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Abstract

Interaction between hands and the environment permits the interchange of microorganisms.

The Mexico City subway is used daily by millions of passengers that get in contact with its

surfaces. In this study, we used 16S rRNA gene sequencing to characterize the micro-

biomes of frequently touched surfaces and compare regular and women-only wagons. We

also explored the effect of surface cleaning on microbial resettling. Finally, we studied pas-

senger behavior and characterized microbial changes after traveling. Most passengers

(99%), showed some type of surface interaction during a wagon trip, mostly with the hands

(92%). We found microbiome differences associated with surfaces, probably reflecting

diverse surface materials and usage frequency. The platform floor was the most bacterial

diverse surface, while the stair handrail and pole were the least diverse ones. After pole

cleaning, the resettling of microbial diversity was fast (5–30 minutes); however, it did not

resemble the initial composition. After traveling, passengers significantly increased their

hand microbial diversity and converged to a similar microbial composition among passen-

gers. Additionally, passenger hand microbiomes resembled subway surfaces in diversity.

However, microbial fingerprints were preserved within passengers after traveling.

Introduction

Mexico City’s subway transports around 1,678 million passengers per year (4.2 million daily),

making it the ninth-largest transit subway in the world [1]. This high number of visitors pro-

motes multiple physical interactions, becoming an essential system for studying colonization

and disseminating microbes.

Hands are an essential channel of the interactions of humans with their surroundings. Acti-

nobacteria, Proteobacteria, and Firmicutes are the phyla that mainly comprise the hand micro-

biomes [2]. They are very diverse, surpassing oral and intestinal microbiomes [3]. They highly

vary among individuals and between the right and the left hand of the same person [4]. Con-

stant exposure to diverse environmental sources and perturbations (e.g., handwashing) is a

factor of the hand’s microbiome heterogeneity [4].
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Interaction between hands and the environment permits the interchange of microorgan-

isms, explaining the high proportion of human-associated microbes in built environments [5].

There is a human microbiome signal that is strong and traceable among people and buildings

[6]. Cohabitation results in closer microbial composition than kinship; people sharing the

same house have more similar microbial profiles than others [5]. Additionally, different types

of surfaces in one home can be more similar in microbiome composition than in different

houses [7]. Similarly, there are microbe differences in built areas used exclusively by women or

men; for example, Lactobacillus iners was found as a female-associated bacterium, while Der-
mabacter hominis, Facklamia, and Corynebacterium were more abundant in rooms used by

males [4,8–10]. There is evidence that indoor and human microbiomes are closely related and

influence each other.

The Mexico City subway contains different microenvironments [11]. Most train lines are

devoid of sunlight, and only a few lines may run in the exterior a fraction of their route. Exte-

rior air is ventilated into the subway from a ducted air stream, and indoor air is recirculated

using exhaust fans. Particulate matter levels are higher inside stations than outdoors [12]. In

the hot season, water is spread out into the air by fans. While the statin floors are cleaned daily,

train wagons are deep-cleaned once a month. Other surfaces such as turnstiles, stairs, and esca-

lator handrails are cleaned eventually with a not strict schedule.

The subway is the most used transportation system in Mexico City. Subway travelers in

Mexico City are exposed to the sale and consumption of food inside the premises, street

vendors, and the absence of seats at the stations. The first two train cars are exclusively for

women, the disabled, and the elderly [13]. Some cities have applied exclusive cars for women

as a measure to decrease sexual harassment [14,15].

There are culture-independent studies of subway surfaces of New York City [16], Boston

[17], Oslo [18], Mexico City [19], and by MetaSUB [20], an international initiative. Such stud-

ies have shown that the subway microbiome is structured mostly by commensal bacteria from

the skin and that microbial composition and diversity vary according to the material and type

of usage. In the Hong Kong subway, there are differences between morning and afternoon

microbial composition, with more antibiotic resistance genes in the afternoon [21]. In the

same study, the commuters’ hand microbiomes were explored measuring bacteria acquisition

in a 30-minute trip [21].

The present study describes the interaction between the Mexico City subway microbiota

and those of its passengers. We compared microbiomes from different subway surfaces com-

prising stations and regular and women-only wagons. We also evaluated the velocity of the

bacterial succession after an event of surface cleaning. Additionally, we characterized the pas-

sengers’ microbiomes before and after traveling (Fig 1 and S1 Table).

Methods

Ethics statement

This study was approved by the Commission of Academic Ethics and Scientific Responsibility

of the Facultad de Ciencias, Universidad Nacional Autónoma de México (P1202002001). Writ-

ten informed consent was obtained from the volunteers who donated the hand swabs. All the

volunteers were graduate students over 18 years old.

Sampling

Sampling was performed in autumn 2018. Samples were taken from turnstiles, stair handrails,

escalator handrails, platform floor, train poles, and seats. The latter two were sampled from
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two different train wagons: the regular wagon (used by men and women) and the women-only

wagon (used by women, disabled people, and the elderly). The first wagons are women-only,

so they change every time the train arrives at a terminal station. A total of 97 samples were col-

lected, and 89 were successfully processed (S1 Table). Sampling was performed by swabbing

each surface of around 100 cm2 for 20 seconds with a pre-moistened nylon-flocked swab

(COPAN FLOQSwabs™), and samples were preserved in transport media (Tris 20 mM, EDTA

10 mM pH 7.5). Samples were kept in ice for less than 12 h until freezing at -80˚C. Line and

station names, time, temperature, and relative humidity were registered. Sampling permits

were granted by the subway “User Support Manager” (Gerencia de Atención al Usuario del Sis-
tema de Transporte Colectivo).

The impact of a subway trip on the passengers’ microbiomes was determined by swabbing

the right hand of eight informed volunteers. Volunteers were sampled before and after travel-

ing on a regular weekday. Subjects arrived at the starting point in the morning, not using the

subway as a transportation means. The subway trip included traveling 11 stations across three

different subway lines, including two-line transferences. It was a circular route so that they

would arrive at the starting point. Each volunteer was indicated to contact particular surfaces

(at least twice) and avoid touching others. Surfaces touched by each volunteer are summarized

in S2 and S3 Tables. Hands were sampled after completing the trip. Additionally, volunteers

were asked to wash their hands for 30 s with liquid soap (DIAL1 neutral) and distilled water

following the same protocol. Immediately after this, hands were sampled and then resampled

at the end of the trip.

Fig 1. Study design. We swabbed surfaces and used the 16S rRNA gene (red dots) and microbial cultures (blue dots) to describe

bacterial diversity. (a) Microbiome comparison of subway surfaces: turnstiles, escalator handrails, stair handrails, platform floors, poles,

and train seats. Poles and train seats were sampled in regular and women-only wagons (N = 5 per site). (b) Microbiome succession study

after a cleaning event in poles. Microbiome changes were evaluated at pre-cleaning (PC) and 0, 0.5, 2, 8, and 48 h after cleaning. (c)

Hand microbial diversity before and after traveling; we evaluated the effect of traveling with and without previous handwashing.

https://doi.org/10.1371/journal.pone.0237272.g001
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Surfaces cleaning

To describe the microbiome colonization, we cleaned five poles from the same wagon (mixed

wagon) on a regular weekday morning. Areas to sample were defined with a template divided

into five areas of 100 cm2 each. Samples were taken before and after cleaning (pre- and post-

cleaning). A Lysol wipe was used to scrub the surface energetically, and then, a wet sterile

gauze was used to remove the cleaning product excess. Post-cleaning samples were swabbed

immediately after the cleaning of each surface. The remaining samples were taken longitudi-

nally at five time-points (0, 0.5, 2, 8, and 48 h). We did not sample twice in the same area to

avoid affecting the microbiome composition of the following time points.

Surface cleaning was also analyzed by CFU counting. As described above, we sampled 10–

12 poles in seven post-cleaning time points: 0 h, 5 min, 10 min, 20 min, 0.5 h, 1 h, and 2 h.

Two positive controls were also swabbed: pre-cleaning samples, and 2 h without cleaning. Bac-

teria were incubated in the LB-agar medium for 36 h at 30˚C.

Observational patterns during a subway trip

A total of 120 passengers (67 adults and 53 elderly) were randomly picked and observed from

the start to the end of each trip. All interactions with their environment were documented dur-

ing traveling. Additionally, observations were also made in the stations. The number of passen-

gers touching the handrails of escalators and stairs was documented in 5 and 11 different

stations, respectively. Differences between stairs going up or down were also explored, while

the chosen escalators were only going up.

DNA extraction

Metagenomic DNA was extracted using a MoBio PowerSoil Kit (MoBio Laboratories, Solana

Beach, CA) with small modifications. Half of the beat material from each tube was poured

into a new one. Volumes were adjusted to preserve proportions of solutions/samples. In total,

125 μL of the sample was used, 30 μL of C1 solution, and 50 μL of phenol: chloroform 1:1 were

mixed in the beat tube. Further steps were performed according to the instructions of the

MoBio PowerSoil Kit.

Region V3-V4 from the 16S rRNA gene was amplified using primers 341F (CCTACGGGN

GGCWGCAG) and 805R (GACTACHVGGGTATCTAATCC). Libraries were obtained fol-

lowing the MiSeq™ Illumina1 protocol. Samples without PCR amplification were discarded.

All samples corresponded to the ones taken just after cleaning the surfaces. The PCR was per-

formed in triplicates, using 0.15 ul of Phusion DNA polymerase™, 3 μL Buffer 5x, 2.5 μL dNTP

(3 mM), 1 μL forward primer (5 pmol/μL), 1 μL reverse primer (5 pmol/μL), 1–4 μL DNA, and

water up to the final volume of 15 ul per reaction. The PCR reaction was initiated at 98˚C, 30 s,

followed by 35 cycles of 92˚C for 10 s, 53˚C for 30 s, 72˚C for 40 s, and a final extension step at

72˚C for 5 min. Blank samples were used as negative controls. The three PCR reactions per

sample were combined and purified using the High Pure PCR Product Purification Kit of

ROCHE™ (Roche Diagnostics GmbH, Mannheim, Germany). Sequencing was performed

using the MiSeq™ Illumina1 (2 x 300 bp) platform at the Laboratory of Genomic Services from

the National Laboratory of Genomics for Biodiversity in Irapuato, México. The DNA concen-

tration was measured with a NanoDrop microvolume spectrophotometer.

Bioinformatics processing

Amplified reads were pair-ended using the Context-Aware Scheme for Paired-End Read

(CASPER) [22]. Sequences were clustered at 97% of identity using cd-hit-est [23], and

PLOS ONE Passenger-surface microbiome interactions in the subway of Mexico City

PLOS ONE | https://doi.org/10.1371/journal.pone.0237272 August 19, 2020 4 / 17

https://doi.org/10.1371/journal.pone.0237272


pick_rep_set.py from QIIME (v. 1.9) [24] was used to pick representative sequences from each

cluster. Chimera sequences and singletons were removed. The taxonomy assignment was

done with QIIME (v. 1.9) [24] using parallel BLAST [25] and the GreenGenes database [26].

Finally, chloroplasts and mitochondria were filtered from the OTU table. These steps were

processed with default parameters, and the analyzed samples were rarified at 6,242 sequences

per sample.

Additionally, amplicon sequence variants (ASVs) were generated using the DADA2 algo-

rithm [27]. Reads 341F-804R were extracted from the 16S Silva database [28] to train a Naive

Bayes classifier [29].

Data analysis

Data analysis and plot generation were performed using phyloseq [30] and ggplot2 [31] in R

version 3.5.1 [32]. Beta diversity was visualized with canonical analysis of principal coordinates

(CAP) and non-metric dimensional scaling (NMDS) with Bray Curtis dissimilarities. Compar-

ison among groups was performed with the vegan package [33] from R, using the adonis func-

tion, which conducts a permutational multivariate analysis of variance (PERMANOVA) using

distance matrices with 999 permutations. Group dispersion was examined with multivariate

homogeneity of group dispersions with the betadisp R function. PERMANOVA pairwise com-

parison was performed with the pairwise.adonis function [34] in the devtools package with

default parameters and adjusted p values with the false discovery rate (FDR) method. Non-

parametric comparisons were performed with the Kruskal-Wallis test and pairwise compari-

son with Dunn’s Test of Multiple Comparisons Using Rank Sums, Dunn.test function from

the R base library. The non-parametric two-group comparison was performed with the Wil-

coxon test. Discriminant taxa analysis among groups was performed using the LEfSe algorithm

with one against all strategy, set with an LDA inferior limit of 4 and alpha value of 0.05 [35].

Results

Passenger behavior and subway interaction

To understand the type and level of interaction that a passenger has with the subway environ-

ment, we traveled with passengers and registered their behavior during eight different week-

days. A total of 120 passengers were randomly picked and observed during a train trip (67

adults and 53 elders), from the entrance to the end of their trips (S4 Table). Prevalence (%

[CI95%]) and median frequency (times/10 min) of contact with particular surfaces or objects

were registered. Most of the passengers (99% [95–100%]) had contact with any wagon surface;

92% [85–96%] of the contacts were with the hands and the rest with the body or cloth. As

expected, the hands were the most common means of interaction with train surfaces (4.1

times/10 min), with higher frequency in the older people than in adults (5.0 vs. 3.6 times/10

min; p = 0.030, Wilcoxon test). Most users touched train poles (89% [82–94%]), being the

most recurrent touched surface (marginally higher in the elderly than in adults, 4.9 vs. 4.1

times/10 min; p = 0.051, Wilcoxon test). The passenger’s self-contact was measured, and the

face/head was the most commonly touched body part (73% [64–81%], times/10 min), similar

in frequency between age groups. In face/head area touching, the skin predominated (68%

[58–76%], 1.3 times/10 min), followed by the hair/scalp (27% [19–36%], median of 0, mean of

0.7 times/10 min), any mucosa (17% [11–25%], median of 0, mean of 0.2 times/10 min), and

the ear canal (4% [1.5–9.9%], median of 0, mean of 0.04 times/10 min), similar between age

groups. Passenger’s hands were also in frequent contact with personal articles (73% [64–80%],

1.7 times/10 min), with cell phones being the most commonly and frequently used items in

adults compared to the elderly (49% [37–62%] vs. 5.7% [1.5–17%], a median of 0 for both
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groups and mean of 0.9 vs. 0.05 times/10 min respectively; p = 3 x 10−7, Wilcoxon test). Other

activities not directly related to hands, such as sitting, were also higher in the elderly (p =

0.001, Wilcoxon test), as well as laying the body on any other surface than seats (p = 0.049, Wil-

coxon test). Further activities with microbiological relevance were also registered but observed

to a lesser extent, such as touching other people, money interchange (buying or charity),

coughing, drinking, and eating with bare hands. Although not included in S4 Table, putting

on makeup, book reading, and sleeping were also eventually observed.

Additionally, we observed passengers using the escalator and stairs in the stations

(N = 7,456 passengers, S5 Table). Escalator handrails were touched continuously with the

hands (86.2%, N = 2,650), while stair handrails were less frequently used (20.3%, N = 4,806),

being higher for stairs going down than going up (23.6% vs. 17.1% respectively, p< 1 x 10−7,

Chi-squared test).

Massive sequencing of the 16S rRNA gene

We sequenced 89 samples, with 10,538,220 reads being obtained, which resulted in 5,238,317

paired sequences of an average length of 450 bp (S6 and S7 Tables). Sequences were filtered

to discard singleton, chloroplast, or mitochondrial sequences. With an average of 34,125

sequences per sample, we identified a total of 75,914 97% OTUs (1,121 genera). All samples

were rarefied at the minimum sequence number per sample (6,242 sequences). Subsampling

generated 29,811 OTUs (939 genera; S7 Table). A rarefied data set was used to present the

results of this study. We did not identify archaeal OTUs, and only 28 OTUs (0.004% of the

sequences) did not match any known organism.

Subway surface microbiome

We sampled surfaces from turnstiles, escalator handrails, stair handrails, platform floors, poles,

and train seats (Fig 1a). Relative abundances of surfaces microbiomes were higher for the

phyla Proteobacteria (31 ± 8.6%), Actinobacteria (30 ± 9.2%), Firmicutes (24 ± 7.7%), Bacteroi-

detes (9.5 ± 4.5%), and Fusobacteria (1.5% ± 5.4%). At the genus level, the five most abundant

taxa comprised 36% of the total abundance: Acinetobacter (10.5 ± 5.4%), Corynebacterium
(8.2 ± 6.0%), Streptococcus (7.3% ± 4.2%), Staphylococcus (6.8% ± 5.2%), and Cutibacterium
(3.4 ± 2.2%). Only nine genera were ubiquitous across all 40 samples (S8 Table), comprising

44% of the overall abundance. Fig 2 shows a summary of the genera composition. The five

most abundant OTUs were Acinetobacter sp. (5.6 ± 3.6%), Staphylococcus sp. (3.8 ± 3.1%),

Cutibacterium acnes (3.6 ± 5.6%), Streptococcus sp. (2.7 ± 1.2%), and Staphylococcus epidermi-
dis (2.0 ± 1.2%) (Fig 2).

Alpha diversity varied among different surface types (for Shannon, Observed OTUs,

Chao1, and Simpson metrics, p< 0.02, Kruskal-Wallis; S1 Fig). The platform floor was the

most diverse surface, while the stair handrail and pole were the least diverse ones (p< 0.010,

Dunn test; S1 Fig). Microbial composition differed among surface types (p = 0.001, F = 1.99,

PERMANOVA), with different variance dispersion (p = 0.018, F = 3.35, PERMADISP2;

S1 Fig).

Based on hierarchical clustering, the platform floor showed the most distinctive bacterial

composition. Turnstiles, escalator handrails, and poles showed greater similarities (S1 Fig).

Interestingly, stair handrail samples did not cluster with other hand-contact surfaces, although

they displayed the highest variance dispersion, reflecting high heterogeneity among samples.

In contrast, escalator handrails and turnstiles showed the lowest dispersion, indicating higher

homogeneity among samples (Tukey’s HSD, p-adjust< 0.026, S1 Fig). No discriminant OTU

was detected for stair handrail in comparison with other surfaces.
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We also explored microbiome differences between regular and women-only wagons; we

found no differences for any surface in terms of alpha or beta diversities (S2 Fig). Discriminant

taxa analysis using the LEfSe algorithm did not show any overrepresented taxa between wagon

types. Further analysis was performed using amplicon sequence variants (ASVs); also, no dif-

ferences were detected (see below).

Microbiome ecological succession after surface cleaning

We explored the changes in surface microbiomes after a cleaning event. We cleaned five poles

with disinfectant towels and distilled water; the poles were sampled pre-cleaning (PC) and

along five time-points post-cleaning (0, 0.5, 2, 8, and 48 h) (Fig 1b).

The cleaning procedure removed 96.38% (3,867 OTUs) of the initial OTUs. A total of 67

OTUs (31 genera) were shared among all-time groups, and they were not removed; these taxa

included the most abundant genera. A total of 987 OTUs (234 genera) resettled the surfaces in

at least one sample (Fig 3 and S3 Fig). Many of them were intermittently identified, and only

422 initial OTUs (148 genera) were detected in the 48-h samples. Within 30 min, 369 removed

OTUs (100 genera) resettled on the pole surfaces. The pre-cleaning group showed the highest

count of unique taxa (Fig 3 and S3 Fig), suggesting that rare taxa have not been completely

established within 48 h. However, the high count of unique taxa in each time group, and the

intermittent identification of taxa, suggest that rare taxa are not persistent.

Cleaning of poles significantly reduced sample biomass, hindering 16S gene amplification.

We only obtained amplicons from one out of five samples for the first time-point, suggesting

that the cleaning procedure was carried out properly. Richness comparison among time

groups (not including 0 h, N = 1) yielded significant results (Chao1, p = 0.038, Kruskal-Wallis).

However, pairwise comparison removed this significance (p> 0.05, Dunn’s test; Fig 4a). Beta

diversity showed significant differences among group compositions (p = 0.001, F = 1.46,

PERMANOVA; Fig 4b), while similar dispersion was observed (p = 0.867, F = 0.33, PERMA-

DISP2). Set analysis suggests that after cleaning, pole microbiomes acquire a composition dif-

ferent from that of the pre-cleaning samples.

We also explored bacterial colonization dynamics for shorter periods (< 0.5 h) with a culti-

vation based-method. After the same cleaning procedure, 10–12 poles were sampled in seven-

time points: 0 h, 5 min, 10 min, 20 min, 0.5 h, 1 h, and 2 h. Results showed that 5 minutes were

Fig 2. Subway surface microbiome diversity. Microbial composition differed among subway surface types. (a) Taxa

summary showing the most abundant genera. (b) Beta diversity at the genus level, Bray-Curtis based non-metric

multidimensional scaling (NMDS) plot of surface types samples.

https://doi.org/10.1371/journal.pone.0237272.g002
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Fig 3. Unique and shared genera among time groups. Many genera are unique to each time group, and many resettled

genera are not persistent. Upset plot of intersected genera among time points after cleaning; empty intersections are not

shown. Taxa shared among all times are shown in green. Resettled taxa are shown with an orange line.

https://doi.org/10.1371/journal.pone.0237272.g003

Fig 4. Pole microbiome diversity succession measured by 16S amplicons and colony-forming units (CFUs) after a cleaning event. (a) Alpha

diversity and (b) beta diversity did not resettle within 48 h after cleaning. Nevertheless, the CFU count was regained within minutes (c). (a) Alpha

diversity boxplots show the Chao1 richness estimator. (b) Non-metric multidimensional scaling (NMDS) ordination with Bray-Curtis dissimilarity at

the genus level. (c) CFUs in seven time-points plus two controls: pre-cleaning (PC) and time control at two h (not cleaning). The last control pretends

to evaluate the microbiome’s natural changes in real-time (�p< 0.05 and ��p< 0.005, Dunn’s test).

https://doi.org/10.1371/journal.pone.0237272.g004
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sufficient to reach a similar number of colony-forming units (CFU) when compared to the

pre-cleaning group (PC vs. 5 min, p> 0.050, Dunn’s test; Fig 4c).

Passenger hand microbiome after traveling

Microbiome changes during a subway trip were measured in eight volunteers after an 11-sta-

tion ride. Two procedures were evaluated: 1) traveling without previous handwashing (Fig 5)

and 2) traveling with previous handwashing (S4 Fig). Handwashing was done using traditional

soap and water protocol.

Subway traveling increased bacterial alpha diversity. Although, the handwashing immedi-

ately reduced biomass and diversity, traveling increased bacterial diversity to the same levels

than after traveling without the handwashing procedure (OTU level: p< 0.020, for Observed,

Chao1, and Shannon; Fig 5a and S4 Fig). The increased bacterial diversity may not be related

to the touched surface type or the number of touched surfaces (p = 0.317, R2: 0.165; linear

regression from net Shannon diversities and number of touched surfaces). Further exploration

of the passenger-surface contact frequency and nature (intermittent or dragging-like) might

elucidate this relationship.

Fig 5. Changes in the passenger hand microbiome before and after traveling without handwashing. (a) Alpha diversity is increased after traveling (�

p< 0.020). (b) Heatmap, using Manhattan distances, showing the relative abundance of all genera shared among subjects (columns, denoted by a

number) before or after traveling. The subjects showed a closer microbiome profile after traveling. Letters before taxa indicate the best possible

phylogenetic assignment (o: order and f: family). (c) Constrained analysis of principal coordinates (CAP) at the genus level, showing significant

segregation for SubjectID and Travel (before and after) variables (p = 0.001, F = 2.4 and p = 0.006, F = 2.0, ANOVA-like permutation test for CAP).

https://doi.org/10.1371/journal.pone.0237272.g005
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After traveling, the observed OTUs increased by a mean count of 167.0% without (S2

Table) and 408.1% with the handwashing procedure (S3 Table). Unwashed hands lost 68.1%

and washed hands 65.3% of their OTUs and acquired 135.1 and 254.4% of new OTUs.

Unwashed hands conserved only 31.9% of the OTUs, while washed hands retained 34.7% of

OTUs, including the most abundant ones. Additionally, small decreases of the most abundant

taxa were observed after traveling with unwashed hands: Acinetobacter (11.7–7.7%), Coryne-
bacterium (11.1–8.0%), Streptococcus (10.2–8.7%), Cutibacterium (9.4–7.8%), and Staphylococ-
cus (6.9–5.9%) (S5 Fig). Similar changes were observed for most taxa for washed hands.

Subway passenger microbiome profiles converged after traveling. The number of taxa

shared among the eight passengers increased after traveling without handwashing (Figs 5b and

6 and S4 Fig). Constrained analysis of principal coordinates (CAP) supported the microbial

convergence after a subway ride, showing that the subject identifier variable (SubjectID) fol-

lowed by the travel variable (before and after) significantly explained group segregation

(p = 0.001, F = 2.4 and p = 0.006, F = 2.0, respectively; ANOVA-like permutation test for CAP,

Fig 5c). The handwashing procedure analysis showed similar results (p = 0.003, F = 1.9),

although the SubjectID variable reduced to marginal significance (p = 0.049, F = 1.3; S4 Fig).

The convergence of the subject microbial composition after traveling can also be visualized in

an NMDS ordination; SubjectIDs after traveling were closer to each other (Fig 6). Additionally,

they became closer to the subway surface profiles, suggesting higher similarities with the sur-

face microbiome, particularly evident for the handwashing group.

In summary, subway traveling increased hand microbial diversity and promoted passenger

microbiome convergence. Although handwashing before traveling had an immediate effect on

microbiome profiles, diversity and composition reached similar characteristics than after trav-

eling without handwashing.

ASVs analysis

We reanalyzed the central questions of this study using amplicon sequence variants (ASV).

Both ASV and OTU are methodologies for data reduction. While ASVs are generated by pars-

ing identical sequences and eliminating rare sequences, OTUs are generated by sequence

Fig 6. Hand microbiome composition converges after traveling. Non-multidimensional scaling (NMDS) ordination bi-plot performed with Bray

Curtis distance for no handwashing and handwashing and different surface types, at the genus level. Arrows connect the same subjects from before to

after traveling. Unpaired dots are samples without matching before or after travel comparison because of low metagenomic DNA yield (washed hands).

https://doi.org/10.1371/journal.pone.0237272.g006

PLOS ONE Passenger-surface microbiome interactions in the subway of Mexico City

PLOS ONE | https://doi.org/10.1371/journal.pone.0237272 August 19, 2020 10 / 17

https://doi.org/10.1371/journal.pone.0237272.g006
https://doi.org/10.1371/journal.pone.0237272


clustering. Presenting the ASV approach may allow a more inclusive understanding of the

data since it can provide strain resolution. Microbial diversity at the ASV level showed similar

results than for the OTU analysis in alpha and beta diversity for subway surfaces and hands

before and after traveling. Previous subway studies have reported the presence of E. coli, or

even Escherichia, as opposed to this study. The ASV analysis detected 13 Escherichia-Shigella
in some surface and passenger samples without any particular pattern. We compared regular

and women-only wagons, identifying the presence and changes in the relative abundance of

specific vaginal-associated bacteria based on the Silva database. This database includes a higher

number of vaginal-associated bacteria than GreenGenes. Similar to the OTU analysis, no dif-

ferences were found (S9 and S10 Tables and S6 Fig).

Discussion

Microbial subway surfaces have been characterized previously in New York, Boston, Oslo, and

México City [16–19]. Additionally, the hand microbiome has been explored for Hong Kong

subway passengers [21]. This work complements the previous study of Mexico City by incor-

porating other surfaces into the research and analyzing women’s wagons. Furthermore, this

work contributes to studying the world’s subway microbiomes by exploring the taxonomic

contribution of subway surfaces to the passengers’ hands microbiome.

The Mexico City subway showed different microbial compositions among surface types.

Differences in the kind of materials and the type of human body interaction may be shaping

these profiles [17,19]. Although escalator handrails and poles are surfaces typically wrapped by

the passengers’ hands, we found substantial differences in diversity and compositions among

them. The higher porosity in the escalator rubber grips may provide a bigger contact surface

and a higher faculty of harboring nutrient particles that facilitate bacterial growth. Addition-

ally, it may serve as a humidity reservoir for bacteria [36]. On the contrary, poles are polished

metal surfaces that reduce bacterial adherence and persistence. The platform floor, with the

most distinctive composition, receives soil and dust particles carried in via shoes, while seats

are impacted by the commuters’ clothes. Turnstiles, handrails, and poles show the microbial

input of hands and clothes.

We also explored whether regular and women-only wagons displayed differentiated micro-

biomes, based on the previously reported sex-based microbial differences and building-occu-

piers microbial associations [4,5,9,10,37]. We did not find distinctions between regular and

women-only wagons. Microbiome sex-based signals in trains may be hidden by the high

intrinsic diversities of the subway surfaces. A female signal would probably require contact

with a low, exposed body part (e.g., thighs or urogenital area) [9,38,39]. Additionally, these

wagons are intermittently occupied by women. The first wagons are for women only, so each

time a train reaches a terminal station, there is a railroad switch, reversing train wagon order.

A 20-30-min ride would probably be not long enough to build a female microbial fingerprint.

Additionally, a possible PCR primer bias might be limiting the detection of vaginal species

(e.g., Lactobacillus spp.), which may be difficult accessing this comparison.

The passenger microbial input

We described the poles as the least bacterial diverse surface and the most frequent passenger

wrap surface (97%). Such a highly perturbed surface might be of particular interest in control-

ling microbial dispersal with health implications. In this study, we observed that pole cleaning

effectively removed microbes. However, we found microbial resettling with few passenger

interactions with bacterial richness and CFU counts similar to pre-cleaning levels. The fact

that microbes rapidly resettle suggests that cleaning is effective short periods. Although the
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pole’s smoothness may avoid microbial accumulation, it might promote a high microbial

exchange rate. In practical terms, the passenger microbes are rapidly wiped out by the next

passenger.

We observed changes in the pole microbial compositions across time groups and did not

detect an evident ecological succession sign. However, we cannot rule out a slow succession

process. Gibbons et al. [38], have followed the microbial colonization on restroom floors and

observed an early successional community composition within 8 h and a late-successional

state over weeks to months. The observed high perturbation frequency of poles and the scarce

deposition area of its material may impair a community structure’s development over time

[40].

Further studies of cleaning porous surfaces such as escalator handrails (used by 86% of the

passengers) may be essential to prevent microbial spreads; however, microbial removal effi-

ciency must be tested. We also propose to pay particular attention to the cleaning of the floor,

as floor surfaces are highly diverse, and the dust can be easily lifted with air and breathed in by

passengers. Alternatively, self-cleaning building materials may be a long-term strategy for con-

trolling bacterial colonization on surfaces [41].

Passenger hand microbiome after a subway ride

We showed that the hands are the primary means of interaction with subway surfaces. Addi-

tionally, we observed that the face/head area was the area most commonly touched by users

(73%). Interaction with mucosa was relatively high in prevalence (17%, 10-min trip). The

mucosa has a particular health relevance, since reaching the nasal or conjunctival mucosa with

the hands can lead to the transmission of diseases through the self-inoculation of microorgan-

isms [42]. In contrast to the skin, with a robust mechanical barrier, the mucosa is an exposed

area for external agents directly in contact with the immune system. Although recognition and

protection against environmental agents are continually occurring in this area, the mucosa can

also be vulnerable to disruption and microbial colonization. A persistent establishment would

imply interactions with the immune system [43], while a transient establishment involves bac-

terial dispersal to other surfaces.

Bacterial adherence ability plays a vital role in the microbial exchange. It might be influ-

enced by temperature and pressure conditions and the hydrophobic–hydrophilic properties of

the interacting surfaces [44]. These properties may vary by surface characteristics and passen-

ger hand microenvironment (pH, moisture, sebum level).

After a subway trip, the passenger hand microbiome increased in diversity. This increment

is consistent with the higher diversity found on subway surfaces, which may be built by the

contribution of several passengers and soil presence [19]. The hand from one person is a het-

erogeneous microbial source with high inter-individual variation [45]. We also detected com-

muter variation; only 7% of the genera were shared among passenger’s hands before traveling.

This high inter-variation may be due to intrinsic factors such as age, sex, and extrinsic life-

style-dependent factors: use of skincare products, pet ownership, allergies, alcohol consump-

tion, time spent outdoors [10,37,39].

We showed that hand microbial composition converged among passengers after traveling.

This convergence means that one trip is enough to perceive the effect of building cohabitation

[5,9,37]. Changes in the hand microbiome were expected, as hands were constantly interacting

with different surfaces. Hands show higher temporal variability than other body sites (reviewed

in [43]).

Besides diversity changes due to travel, we observed microbial fingerprint preservation

within passengers. Highly abundant taxa persist within subjects [24], while transient bacteria
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are the primary variability source [39]. Microbial fingerprint has also been observed in volun-

teers sampled and resampled at 4 to 6 months later, with no significant change over time [46].

Under normal circumstances and for healthy people, it does not seem to be a risk expos-

ing yourself to a subway ride. Furthermore, it could even be argued that it is a way to increase

microbial diversity and improve your immune system [19]. However, for immunosup-

pressed people or in a pandemic, we recommend washing your hands as soon as you reach

the destination and trying not to touch your face during the trip. Other subway studies that

include air and virus analysis are relevant to continue understanding the implications of

traveling by subway.

Conclusions

We detected the effect of a trip on passengers of the Mexico City subway. Each time a pas-

senger travels in the subway, she or he leaves some bacteria and brings others. Passengers

become similar to the subway surfaces, and they are more alike among each other after trav-

eling. Each passenger’s microbial fingerprint is preserved, mostly explained by high-abun-

dance taxa. Although most bacteria will not persist, traveling in the subway is a way of

sharing our microbes.

Poles are the most touched surface in the Mexico City subway. Pole cleaning reduces micro-

bial richness and diversity. However, the amount of CFU is quickly restored within 5 min after

pole cleaning. Even so, the microbial composition is not resettled within 48 hours. We think

that the lack of restoration of the initial microbial community is due to the variability of the

hosts’ microbiomes and the lack of rare taxa persistence.

Supporting information

S1 Fig. Subway surface microbiome diversity in stations and regular train wagons (N = 5

samples per surface type). The platform floor was most diverse, with the most distinctive

composition. (a) Alpha diversity measures for surface type at the OTU level. Pairwise compari-

son showed that platform floor diversity was higher than that of stair handrails and poles (�

p< 0.01, Nemenyi-tests). (b) Hierarchical clustering of individual surface samples, colored by

surface type. Hierarchical clustering analyses were performed with the ward.2 method and

Bray Curtis dissimilarity. (c) Variance dispersion among surface types (� p< 0.02, PERMA-

DISP2; p.adjust< 0.026, Tukey´s HSD). Distances to centroid groups were calculated by

reducing the original Bray Curtis dissimilarity to principal coordinates.

(PDF)

S2 Fig. There are no microbiome differences between regular and women-only train

wagons at the OTU level (N = 5 samples per category). (a) Non-metric multidimensional

scaling (NMDS) ordination with Bray dissimilarity showing spatial distribution of sample

groups (poles, p> 0.18, F = 1.13; train seats, p> 0.59, F = 0.95, PERMANOVA; NMDS

stress = 0.20). (b) Alpha diversity measures at the OTU level. No significance was found

between groups for any measure (p> 0.5, Kruskal-Wallis).

(PDF)

S3 Fig. Unique and shared OTUs among time groups. Many OTUs are unique to each time

group, and many resettled taxa are not persistent (a) Upset plot of intersected OTUs among

time points after cleaning; empty intersections are not shown. Taxa shared among all times are

shown in green. Resettled taxa are indicated with an orange line.

(PDF)
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S4 Fig. Changes in the passenger hands microbiome before and after traveling with hand-

washing. (a) Alpha diversity is increased (� p< 0.020). (b) Heatmap showing the relative

abundance of all common taxa at the genus level, before or after traveling per SubjectID,

denoted by a number. Row dendrogram arrangement based in Manhattan distance. (c) Con-

strained analysis of principal coordinates (CAP) at the genus level, showing significant segre-

gation of SubjectID and Travel variables (p = 0.049, F = 1.3 and p = 0.003, respectively, F = 1.9,

ANOVA-like permutation test for CAP).

(PDF)

S5 Fig. Taxa summary at the genus level per subject id. Each subject fingerprint is preserved

after traveling (a) Before and after traveling without handwashing. (b) With handwashing.

Missing bars come from samples not sequenced due to low DNA biomass.

(PDF)

S6 Fig. Taxa summary at genus level from ASVs generated with DADA2 and taxonomy

assign based on Silva database. Similar to the OTU analysis, the most abundant phyla were

Proteobacteria (37%), Firmicutes (24%), Actinobacteria (20%), and Bacteroidetes (9.3%).

However, Cyanobacteria (3.3%, no chloroplast) appeared in the fifth position. The most abun-

dant ASVs were Acinetobacter lwoffii (0.72%), Streptococcus sp. (0.68%), Streptococcus sp.

(0.59%), Acinetobacter lwoffii (0.56%), and Propionibacterium acnes (0.56%). A total of 17

ASVs named as archaea were identified (Methanobrevibacter, Candidatus Nitrososphaera
SCA1170, Candidatus Nitrososphaera SCA1145, Methanosaeta vadinCA11, Methanosaeta,

Natronococcus, Methanobacterium, Halococcus, among other not identified genera).

(PDF)

S1 Table. Number of samples collected and successfully processed.

(PDF)

S2 Table. Number of OTUs kept, lost, and newly acquired after one subway travel per pas-

senger without handwashing.
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S3 Table. Number of OTUs kept, lost, and newly acquired after one subway travel per pas-

senger with handwashing.

(PDF)

S4 Table. Frequency and prevalence of activities observed in passengers during a train trip.
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S5 Table. Percentage of passengers touching the handrails of escalators and stairs.
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S6 Table. Relative humidity, temperature, collection date, DNA concentration, and the

number of raw sequences per sample.

(PDF)

S7 Table. Numbers of raw reads, paired-end reads, and OTUs.

(PDF)

S8 Table. Shared genera among samples within the same surface type and among all samples.

(PDF)

S9 Table. Summary of sequences and ASVs in 89 samples.
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S10 Table. Number of vaginal-associated taxa as a female environmental indicator.
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