 mg/kg; control = no stress; drought stress = 50% FC; salinity = 10 dSm−1; drought + salinity = 10 dSm−1 + 50% FC.

Figure 4. Impact of silicon (T0 = control, T1 = drought stress, T2 =
salinity stress (EC= 10 dSm−1), T3= drought + salinity stress, on total
soluble proteins (μg/mL) and phenolic contents (mg/g FW), on
black gram. Error bars above means indicate the ± SE. Means sharing
the same letter in both varieties do not differ significantly at p ≤ 0.05.
No silicon = 0 mg/kg; silicon = 40 mg/kg; control = no stress;
drought stress = 50% FC; salinity = 10 dSm−1; drought + salinity = 10
dSm−1 + 50% FC.
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synthetic attributes were observed in plants under drought and
salinity combined stress where no silicon was added. The
photosynthetic attributes chlorophyll a and b reduced up to
16.7 and 17.3% while antioxidants SOD, POD, and CAT
increased up to 58.3, 74.7 and 129.8% under salt stress and
14.6, 19.9%, and 84% under combined (drought + salinity)
stress as compared with nonstress conditions. However,
photosynthetic and antioxidant activities improved chlorophyll
a and b up to 14.7 under salt stress and 11.1% under drought
stress and antioxidants SOD, POD, and CAT up to 36.9, 17.6,
and 34.6% under drought stress while 17.7, 12.1% and 24.6,
13.7, 30.3% under combined (drought + salinity) stress,
respectively, compared to plants where no silicon was applied
(Table 2). Among the interactions, Si × Stress was significant
for chlorophyll a and catalase absorbance. Interaction of Si ×
Stress was highly significant for chlorophyll b.

Water Relations. Silicon application of silicon at 40 mg/kg
significantly impacted the plant water relations parameters
under drought and salinity stress (Figure 2). Drought and
salinity stress declined the plant water relations including water
potential, osmotic potential, turgor potential, and relative water
content, respectively, as compared to control. Water potential
and osmotic potential increased up to 33.5, and 27.6%, and leaf
relative water content and turgor potential decreased up to
37.5, and 10.3% under salt stress while increased up to 61.6,
and 18.7%, and leaf relative water content and turgor potential
decreased up to 41, and 18.6% under combined (drought +
salinity) stress as compared with control. However, Water
potential and osmotic potential, leaf relative water content, and
turgor potential were significantly enhanced under drought
stress up to 5.5, 8.2, 11.4, and 44.7%, while under combined
stress improved up to 11.8 and 14.5, 20.3, and 98.7% with
silicon @ 40 mg application as compared to no silicon
application (Figure 2).

Roots Analysis. Statistical analysis showed that silicon
application at 40 mg/kg significantly improved the root
morphological parameters of black gram under different stress
conditions compared to control no Si (Figure 3). Drought and
salinity stress negatively affected the root attributes of root
attributes surface area, projected area, and root average
diameter. The surface area reduced and root projected area
and root average diameter reduced up to 45, 24.79 and 45.3%
under drought stress while 32.3, 17.2 and 32.8% under
combined (drought + salinity) stress conditions as compared
with nonstress conditions. The surface area root projected area
and root average diameter improved up to 12.2, 23.8 and 8.9%
under salt stress while 12.4, 27.2 and 8.4% under combined
(drought + salinity) stress conditions as compared with
nonstress conditions, respectively, compared to plants where
no silicon was applied (Figure 3). Two-way interaction
between Si × Stress was significant for root surface area and
estimated root tips. Interaction of Si × Stress was highly
significant for the root volume.

Organic Osmolytes. Statistical analysis showed that silicon
application at 40 mg/kg significantly improved the total
soluble protein and phenolic contents of black gram under
different stress conditions compared to control no Si (Figure
4). Drought and salinity stress negatively affected the total
soluble protein and increased the phenolic contents under
drought and salinity combined stress where no silicon was
applied. The total soluble protein reduced and phenolic
contents increased up to 49.1% and 60% under salt stress while
50.9 and 46.2% under combined (drought + salinity) stress in

comparison with nonstress conditions. However, total soluble
protein and phenolic contents increased up to 27.7% and
19.4% under salt stress while 38.8 and 24.7% under combined
(drought + salinity) stress compared to plants where no silicon
was applied (Figure 4).

Heatmap Analysis. Two-way heatmap with a dendrogram
was drawn to observe the role of silicon on various parameters
of black gram (Vigna mungo L.) under drought and salinity
stress conditions (Figure 5). The observations were divided

into four groups according to how similar they were during
different treatment phases, and the relationships between the
groups were shown by colored squares. The color (Navy blue)
exhibited a strong positive association, while the color
(Maroon) exhibited a strong negative correlation for various
observations, impacted by silicon under drought and salinity
stress (Figure 5). Heatmap has clustered into four groups. In
the first group, Root surface area (RSA) and root length (RL)
were clustered. These parameters are strong positively
correlated with drought (50% FC) and silicon (40 mg) and
weakly correlated, at drought + salinity. Under (no silicon) and
drought + salinity stress conditions, the above-mentioned
attributes showed weak correlation while strong negatively
correlated under control (no silicon) and salinity stress (10
dSm−1) conditions, respectively. This group demonstrated that
the application of silicon (40 mg) improved the concentration
of root surface area and root length which mitigated the
adverse effects of oxidative damage caused by drought and
combined stress. The second group included phenolic content
catalase (CAT) peroxidase (POD), superoxide dismutase

Figure 5. Heatmap with dengrogram between morpho-physiological,
water relations, gaseous exchange and biochemical attributes of black
gram. No silicon = 0 mg/kg; silicon = 40 mg/kg; control = no stress;
drought stress = 50% FC; salinity = 10 dSm−1; drought + salinity = 10
dSm−1 + 50% FC. (SFW: shoot fresh weight, RFW: root fresh weight,
SDW: shoot dry weight, RDW: root dry weight, LA: leaf area, Chl. a:
chlorophyll a, Chl. b: chlorophyll b, Total Chl.: total chlorophyll, Car:
carotenoids, SOD: superoxide dismutase, POD: peroxidase, CAT:
catalase, Pn: Net photosynthetic rate, Ci: internal carbondioxide
concentration, TR: transpirational rate, SC: stomatal conductance,
RWC: relative water contents, LTP: leaf turgor potential, LWP: leaf
water potential, RL: root length, RSA: root surface area, RPA: root
projected area, RD: root density, RV: root volume).
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(SOD), total protein contents (TPC), osmotic potential (Op),
and leaf water potential (LWp) that were strongly positively
correlated at salinity (10 dSm−1) and combined drought +
salinity stress and silicon (40 mg) while weakly correlated at
salinity (10 dSm−1) and drought + salinity and silicon (no
silicon) while strongly negatively correlated at control (no
stress) and control (no silicon) and weakly negatively
correlated at control (no silicon) and drought stress (50%
FC). These observations showed that under drought and
salinity stress CAT, SOD, and POD activities of black gram
improved by the application of silicon. The third group
contained (Root density, root dry weight, relative water
content, leaf area, shoot dry weight, root projected area, shoot
fresh weight, and chlorophyll a and b). These attributes were
strongly positively correlated at control (no stress) and silicon
(40 mg) while showing a negative correlation at salinity (10
dSm−1) and drought + salinity and silicon (no silicon). These
findings showed that growth attributes and photosynthetic
pigments of pea varieties improved by the application of
silicon. In the fourth group, turgor potential, root volume, root
fresh and dry weight, and shoot length were clustered. These
parameters were strongly positively correlated at (50% FC)
and silicon (40 mg), while strongly negatively correlated at
drought stress (50% FC) and control (no silicon) (Figure 5).

Principal Component Analysis (PCA). The PCA analysis
manifested those results of PCA 1 and PCA 2 representing
83.2% of the accumulative variations, each with 66.3% and
16.9%, respectively. However, morphological, photosynthetic,
organic osmolytes, water relation, and root attributes of both
varieties Karan and Dilkash were substantially different under
different silicon (0 mg/kg; silicon = 40 mg/kg); drought stress
(control = no stress; drought stress = 50% FC) and salinity
stress (salinity = 10 dSm−1; drought + salinity = 10 dSm−1 +
50% FC) treatments. A very close relationship was observed
among various photosynthetic, morphological, and organic
osmolytes, with enzymatic antioxidants, total phenolics,
osmotic potential, and leaf water potential, while root length
and root surface area showed close relationships among
themselves. In our study, silicon application proved to be more
effective in mitigating drought stress by improving morpho-
logical attributes such as shoot length, root dry weight,
photosynthetic attributes, and organic osmolytes parameters
while reducing the negative impacts of root length, root surface
area in black gram plants (Figure 6).

■ DISCUSSION
The main force behind crop growth and development is the
environment, which is steadily getting worse due to rising
carbon dioxide levels, rising pollution levels, and the
consequent effects of climate change. The majority of arable
land is experiencing issues, including salinity and drought, due
to climate change and the widespread use of inorganic
fertilizers. Stress from salinity and drought has a significant
impact on crop growth, especially black gram. This study
found that silicon application has a mitigating effect on stressed
black gram plants, drought and salinity stress had a negative
impact on the growth and development of black grams,
including a decline in morphological attributes, a reduction in
leaf water status, and adverse impacts on biochemical
parameters (Tables 1, 2 and Figures 2, 3, and 4).
The present study’s results, which showed reduced growth

indices in black gram cultivars grown under saline and drought
stress, are in line with these findings. This study’s exogenous

protectant, silicon, is well-known for encouraging crop
development in a variety of situations. In the current
investigation, silicon application under salinity and drought
stress was also shown to promote growth (Table 1). The most
frequent adverse environmental stressors that restrict black
gram growth and development, according to the results, were
salt and drought. This is mostly due to osmotic stress and
cellular sodium toxicity. According to Baghalian et al. (2011),
there is usually a drop in the fresh and dry weights of plant
components when there is insufficient water.36 Numerous
plant species have shown decreased development in sand
salinity conditions, according to several researches.37−39

(Rahman et al. 2017; Akram et al. 2017; Siddiqui et al.
2017). Due to salinity and drought stress, the current study
also found that black gram growth was inhibited (Table 1).
It was discovered that the degree of growth decreased as the

salinity treatment levels increased. Growth retardation,
independent of plant type, is a critical factor in determining
the degree of damage caused by salt, as noted by Acosta-
Motos.40 In many crops, including salt-tolerant plants,
lowering the leaf area is a crucial adaptive technique for
managing salt stress. This results in a decrease in the plant’s
assimilatory unit and a decrease in consumption of water. The
drop in growth indices can be attributed to physiological
reactions like stomatal behavior, ion balance, mineral nutrition,
and photosynthetic efficiency.41 According to Fareed et al., the
main reason for decreased growth, biomass, and yield is the
suppression of cell division and elongation under salt stress.42

The use of Si under stress conditions improved plant
development by restoring cell membranes and acting as a
defense against tissue damage.43 They can use less water and
be better able to withstand droughts with the use of Si
fertilizer.44 Other studies suggest that silicon (Si) may
contribute to the synthesis of a variety of compounds in
plants, where it increases the water-retention capacity of the

Figure 6. Principal component analysis between morpho-physio-
logical, water relations, gaseous exchange, and biochemical attributes
of black gram. No silicon = 0 mg/kg; silicon = 40 mg/kg; control = no
stress; drought stress = 50% FC; salinity = 10 dSm−1; drought +
salinity = 10 dSm−1 + 50% FC.
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plant by forming a “double layer” of cuticle and silica in regions
that are not physiologically active.45−47 (Table 1). The
photosynthetic pigments chlorophyll a, chlorophyll b, total
chlorophyll levels, and carotenoids were found to considerably
diminish the efficiency of the black gram photosynthetic rate
by reducing the production of photosynthetic characteristics
under drought and salinity stress conditions (Table 2).
Numerous physiological, biochemical, and molecular regu-
latory networks impact plant growth, according to a number of
research.48,49 Carbon fixation has been found to be an essential
mechanism for plant growth and development during drought
stress.50 The photosynthetic apparatus (chloroplast degrada-
tion and chlorophyll decrease), plasma membrane stability, and
enzyme degradation are all impacted by drought stress-induced
oxidative stress, which eventually affects cell division and plant
growth.51 The production of photosynthetic pigments were
reduced by drought stress in this study, which in turn led to a
drop in the rate of photosynthesis in black gram plants. The
quantities of pigments, which are necessary for the absorption
of energy in plants, are significantly impacted by environmental
stresses.52 Chlorophyll is a crucial component of photosyn-
thesis and is necessary for a plant to survive.53

Photosynthesis is the process by which plants convert
sunlight into chemical energy for the production of food.54

Salinity reduces photosynthesis, principally through stomatal
closure.55 When plants are exposed to salinity, their
chlorophyll concentration drops. This is assumed to be an
indication of oxidative stress, which is created by suppressing
chlorophyll synthesis and activating the enzyme that degrades
chlorophyllase.56 Chloroplast photochemistry is disturbed by
salt stressors. When the rate of light energy absorption by
photosynthetic pigments exceeds the rate of light energy
consumption, absorbed light energy under salt stress
accelerates the process of photoinhibition and reduces
photosynthetic ability.57 Nevertheless, under drought and
salinity stress circumstances, this study discovered that foliar
application of silicon increased the concentrations of
chlorophyll a, chlorophyll b, and chlorophyll a to b ratio,
total chlorophyll contents, and carotenoids (Table 2). Under
stressful circumstances, exogenous Si treatments can maintain
high levels of chloroplasts, chlorophyll content, and
thylakoids.58 In summary, silicon could be involved in
shielding an organelle’s membrane, lessening the damage that
drought stress does to chloroplasts, halting the loss of
chlorophyll, and enhancing the organelles’ capacity to produce
more photosynthetically synthesized compounds. In the end,
each of these procedures promotes plant growth.59 Silicon’s
ability to improve leaf rigidity by roughening its texture.60 stay
more horizontally, which delays leaf senescence, increases leaf
chlorophyll content, and activates ribulose-bisphosphate
carboxylase, is another likely way how Si increases stress
resistance in stressed plants.61

The water-related qualities in this investigation were
dramatically weakened by salinity stress and drought. Drought
stress reduces the water potential and RWC of leaves. It also
gradually reduces stomatal conductance, which in turn reduces
the rate of photosynthetic respiration, CO2 assimilation, and
the CO2 molar percentage in chloroplasts (Figure 2). The first
reaction of plants under drought stress is stomatal closure,
which is usually considered to be the primary source of the
drought-induced reduction in photosynthesis.62 Increased salt
concentration is thought to impede water uptake through the
root when there is salt stress.63 Salt stress inhibits the process

of cell elongation by causing a drop in the RWC, which results
in turgor loss. Lack of water may be causing the seedlings’
entire metabolic system to collapse in saltwater environments,
hindering their ability to thrive. A plant’s ability to retain its
water status is shown by its relative leaf water contents.64

Consequently, it can be applied as a standard to investigate the
effects of salt stress on mung bean plants that are cultivated
under salinity stress. Numerous investigations verified a
reduction in RWC in plants under salt stress.30,65 The current
study’s reduced relative water content in leaves may be the
result of reduced water intake at higher salt concentration.66

Another theory is that the delayed sap flux flow causes a
decrease in root hydraulic conductivity, which may lead to a
decrease in leaf RWC.67 Furthermore, in the current studies,
plants treated with silicon demonstrated increased develop-
ment of water relations and gaseous exchange properties
(Table 2). A plausible explanation for the decline in
photosynthetic rate could be attributed to a drop in leaf
extension and stomatal conductance, which may play a crucial
role in carbon fixation during stressful situations. Plant growth
and development may be hampered by the loss in photo-
synthetic rate that follows a decrease in stomatal conductance
due to a fall in leaf turgor potential, which is caused by a
decrease in plant water potential. On the other hand, silicon
applications could help plants maintain their water balance and
control their leaf osmotic potential, which could enable them
to increase gaseous exchange in stressful situations.68 Silicon
treatments have been found to affect plant water relations and
stomatal conductance without any physiological implications
since silicon can improve water uptake and transport to the
leaves and stems by increasing hydraulic conductance.69

In the current experiment, there was a decrease in
antioxidant activity, which was associated with an increase in
ROS production in drought and salinity stressed black gram
plants (Table 2).
In order to provide drought stress tolerance, plants scavenge

ROS by activating their built-in antioxidant defense mecha-
nism. For drought stress resistance, it may be especially crucial
to strengthen the antioxidant defense system, which consists of
antioxidant compounds and several antioxidative enzymes such
as catalase (CAT), superoxide dismutase (SOD), and
peroxidase (POD).70 On the other hand, silicon treatment in
the current experiment boosted antioxidant activity, which was
essential in lowering oxidative stress and allowing plants to
thrive under harsh conditions (Table 2). As the initial line of
defense against oxidative damage to cells, the increase in SOD
activity is essential in converting O2•− radicals to H2O2 and
O2.

71 Furthermore, CAT is necessary for plant metabolism and
signal reception, and it participates in the process of turning
H2O2 into H2O.

72 According to Hasanuzzaman et al. (2018).73

the application of silicon increased enzymatic activity and
encouraged the ascorbate-glutathione cycle, which produces
antioxidants and lowers stress-induced oxidative damage.
Applying Si improved cell osmolytes, which decreased
oxidative stress, and scavenged reactive oxygen species
(ROS).74 The ideal silicon concentrations increased the
activities of SOD, POD, and CAT during drought stress,
which may enhance plant growth and yield. As the
concentration of Si rose, the enhanced range first increased
and subsequently decreased.30

In the current study, total phenolic and total soluble protein
levels dramatically enhanced under salinity and drought stress
(Figure 4). Increased osmolyte accumulation under drought
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stress is one of the most effective strategies to control osmotic
pressure and lessen drought stress.75 Plant water status may go
out of balance during drought stress, which impacts osmotic
adjustment and ultimately results in a greater accumulation of
compatible osmolytes in crops. Proline’s antioxidant function
lowers lipid peroxidation and aids in cell homeostasis by
maintaining the redox balance.76 Plants combat dryness by
accumulating more soluble sugar and protein in their tissues,
according to research. However, persistent drought-induced
water shortages will harm plant structure and impede the
synthesis of proteins and carbohydrates.77 Salt stress causes an
excess of ROS to be produced. According to Taibi et al.
(2016),78 avoiding ROS multiplication requires the activation
of an efficient antioxidant defense system.79,80 Under salinity
stress, phenolic compounds aid in scavenging reactive oxygen
species (ROS).81,82 The formation of various phenolic
compounds depends on the phenyl-propanoid biosynthesis
pathway.83

Similar to findings under salt stress, plants displayed
enhanced PAL activity following salt stress, salinity stress had
a substantial impact on PAL enzyme activity.84 Our findings
concur with those of Thadani et al. (2023), who reported that
one of the anabolic processes that is most adversely impacted
by stress in plants is protein synthesis. An essential component
of the phenylpropanoid pathway, phenylalanine ammonium
lyase has been identified as a marker of several abiotic stressors
in a variety of plant species. Linking primary and secondary
(phenyl-propanoid) metabolism, it is a crucial enzyme.85

Similar to findings in chamomile herb under salt stress, where
plants displayed enhanced PAL activity following salt stress,
salinity stress had a substantial impact on PAL enzyme
activity.86 Exogenously applied Si may improve plants’
resistance to drought and salt stressors by raising osmolyte
levels and modifying osmotic potentials.87 This study also
found that applying Si enhanced the amounts of GSH, AsA,
and total soluble sugars. In glycophytic plants exposed to
osmotic stress, the primary solutes engaged in osmotic
adjustment are the accumulation of organic solutes, particularly
sugars.88

We determined that root length and surface area increased
in the combined stress of salinity and drought, respectively,
and the diameter of the roots decreased under drought, which
is consistent with other research (Figure 3). As a consequence
of more slender roots, the results indicated that when roots
were stressed by drought, root length increased and root
weight decreased.89 A deep and abundant root system is
required to operate well against drought and salt stress, and it
was discovered that root development was dramatically
decreased under drought stress due to restricted growth in
low-water conditions. This may have reduced the plant growth.
However, because silicon can increase the number of lateral
roots in plants, its application resulted in an increase in growth
indices. Plants treated with silicon have increased the length
and density of their roots in a number of crops. Through the
preservation of the roots’ characteristics, a higher concen-
tration of silicon in the aerial sections was important under
combined stress.90

This study offers scientists a solid grasp of the physiological
mechanisms underlying the black gram’s ability to withstand
salt stress and drought by application of silicon, which will
serve as a guide for future cellular research. Silicon is involved
in the uptake of water under water shortage conditions and the

production of antioxidants to alleviate the adverse effects of
abiotic stresses.

■ CONCLUSION
Since silicon was declared to be “non-essential,” plant silicon
research has advanced significantly. Although most plant-
growth-media formulations still largely exclude this ingredient,
it is now widely acknowledged to benefit many crops that are
important to agriculture. Although these advantages might be
more noticeable in situations of stress, such as salinity and
drought, there is mounting evidence that Si may also enhance
development in stressful environments. Black gram’s morphol-
ogy, physiology, and biochemical characteristics are negatively
impacted by salinity and drought, which lower crop
production. However, in both normal and abiotic stress
conditions, crop growth and development were enhanced
significantly by the application of silicon at 40 mg/kg. In order
to control stomatal conductance and photosynthetic efficiency,
silicon treatment increased the water relations within the plant,
which improved the agricultural output. From all findings, it
was concluded that salinity and drought significantly reduced
the morpho-physiological characteristics of black gram while Si
amendment significantly improved these. Overall, this study
offers scientists a solid grasp of the physiological mechanisms
underlying the black gram’s ability to withstand salt stress and
drought by application of silicon, which will serve as a guide for
future cellular research. Silicon is involved in the uptake of
water under water shortage conditions and the production of
antioxidants to alleviate the adverse effect of abiotic stresses.
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