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Large-scale neuroimaging data acquired and shared by multiple institutions are

essential to advance neuroscientific understanding of pathophysiological mechanisms

in psychiatric disorders, such as major depressive disorder (MDD). About 75% of studies

that have applied machine learning technique to neuroimaging have been based on

diagnoses by clinicians. However, an increasing number of studies have highlighted the

difficulty in finding a clear association between existing clinical diagnostic categories and

neurobiological abnormalities. Here, using resting-state functional magnetic resonance

imaging, we determined and validated resting-state functional connectivity related

to depression symptoms that were thought to be directly related to neurobiological

abnormalities. We then compared the resting-state functional connectivity related to

depression symptoms with that related to depression diagnosis that we recently

identified. In particular, for the discovery dataset with 477 participants from 4 imaging

sites, we removed site differences using our recently developed harmonization method

and developed a brain network prediction model of depression symptoms (Beck

Depression Inventory-II [BDI] score). The prediction model significantly predicted BDI
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score for an independent validation dataset with 439 participants from 4 different imaging

sites. Finally, we found 3 common functional connections between those related to

depression symptoms and those related to MDD diagnosis. These findings contribute

to a deeper understanding of the neural circuitry of depressive symptoms in MDD, a

hetero-symptomatic population, revealing the neural basis of MDD.

Keywords: resting-state functional magnetic resonance imaging, machine learning, resting-state functional

connectivity, major depressive disorder, depression symptoms

INTRODUCTION

Major depressive disorder (MDD) is diagnosed when depression
symptoms persist for more than 2 weeks, and is the world’s most
serious psychiatric disorder in terms of its social repercussions
(1, 2). A substantial body of evidence supports the existence
of brain network alterations in MDD (3–6). Some studies have
succeeded in predicting MDD diagnosis from the brain network

by using resting-state functional magnetic resonance imaging

(rs-fMRI) (7–13). Rs-fMRI is a measurement to quantify the

functional connection (FC) of correlated, spontaneous, blood-

oxygen-level-dependent (BOLD) signal fluctuations (14–16).

However, an increasing number of studies have highlighted

the difficulty of finding a clear association between existing
clinical diagnostic categories and neurobiological abnormalities
(17–19). This process is difficult because diagnosis is based
on a complex assemblage of information, such as symptoms,
syndromes, and clinical experience. The high comorbidity
of structural, functional, and genetic abnormalities across
psychiatric disorders exacerbates this difficulty (20–23).
Therefore, the necessity of a symptom-based approach that
directly investigates neurobiological abnormalities related to
symptoms has been increasingly recognized (24–26). However,
75% of the 475 translational neuroimaging studies that used
machine learning techniques focused only on “diagnoses,”
classifying patients from controls, and only 2.8% focused on
“symptoms” to predict continuous symptom scores (27). Thus, it
is important to investigate FCs that are associated with depressed
symptoms. Comparing them with FCs related to MDD diagnosis
strengthens neuroscientific understanding, and aids future
diagnosis and treatment of MDD. For instance, targeting FCs
that are important for both diagnosis and symptoms may lead
to more effective treatment that improves both diagnosis and
symptoms. Another problem is that consistent conclusions
regarding neurobiological abnormalities across studies could not
be achieved, mainly because of large imaging-site differences
in rs-fMRI data and overfitting to noise in discovery cohorts
(28, 29). Accordingly, it is urgent to improve reliability of
neuroimaging analysis for psychiatry using independent
validation datasets from multiple imaging sites, which are
different from imaging sites for discovery cohort (30–34).

In the present study, we determined and validated resting-
state FCs related to depression symptoms in a data-driven,
unbiased manner, using several imaging sites. We used the
same population as that in our previous study that identified
FCs related to MDD diagnosis (13). We compared FCs related

to depression symptoms, which were newly identified in the
current study, with those related to MDD diagnosis in the same
population. We considered and satisfied 3 issues and conditions
to ensure generalization of our network models of depressive
symptoms in the independent validation dataset, which does
not include imaging sites of the discovery dataset. First, to
remove site differences in FCs, we used a novel traveling subject
harmonization method. Second, we validated our network
markers using a large, independent cohort collected from
multiple imaging sites. Third, we avoided overfitting noise in the
discovery dataset by using a sparse machine learning algorithm
with the least absolute shrinkage and selection operator (LASSO)
(35). We used LASSO because it allows us to select important
feature simultaneously. As a result, to the best of our knowledge,
we developed the first generalizable brain network prediction
model for depression symptoms and found three common FCs
between depression symptoms and MDD diagnosis.

RESULTS

Datasets
Two rs-fMRI datasets were used for analyses. The “discovery
dataset” included 713 participants (564 HCs from 4 sites, 149
patients with MDD from 3 sites; Table 1), and the “independent
validation dataset” included 449 participants (264 HCs from
independent 4 sites, 185 patients with MDD from independent
4 sites; Table 1). Data can be downloaded publicly from the
DecNef Project Brain Data Repository (https://bicr-resource.
atr.jp/srpbsopen/ and https://bicr.atr.jp/dcn/en/download/
harmonization/). Imaging protocols and data availability
from each site are described in Supplementary Table 1. We
evaluated depression symptoms using the Beck Depression
Inventory-II (BDI-II) score obtained from most participants in
each dataset. To construct the BDI prediction model, we used
participants in the discovery dataset with BDI-II score. We
then validated our BDI prediction model using the independent
validation dataset collected from multiple imaging sites. In
total, we used 477 participants (367 HCs and 110 MDDs) in the
discovery dataset and 439 patients (259 HCs and 180 MDDs)
in the validation dataset. Clinical details such as medication
information and comorbidities in patients with MDD are
described in Supplementary Table 2.

Site-Difference Control in FC
Conventional preprocessing was performed (see Materials and
Methods), and FC was defined based on a functional brain
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TABLE 1 | Demographic characteristics of participants in both datasets.

Site HC MDD ALL

Number Male/female Age (y) BDI Number Male/female Age (y) BDI Number Male/female Age (y) BDI

Discover dataset

Center of Innovation

in Hiroshima

University (COI)

124

(123)

46/78 51.9 ± 13.4 8.2 ± 6.3 70 (70) 31/39 45.0 ± 12.5 26.2 ± 9.9 194 (193) 77/117 49.4 ± 13.5 14.7 ± 11.7

Kyoto University

(KUT)

169

(139)

100/69 35.9 ± 13.6 6.0 ± 5.4 17 (17) 11/6 43.9 ± 13.3 27.7 ± 10.1 186 (156) 111/75 36.7 ± 13.7 8.3 ± 9.1

Showa University

(SWA)

101

(97)

86/15 28.4 ± 7.9 4.4 ± 3.8 0 – – – 101 (97) 86/15 28.4 ± 7.9 4.4 ± 3.8

University of Tokyo

(UTO)

170

(24)

78/92 35.6 ± 17.5 6.7 ± 6.5 62 (32) 36/26 38.7± 11.6 20.4 ± 11.4 232 (56) 114/118 36.4 ± 16.2 14.5 ± 11.8

Summary 564

(383)

310/254 38.0 ± 16.1 6.3 ± 5.6 149 (119) 78/71 42.3 ± 12.5 24.9 ± 10.7 713 (502) 388/325 38.9 ±15.5 10.7 ± 10.6

Independent validation dataset

Hiroshima Kajikawa

Hospital (HKH)

29 (29) 12/17 45.4 ± 9.5 5.1 ± 4.6 33 (33) 20/13 44.8 ± 11.5 28.5 ± 8.7 62 (62) 32/30 45.1 ± 10.5 17.6 ± 13.7

Hiroshima

Rehabilitation Center

(HRC)

49 (49) 13/36 41.7 ± 11.7 9.1 ± 8.5 16 (16) 6/10 40.5 ± 11.5 35.3 ± 9.5 65 (65) 19/46 41.4 ± 11.5 15.6 ± 14.3

Hiroshima University

Hospital (HUH)

66 (66) 29/37 34.6 ± 13.0 6.9 ± 5.9 57 (57) 32/25 43.3 ± 12.2 30.9 ± 9.0 123 (123) 61/62 38.6 ± 13.3 18.0 ± 14.1

Yamaguchi University

(UYA)

120

(120)

50/70 45.9 ± 19.5 7.1 ± 5.6 79 (78) 36/43 50.3 ± 13.6 29.7 ± 10.7 199 (198) 86/113 47.6 ± 17.5 16.0 ± 13.6

Summary 264

(264)

104/160 42.2 ± 16.5 7.2 ± 6.3 185 (184) 94/91 46.3 ± 13.0 30.3 ± 9.9 449 (448) 198/251 43.9 ± 15.3 16.7 ± 13.9

Numbers in parentheses indicate numbers of participants with BDI score. All demographic distributions are matched between the MDD and HC populations in the discovery dataset (P> 0.05) except for BDI. The demographic distribution

of age is matched between MDD and HC populations in the independent validation dataset (P > 0.05). Demographic distributions of the sex ratio and BDI were not matched between the MDD and HC populations in the validation

dataset (P < 0.05). BDI, Beck Depression Inventory-II; HC, Healthy Control; MDD, Major Depressive Disorder.
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atlas consisting of 379 nodes (regions) covering the whole brain
(36). Fisher’s z-transformed Pearson correlation coefficients
between preprocessed BOLD signal time courses of each possible
pair of nodes were calculated and used to construct 379 ×

379 symmetrical connectivity matrices in which each element
represents a connection strength, or edge, between two nodes.
We used 71,631 connectivity values (379 × 378/2) of the lower
triangular matrix of the connectivity matrix.

To control for site differences in the FC, we applied a traveling
subject harmonization method that removes site differences in
FC (29). According to our previous study (29), differences in
resting state FCs consist of measurement bias due to differences
in fMRI protocols and MR scanners, and sampling bias due to
recruitment of different participant populations. The magnitude
of measurement bias was larger than the effects of disorders,
whereas the magnitude of the sampling bias was comparable
to the effects of disorders (29). Therefore, a reduction in site
differences in FC is essential for generalization of networkmodels
in the validation dataset. In this method, measurement bias was
estimated by fitting the regression model to FC values of all
participants from the discovery dataset and the traveling subject
dataset, wherein multiple participants travel to multiple imaging
sites (see Site difference control in FC inMethods section).We can
then subtract only the measurement bias while leaving important
information due to differences in subjects among imaging sites.
We applied the ComBat harmonization method (37–40) to
control for site differences in the FC of the validation dataset
because we did not have a traveling subject dataset for those sites.

Reproducible FCs Related to Depression
Symptoms and Shared Information With
MDD Diagnosis
Utilizing a simple mass univariate analysis, we estimated the
reproducibility of effect sizes by depression symptoms on
individual FCs across the discovery and validation datasets. For
the effect of a depressed symptom on each FC, we calculated the
Pearson’s correlation coefficient (r-value) between FC strength
and BDI scores across all participants for every FC. A scatter
plot (Figure 1A) shows the effect size for the discovery dataset
in the abscissa and that for the validation dataset in the ordinate
for each FC. We compared distributions of statistics in the
discovery dataset to distributions in the shuffled data in which
symptom severity was permuted across subjects. We found
larger effects of symptoms in the original data in comparison to
the shuffled data (Figure 1A, upper histogram). We confirmed
that results were similar in the validation dataset (Figure 1A,
right histogram). These results indicate that resting-state FCs
contain consistent information across both datasets, regarding
depression symptoms. To statistically evaluate the reproducibility
of the effect on FCs, we calculated Spearman’s correlation
between the discovery and validation datasets regarding the
above statistic (r-value). We found significant correlations
between the two datasets (Spearman’s r-value: r(71629) = 0.367,
95% CI= [0.360 0.373], R2 = 0.13, [permutation test, P < 0.001,
one-sided], Figure 1A). This result indicates that the effect of

symptom severity was reproducible, even in the independent
dataset acquired from completely different sites.

Shared Information on FCs Between MDD
Diagnosis and Depression Symptoms
We investigated whether FCs related to MDD diagnosis and FCs
related to depression symptoms share information. For the effect
of the diagnosis on each FC, we calculated the difference in the
FC value across participants between HCs and MDDs (t-value).
To this end, we calculated Spearman’s correlation between t-
values and r-values on FCs in the same dataset. We found high
correlations (Discovery dataset: Spearman’s r(71629) = 0.848, 95%
CI= [0.846 0.850], R2 = 0.72; Figure 1B, Independent validation
dataset: r(71629) = 0.903, 95% CI = [0.901 0.904], R2 = 0.81;
Figure 1C). This indicates that shared information exists in FCs
between MDD diagnosis and depression symptoms.

Brain Network Prediction Model of
Depression Symptoms Generalized to
Completely Different Multisite Data
We constructed a brain network prediction model of the BDI
score using the discovery dataset comprising 71,631 FC values.
Based on our previous studies (12, 41–43), we assumed that
depression symptoms were not associated with whole brain
connectivity, but rather with a specific subset of connections.
Furthermore, the number of FCs is 71,631, while the number
of participants is about 500; thus, machine-learning algorithms
can easily overfit the discovery cohort, inflating prediction
performance, unless precautions are taken. Therefore, we used
linear regression with the least absolute shrinkage and selection
operator (LASSO), a sparse machine learning algorithm, to select
the optimal subset of FCs (35, 44). We have already succeeded in
constructing generalizable brain network markers of ASD, MDD,
melancholic MDD, SCZ and obsessive compulsive disorder
(12, 13, 41–43), using a similar sparse estimation method
that automatically selects the most important connections. The
prediction model was constructed based on the feature-selection
procedure in which the embedded method with LASSO was
performed (Figure 2) (45). We conducted a 10-fold nested CV
procedure while optimizing hyperparameter in LASSO. We then
constructed a regression model using the combination of FC
values selected in all 10 folds in the training dataset (Figure 2).
Based on our previous findings that final weights determined
using the whole discovery dataset achieved better generalization
performance (41), we determined final weights using the whole
discovery dataset. Since this could have caused information
leakage across folds for the evaluation in the discovery dataset,
it was very important to confirm generalization performance
by applying this regression model to an independent validation
dataset, as described below. Finally, we calculated the mean
absolute error (MAE) and Pearson’s correlation coefficients
between the predicted and measured BDI scores. The BDI score
was well-predicted with a significant correlation (r(475) = 0.58,
95% CI = [0.519 0.638], R2 = 0.34, P = 1.4 × 10−44, one-sided;
MAE = 6.7; Figure 3A). Furthermore, a significant correlation
was achieved for HC andMDDpopulations separately (HC, r(365)
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FIGURE 1 | Results of mass univariate analysis. (A) Reproducibility across the 2 datasets regarding symptom effects. Scatter plots and histograms of depression

symptom effect sizes (Pearson’s correlation between BDI-II and functional connectivity strength: r-value). Each point in the scatter plots represents the symptom effect

in the discovery dataset in the abscissa and that for the validation dataset in the ordinate for each functional connectivity. Original data are in black, while shuffled data

in which subject information was permuted are in gray. (B,C) Shared information between diagnosis and symptom effects in both datasets. Scatter plots and

histograms of diagnosis effect sizes (the difference in mean functional connectivity strengths between patients with depression and healthy groups: t-value) in the

ordinate and depression symptom effect sizes (r-value) in the abscissa for all functional connectivity in the discovery dataset (B) and the validation dataset (C). Original

data are in black, while shuffled data in which subject information was permuted are in gray.

= 0.28, 95% CI= [0.181 0.370], R2 = 0.08, P = 6.3× 10−8, one-
sided; MDD, r(108) = 0.42, 95% CI = [0.258 0.567], R2 = 0.18, P
= 3.7 × 10−7). Once again, cautiously, these results could have
represented overfitted inflation because evaluation data are not
independent. Therefore, correct assessment had to be based on
results from the following independent validation dataset.

We tested the generalizability of the regression model
using the independent validation dataset. We applied the
trained regression model to the independent validation dataset
and considered its output as the predicted BDI score. The
BDI score was moderately well-predicted, with a significant
correlation in the independent validation dataset (r(437) =

0.20, 95% CI = [0.104 0.284], R2 = 0.038; MAE = 11.5;
Figure 3B; permutation test, P < 0.01, one-sided). To test the
statistical significance of BDI regression model performance, we
performed a permutation test. We permuted the BDI scores
of the discovery dataset, constructed the BDI regression model
in the same way, and repeated this permutation procedure
100 times.

To rule out the possibility that the BDI regression model’s
performance was driven by confounds, we assessed whether we
could predict output of the model (predicted BDI score) using
age, sex, the amount of motion (frame-wise displacement [FD])
or a combination of head movement parameters (x, y, z, yaw,
pitch, and roll), respectively, for the discovery dataset. As a
result, we confirmed that these regressors did not predict output
of the model based on age (r(475) = −0.14, p = 0.0016), sex
(r(475) = 0.06, p = 0.18), the FD (r(475) = −0.07, p = 0.098) or
the combination of head movement parameters (r(475) = 0.08,
p = 0.061). These results indicated that the regression model’s
performance was unlikely to have been driven by confounds.

We further assessed prediction performance when we used
a parcellation scheme other than Glasser’s region of interest
(ROI). We found that there was no large difference in prediction
performance, due to ROI numbers or parcellation schemes
(Supplementary Text 1).

Important FCs for the Brain Network
Markers
We examined important resting state FCs for depression
symptoms by extracting important FCs related to the BDI
regression model. We counted the number of times an FC was
selected during the 10-fold CV. We permuted the BDI scores of
the discovery dataset, conducted a 10-fold CV, and repeated this
permutation procedure 100 times. We then identified the FCs
that were important if the number was significantly higher than
the threshold for randomness, according to a permutation test.
We used the number of counts for each FC selected by the LASSO
during 10-fold CV as a statistic in every permutation dataset. To
avoid themultiple comparison problem, we set a null distribution
as the distribution of the maximum counts over all FCs and
set statistical significance to a certain threshold (permutation
test, P < 0.05, one-sided). Finally, to make it clear that the
selected FCs were not affected by confounders, we introduced
confounding factors (age, sex, FD, and 6 motion parameters) to
the final model that used FCs selected by the LASSO during 10-
fold CV. We determined the weights applying the LASSO to the
whole discovery dataset, and if selected FCs were still selected
by the LASSO, it indicated that these FCs were not affected
by confounders.

Figure 4A shows the spatial distribution of the 16 FCs
related to depression symptoms that machine learning
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FIGURE 2 | Schematic representation of the procedure for training the brain network prediction model and evaluation of its predictive power. The BDI regression

model was constructed using the union of FC values selected by the embedded method in the discovery dataset. Generalization performance was evaluated by

applying the constructed regression model to the independent validation dataset. The machine learning regression model is represented by PC cartoons. BDI, Beck

Depression Inventory-II; CV, cross validation; MDD, major depressive disorder; HC, healthy control; FC, functional connectivity.

algorithms automatically identified in the data without
bias. We already identified 25 FCs related to the MDD
diagnosis in our previous study (13) (Supplementary Text 2

and Supplementary Figure 1). We then compared these FCs.
As a result, we found that three FCs were common between
the diagnosis and symptom models. We hereafter summarize
characteristics of these FCs. First, these connections were

connections within left superior temporal gyrus (FC#9) between
the right insula and the right frontal medial orbital cortex
(FC#13), and between the right insula and the right cingulum
anterior cortex (FC#14) (Figure 4B). These FCs revealed a
negative correlation with BDI score (Figure 5). Two of three FCs
(FC#13, and #14) were related to insula (Figure 4B). Second,
one of the three common FCs (FC#14) was related to the
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FIGURE 3 | BDI regression model performances in the discovery and validation datasets. (A) Scatter plots of measured and predicted BDI in the discovery dataset.

(B) Scatter plots of measured and predicted BDI in the independent validation dataset. The solid line indicates the linear regression of the measured BDI from the

predicted BDI. The correlation coefficient (r) and mean absolute error (MAE) are shown. Each data point represents one participant. BDI, Beck Depression Inventory-II;

HC, healthy control; MDD, major depressive disorder.

subgenual anterior cingulate cortex (sgACC) (Figure 4B). Third,
the FC between the left postcentral and right thalamus revealed
the largest positive correlation with BDI score (FC#1) in the
validation dataset (Figure 5). Fourth, 7 of the 16 FCs were related
to the temporal lobes. A detailed list of the FCs is provided in
Supplementary Table 3, and details of these FCs are examined
in the Discussion section.

DISCUSSION

In this study, we considered conditions and resolved difficulties
to ensure the generalizability of our brain network prediction
model of depression symptoms in the validation dataset, which
did not include any imaging sites from the discovery dataset.
We succeeded in generalizing our prediction model to the
large, independent validation dataset. This generalization ensures
scientific reproducibility and the clinical applicability of rs-
fMRI. We believe that the current study has two important
significances. First, our prediction model is based on objective,
biological biomarkers of resting-state functional connectivity
compared to BDI measurements. To date, the lack of biological,
objective biomarkers for severity of MDD is a major problem
in psychiatry for drug discovery, treatment selection, and so on.
Second, we found important functional connections involved
in depression symptoms. The discovery of brain connectivity
related to depression symptoms is expected to lead to novel
treatment for MDD, such as neurofeedback and transcranial
magnetic stimulation, by targeting functional connections.

Machine learning algorithms reliably identified 16 FCs
that are important for depression symptoms and 3 of
them were also important FCs for MDD diagnosis (13).
These 3 connections include the connection within the
left superior temporal gyrus (FC#9) between the right

insula and right frontal medial orbital cortex (FC#13), and
between the right insula and the right cingulum anterior
cortex (FC#14).

These FCs have the following characteristics:
(1) They revealed the negative correlation with BDI score.
(2) Two of 3FCs (FC#13, and #14) were related to insula.

Abnormalities in the insula are not only found in patients with
MDD (46, 47), but are also reported as common abnormalities
(reduced gray matter volume) among psychiatric disorders
(22). Therefore, connectivity associated with the insula is a
potential neurobiological dimension to understand a multi-
spectrum disorder.

(3) One of the 3 shared FCs (FC#14) was related to the sgACC.
According to a previous study, the sgACC is metabolically
overactive in treatment-resistant depression and is an important
treatment target of deep brain stimulation for MDD (48).

(4) The FC between the left postcentral and right thalamus
revealed the largest positive correlation with BDI score (FC#1) in
the validation dataset. A previous study showed that compared
with HCs, patients with MDD have enhanced functional
connectivity between the thalamus and somatosensory cortex
(49). Furthermore, FC strength is negatively correlated with
the Snaith-Hamilton Pleasure Scale (SHAPS), which assesses
affective experience (50), neuropsychological function and
continuous attention level (49).

(5) Seven of the 17 FCs (FC#4, #6, #9, #10, #11, #12, and #15)
were related to temporal cortical regions. According to a previous
study that used over 10,000 samples from 20 sites, patients with
MDD have thinner cortical gray matter than HCs in the temporal
lobes, orbitofrontal cortex, anterior and posterior cingulate, and
insula (51). These brain regions are highly consistent with brain
regions found in this study and may represent changes in
cortical gray matter. Furthermore, these brain regions are related
to biotypes of MDD implicating clinical features of negative

Frontiers in Psychiatry | www.frontiersin.org 7 June 2021 | Volume 12 | Article 667881

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Yamashita et al. Prediction Model of Depression Symptoms

FIGURE 4 | Important FCs for depression symptoms. (A) The 16 functional connections (FCs) viewed from left, back, right, and top. Interhemispheric connections are

shown in the back and top views only. Regions are color-coded according to the intrinsic network. The state of functional connectivity exhibits characteristics of the

correlation with depression symptoms as follows. Thinner and thicker connections indicate weaker and stronger correlations with depression symptoms in the

validation dataset. Blue and red connections indicate negative and positive correlations, respectively. (B) Listed here are the laterality and anatomical identification of

the ROI, as identified by Anatomical Automatic Labeling (AAL) and associated intrinsic networks related to the 17 FCs. MDD, major depressive disorder; DMN, default

mode network; FPN, fronto-parietal network.

bias, anxious avoidance, threat dysregulation, inattention, and
cognitive dyscontrol, respectively (52). These results indicate that
we need further analyses to clarify how the regression model’s
output and abnormalities in each FC are associated with cognitive
and affective functions.

While research based on diagnosis of single disorders
has proven fruitful in the field of psychiatric disorders,
it has been more important to conduct dimensional and
transdiagnostic research. Recently, the Research Domain Criteria

(RDoC) initiative seeks to redefine and identify subtypes of
psychiatric disorders in terms of biological systems, without
relying on diagnoses based solely on symptoms and signs
(18). This initiative is expected to inform our understanding
of heterogeneous and overlapping clinical presentations of
psychotic disorders. In particular, we believe that dimensional,
transdiagnostic, longitudinal, and therapeutic approaches
are driving the field toward more precise biomarkers in
mental health.
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FIGURE 5 | Reproducibility of important FCs regarding symptom effects.

Scatter plot of the depression symptom effect size (Pearson’s correlation

between BDI-II and FC strength: r-value). Each circle represents the symptom

effect in the discovery dataset in the abscissa and that for the validation

dataset in the ordinate for each FC. Red circles indicate common FCs

between the major depressive disorder diagnosis and depression symptoms

models. The number in the circle is the number of the FC, as in Figure 4 and

Supplementary Table 3.

As with dimensional and transdiagnostic approaches, even
though our current study focuses on depression symptoms, we
were able to identify brain-based dimensions of psychopathology
such as mood, psychosis, fear and so on. Connectivity-guided
dimensions of psychopathology that cross clinical diagnostic
categories have been delineated (25), and in the future we should
be able to redefine psychiatric disorders in a unified manner,
based on biological brain networks by locating patients with
multiple psychiatric disorders in these dimensions.

In this study, we predicted participants’ current depression
symptoms. However, it is also important to investigate from
a longitudinal point of view. For example, in the future, we
may be able to investigate the effect of treatments such as
drugs, by comparing pre- and post-outputs of brain network
prediction models or FCs that are important for symptoms.
Antidepressants have a heterogeneous effect on functional
connectivity underlying melancholic depression (12), so it may
become possible to quantitatively evaluate effects of drugs and
other treatments based on brain network markers.

Finally, identification of biomarkers that determine
therapeutic targets, such as theranostic biomarkers (53, 54),
could allow more personalized treatment approaches. The
16 FCs discovered in this study are promising candidates
as theranostic biomarkers for depression symptoms. Future
work should investigate whether modulation of FCs could be
an effective treatment for depression symptoms by using an

intervention method with regard to FCs, such as functional
connectivity neurofeedback training (53–59).

MATERIALS AND METHODS

Ethics Statement
All participants provided written informed consent. All
recruitment procedures and experimental protocols were
approved by the institutional review boards of our respective
institutions (Advanced Telecommunications Research Institute
International [approval numbers: 13–133, 14–133, 15–133,
16–133, 17–133, and 18–133], Hiroshima University [E-38],
Kyoto Prefectural University of Medicine [RBMR-C-1098],
Showa University [SWA] [B-2014-019 and UMIN000016134],
the University of Tokyo [UTO] Faculty of Medicine [3150],
Kyoto University [C809 and R0027], and Yamaguchi University
[H23-153 and H25-85]) and were conducted in accordance with
the Declaration of Helsinki.

Participants
Two rs-fMRI datasets were used for our analyses: (1) The
discovery dataset included 713 participants (564 HCs from 4
sites, 149 MDD patients from 3 sites; Table 1). Each participant
underwent a single rs-fMRI session, which lasted 10min.
Within the Japanese SRPBS DecNef project, we planned to
acquire the rs-fMRI data using a unified imaging protocol
(Supplementary Table 1; http://bicr.atr.jp/rs-fmri-protocol-2/).
However, there were 2 erroneous phase-encoding directions
(P→ A and A→ P). In addition, different sites had different
MRI hardware (Supplementary Table 1). During the rs-fMRI
scans, participants were instructed to “Relax. Stay Awake. Fixate
on the central crosshair mark, and do not concentrate on specific
things.” (2) The independent validation dataset included 449
participants (264 HCs from independent 4 sites, 185 MDD
patients from independent 4 sites; Table 1). We acquired the
data following protocols reported in Supplementary Table 1.
Imaging sites were different from those in the discovery dataset.
Each participant underwent a single rs-fMRI session lasting
5 or 8min. We acquired this dataset in other projects since
2008, rather than as part of the SRPBS DecNef. Datasets
from Hiroshima University Hospital (HUH), Hiroshima
Kajikawa Hospital (HKH), and Hiroshima Rehabilitation
Center (HRC), as part of the independent validation dataset,
were acquired by “Development of diagnosis and treatment
techniques for patients with severe intractable depression
and insensitivity to antidepressant treatments, based on
molecular and cellular studies on BDNF and depression” of
the Japan Science and Technology Agency Core Research for
Evolutional Science and Technology (CREST) since 2008 and
by “Understanding the neurocircuit—molecular mechanism
underlying pathophysiology of depression and the development
of its neuroscience-based diagnosis and treatment” of the
SRPBS since 2011. Dataset from Yamaguchi University (UYA)
was acquired by “Exploration of the biological markers for
discrimination of heterogeneous pathophysiology of major
depressive disorder” of the SRPBS since 2012. Depression
symptoms were evaluated using the BDI-II score obtained from
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most participants in both datasets. Subject data with BDI-II
score was used to construct the BDI prediction model. In total,
we used 477 participants (367 HCs and 110 MDDs) in the
discovery dataset and 439 patients (259 HCs and 180 MDDs) in
the validation dataset. This study was carried out in accordance
with recommendations of the institutional review boards of
the principal investigators’ respective institutions (Hiroshima
University, Kyoto University, Showa University, University
of Tokyo, and Yamaguchi University) with written informed
consent from all subjects in accordance with the Declaration of
Helsinki. The protocol was approved by the institutional review
boards of the principal investigators’ respective institutions as
listed above. Most data utilized in this study can be downloaded
publicly from the DecNef Project Brain Data Repository at
https://bicr-resource.atr.jp/srpbsopen/ and https://bicr.atr.jp/
dcn/en/download/harmonization/. Data availability statements
of each site are described in Supplementary Table 1. Note,
although the datasets used in this study are published in our
previous study (13), the aims, analyses, results, conclusions, and
implications are independent in the current study.

Preprocessing and Calculation of the
Resting State FC Matrix
Rs-fMRI data was preprocessed using FMRIPREP version
1.0.8 (60). The first 10 s of data were discarded to allow
for T1 equilibration. We conducted slice-timing correction,
realignment, co-registration, distortion correction using a
field map, segmentation of T1-weighted structural images,
normalization to Montreal Neurological Institute (MNI) space,
and spatial smoothing with an isotropic Gaussian kernel of
6mm full-width at half-maximum. We performed “Fieldmap-
less” distortion correction for the validation dataset due
to the lack of field map data. For more details on the
pipeline, see http://fmriprep.readthedocs.io/en/latest/workflows.
html. For data from 6 participants in the validation dataset, co-
registration was unsuccessful, and these data were excluded from
further analysis.

Parcellation of Brain Regions
To analyze data using Human Connectome Project (HCP)-style
surface-based methods, ciftify toolbox version 2.0.2 was used
(61). This allowed us to analyze our data, which lacked T2-
weighted images required for HCP pipelines, using an HCP-like
surface-based pipeline. We then extracted BOLD signal time
courses from Glasser’s 379 surface-based parcellations (360
cortical parcellations + 19 subcortical parcellations) as regions
of interest (ROIs), considered reliable brain parcellations (36).
To facilitate comparisons of our results with previous studies,
we identified anatomical names of important ROIs and names
of intrinsic brain networks that included ROIs using anatomical
automatic labeling (AAL) (62) and Neurosynth (http://
neurosynth.org/locations/).

Physiological Noise Regression
We extracted physiological noise regressors by applying
anatomical CompCor (aCompCor) (63) in which principal
components were estimated. A mask to exclude signals with

cortical origins was obtained by eroding the brain mask and
ensuring that it contained subcortical structures only. Five
aCompCor components were calculated within the intersection
of the subcortical mask and union of the CSF and WM masks
calculated in T1-weighted image space after their projection
to the native space of functional images in each session. To
remove several sources of spurious variance, we used a linear
regression with 12 regression parameters as total, such as 6
motion parameters, the average signal over the whole brain, and
5 aCompCor components.

Temporal Filtering
We applied a temporal bandpass filter to the time series using
a first-order Butterworth filter with a pass band between 0.01
and 0.08Hz to restrict the analysis to low-frequency fluctuations,
which are characteristic of rs-fMRI BOLD activity (64).

Head Motion
We calculated framewise displacement (FD) (65) for each session
using Nipype (https://nipype.readthedocs.io/en/latest/). The FD
represents head motion between 2 consecutive volumes as a
scalar quantity, i.e., the summation of absolute displacements
in translation and rotation. We used FD in the subsequent
scrubbing procedure. To reduce spurious changes in FCs from
head motion, volumes with FD > 0.5mm were removed,
as proposed by Power et al. (65). Using the aforementioned
threshold, 6.3% ± 13.5 volumes (mean ± SD) were removed for
each rs-fMRI session in all datasets. If the ratio of the excluded
volumes after scrubbing exceeded the mean + 3 SD, participants
were excluded from the analysis. As a result, 32 participants were
removed from all datasets. Thus, we included 683 participants
(545 HCs, 138 patients with MDD) in the discovery dataset
and 440 participants (259 HCs, 181 patients with MDD) in the
validation dataset for further analysis.

Calculation of FC Matrix
We calculated FC as the temporal correlation of rs-fMRI BOLD
signal time courses across 379 ROIs for each participant. There
are a number of different candidates to calculate FC, such
as the tangent method and partial correlation; however, we
used a Pearson’s correlation coefficient because it is the most
commonly used in previous studies. We calculated Fisher’s
z-transformed Pearson’s correlation coefficients between the
preprocessed BOLD signals of each possible pair of ROIs and
used to construct 379 × 379 symmetrical connectivity matrices
in which each element represents a connection strength between
2 ROIs. In total, 71,631 FC values [(379 × 378)/2] of the
lower triangular matrix of the connectivity matrix were used for
further analysis.

Site-Difference Control in FC
A traveling subject harmonization method was used to control
for site differences in FC in the discovery dataset. This method
enabled us to remove pure site differences (measurement bias)
which are estimated from the traveling subject dataset wherein
multiple participants travel to multiple imaging sites. We
estimated participant factor (p), measurement bias (m), sampling
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biases (shc, smdd), and psychiatric disorder factor (d) by fitting
the regression model to the FC values of all participants from
the discovery dataset and the traveling subject dataset. For each
connectivity, the regression model can be written as follows:

Connectivity = xm
Tm+ xshc

Tshc + xsmdd
Tsmdd + xd

Td+

xp
Tp+ const + e,

such that

9
∑

j

pj = 0,

4
∑

k

mk = 0,

4
∑

k

shck = 0,

3
∑

k

smddk

= 0, d1 (HC) = 0,

in which m represents the measurement bias (4 sites × 1),
shc represents the sampling bias of HCs (4 sites × 1), smdd

represents the sampling bias of patients withMDD (3 sites× 1), d
represents the disorder factor (2× 1), p represents the participant
factor (9 traveling subjects × 1), const represents the average
functional connectivity value across all participants from all sites,
and e ∼ N

(

0, γ−1
)

represents noise. Measurement biases were
removed by subtracting estimated measurement biases. Thus,
harmonized functional connectivity values were set as follows:

ConnectivityHarmonized = Connectivity− xm
Tm̂,

in which m̂ represents the estimated measurement bias. More
detailed information has been described previously (29).

ComBat harmonization method was used (37–40) to control
for site differences in FC in the independent validation dataset
due to lack of a traveling subject dataset for those imaging
sites. Harmonization was performed to correct only for the site
difference using information on MDD diagnosis, BDI score,
age, sex, and dominant hand as auxiliary variables in ComBat.
Notably, compared with the conventional regression method, the
ComBat method is a more advanced method to control for site
effects (37–40).

Control of Age Effect
Linear regression was used to further control for age-related
effects in FCs by regressing FC values after harmonization.
Resulting residuals were an estimate of the FC controlling for
age effects.

BDI Score Regression Model in the
Discovery Dataset
We constructed a linear regression model to predict the BDI
score using the discovery dataset based on 71,631 FC values. To
construct the linear regression model, we applied a machine-
learning technique to participants with BDI score in the
discovery dataset. Based on our previous study (41), we assumed
that symptom factors were not associated with whole brain
connectivity, but rather with a specific subset of connections.
Therefore, we conducted linear regression analyses using the
LASSO method to select the optimal subset of FCs (44). We
employed linear regression using the LASSO method as follows:

Predicted BDIsub = wTcsub,

in which Predicted BDIsub represents the BDI score of a
participant; csub represents an FC vector for a given participant,
and w represents the weight vector of the linear regression. The
weight vector w was determined to minimize

J (w) = −
1

nsub

nsub
∑

j=1

∣

∣Predicted BDIj − Observed BDIj
∣

∣ + λ ‖w‖1 ,

in which ‖w‖1 =
∑N

i |wi| and λ represent hyperparameters
that control the amount of shrinkage applied to the estimates.
To estimate weights and a hyperparameter λ, we conducted a
nested cross validation procedure (Figure 2). In this procedure,
we first divided the whole discovery dataset into a training set (9
of 10-folds), which were used for training a model and a test set
(a fold of 10-folds) for testing the model. We then fitted a model
to each fold while tuning a regularization parameter in the inner
loop of the nested cross validation, resulting in 10 regression
models. For the inner loop, we used the “lassoglm” function in
MATLAB (R2016b, Mathworks, USA) and set “NumLambda”
to 25 and “CV” to 10. In this inner loop, we first calculated a
value of λ just large enough such that the only optimal solution
is the all-zeroes vector. A total of 25 values of λ were prepared
at equal intervals from 0 to λmax and the λ was determined
according to the one-standard-error-rule in which we selected
the largest λ within the standard deviation of the minimum
prediction error (among all λ) (35). We constructed a regression
model using the combination of FC values selected in all 10
folds in the training dataset (Figure 2). This caused information
leakage across the folds; therefore, the training dataset may be
overfitted. This issue meant that it was important to confirm
generalization performance by applying this regression model to
an independent validation dataset, as described below. Finally,
we calculated the mean absolute error (MAE) and Pearson’s
correlation coefficients between the predicted and measured
BDI scores.

Generalization Performance of the
Regression Model
To test the generalizability of the regression model, we applied
the trained regression model to a independent validation dataset
and considered its output as the predicted BDI score. To
test the statistical significance of the BDI regression model, a
permutation test was performed. We permuted the BDI scores
of the discovery dataset, conducted a 10-fold CV, repeated
this permutation procedure 100 times, and calculated the
Pearson correlation coefficients and MAE as the performance of
each permutation.

Identification of FCs Linked to Depression
Symptoms
Resting-state FC for depression symptoms were examined by
extracting the important FCs related to the BDI regressionmodel.
In short, the number of times an FC was selected by LASSO was
counted during the 10-fold CV. We considered that this FC was
important if this number was significantly higher than chance,
according to a permutation test. We permuted the BDI scores
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of the discovery dataset, conducted a 10-fold CV, and repeated
this permutation procedure 100 times. We then used the number
of counts for each connection selected by the sparse algorithm
during 10 CV (max 10 times) as a statistic in every permutation
dataset. To control the multiple comparison problem, we set a
null distribution as the max distribution of the number of counts
over all functional connections and set our statistical significance
to a threshold (p < 0.05, one-sided). FCs selected ≥ 1 time of 10
times were regarded as relevant to depression symptoms.
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