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Abstract: The authors of this paper conducted a comparative metabolomic analysis of Ophiocordy-
ceps sinensis (OS), providing the metabolic profiles of the stroma (OSBSz) and sclerotia (OSBSh)
of OS by widely targeted metabolomics and untargeted metabolomics. The results showed that
778 and 1449 metabolites were identified by the widely targeted metabolomics and untargeted
metabolomics approaches, respectively. The metabolites in OSBSz and OSBSh are significantly
differentiated; 71 and 96 differentially expressed metabolites were identified by the widely tar-
geted metabolomics and untargeted metabolomics approaches, respectively. This suggests that these
71 metabolites (riboflavine, tripdiolide, bromocriptine, lumichrome, tetrahymanol, citrostadienol, etc.)
and 96 metabolites (sancycline, vignatic acid B, pirbuterol, rubrophen, epalrestat, etc.) are potential
biomarkers. 4-Hydroxybenzaldehyde, arginine, and lumichrome were common differentially ex-
pressed metabolites. Using the widely targeted metabolomics approach, the key pathways identified
that are involved in creating the differentiation between OSBSz and OSBSh may be nicotinate and
nicotinamide metabolism, thiamine metabolism, riboflavin metabolism, glycine, serine, and threonine
metabolism, and arginine biosynthesis. The differentially expressed metabolites identified using the
untargeted metabolomics approach were mainly involved in arginine biosynthesis, terpenoid back-
bone biosynthesis, porphyrin and chlorophyll metabolism, and cysteine and methionine metabolism.
The purpose of this research was to provide support for the assessment of the differences between
the stroma and sclerotia, to furnish a material basis for the evaluation of the physical effects of OS,
and to provide a reference for the selection of detection methods for the metabolomics of OS.

Keywords: metabolomics; Ophiocordyceps sinensis; widely targeted metabolomics; untargeted
metabolomics; Fungi

1. Introduction

Ophiocordyceps sinensis (Berk.) (OS) Sung et al., is a parasitic complex of the fungus
O. sinensis [1], which is distributed in the Qinghai-Tibet Plateau and surrounding areas at
an altitude of 3200–5300 m. Modern pharmacological studies have found that OS exerts
different degrees of therapeutic effects on the cardiovascular system, respiratory system,
nervous system, immune system, kidney, and liver [2–6]. In addition, it has antitumor
and antioxidant activities [7,8]. The pharmacological action of OS is closely related to its
polysaccharides, nucleosides, sterols, flavonoids, cyclic peptides, phenols, anthracenes,
polyketones, and alkaloids [9,10]. Most research on the active components of OS is focused
on adenosine and ergosterol. For example, Yang et al. found that there was a significant
difference in adenosine content between the stroma and sclerotia of OS (OSBSz and OSBSh,
respectively) [11]. A recent study showed that ergosterol is more abundant in hosts than in

Molecules 2022, 27, 3645. https://doi.org/10.3390/molecules27113645 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27113645
https://doi.org/10.3390/molecules27113645
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules27113645
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27113645?type=check_update&version=2


Molecules 2022, 27, 3645 2 of 13

the stroma, especially on top of the host. Intensive research on the known active components
of OS has been conducted, and potential markers have been elucidated. Zhong et al.
found that the water extract of OS had significant anti-inflammatory effects against single
stimulation by cigarette smoke extract (CSE), as well as infection by a compound influenza
virus [12]. A UHPLC-Q-TOF-MS technique was used to extract a novel fatty acid—(2Z,4e)-
deca-2,4-dienoic acid—from CSE, which attenuated the inflammatory response by reducing
mRNA and protein levels in cells [13]. The same study also found that OS contains a
water-insoluble polysaccharide, β-(1,3) glucan, which is not only a component of fungal
cell walls, but it is also the core structure of immunologically active polysaccharides that
stimulate immune receptors such as Dectin-1 to trigger innate immune responses; this
suggests that there may a large number of unknown active ingredients in OS, which
could play an important role in the prevention and treatment of diseases. However, the
identification of potential markers is challenging, and there is a need for new methods to
find accurate biomarkers.

In previous studies, chromatographic and spectroscopic techniques have been widely
used in the study of OS, such as thin layer chromatography [14], high-performance liq-
uid chromatography (HPLC) [15], gas chromatography [16,17], capillary electrophoresis
chromatography [18], infrared spectroscopy [19], and nuclear magnetic resonance spec-
troscopy [20]. The use of these techniques has rapidly advanced the research of the chemical
composition and quality evaluation of OS. HPLC is currently the most widely used tech-
nique in the research of OS. Detection and analysis are performed with different detectors
depending on the nature of the analyte. Mass spectrometric (MS) detectors provide struc-
tural information and have high sensitivity. For example, cyclo-Ala-Leu-rhamnose and
Phe-O-glucose were identified in OS by using HPLC-MS [21].

In addition to being used for quality assessment, HPLC-MS metabolomics is also
becoming increasingly applied in discovery studies for potential biomarkers. It is well
known that genomics and proteomics explore activities at the gene and protein levels,
respectively, but in fact, many activities in cells occur at the metabolite level; for exam-
ple, cellular signaling, energy transfer, and intercellular communication are regulated by
metabolites [22,23]. Metabolomics is a static concept, which links differentially expressed
metabolites to phenotypic changes through the qualitative and quantitative analysis of
low-molecular-weight metabolites in different samples, which can identify metabolites that
play important roles and preliminarily explore the causes of the changes. Such findings
are regarded as a “bellwether” in the process of biomarker research for OS. Therefore, the
choice of detection technique is crucial for OS research. A rigorous and simple detection
technique can not only obtain credible results but also provide technical references for
the following research. Metabolomics can not only be applied to explain the interaction
mechanism between species, but also to explore new metabolites with biological activ-
ity [24]. Metabolomics is categorized as untargeted metabolomics or targeted metabolomics,
depending on the aim of the study. Untargeted metabolomics is applied to detect all small
molecule metabolites in an unbiased manner, whereas targeted metabolomics is applied to
quantify only the targeted metabolites of interest. Widely targeted metabolomics is a novel
technique that differs from existing metabolite detection methods because it integrates
the advantages of the “generality” of untargeted metabolomics and the “accuracy” of
targeted metabolomics. Furthermore, widely targeted metabolomics is a high-throughput,
ultrasensitive technique with wide coverage that can be used for both qualitative and
quantitative analysis.

At present, in the metabolomic research on OS, comparative research of untargeted
metabolomics and widely targeted metabolomics is still lacking. Therefore, the purpose
of the present study was to explore the metabolic profiles of the stroma and the sclerotia
of OS using different detection techniques, and to identify important metabolites and key
metabolic pathways by combining multivariate statistical analysis methods. This could
provide technical ideas for future research, provide important references for the choice of
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detection technology, and also provide favorable support for the study of the medicinal
value of OS.

2. Results
2.1. Metabolite Identification

Representative total ion chromatograms of OSBSz and OSBSh obtained by widely
targeted metabolomics are shown in Figure 1a. As can be seen from the figure, all target
compounds exhibited symmetrical chromatographic peaks, and chromatographic separa-
tion of individual target compounds was well achieved. From the base peak chromatogram
obtained using untargeted metabolomics (Figure 1b), it can be seen that the samples had
a good peak shape and large peak capacity. After peak deconvolution, alignment, and
exclusion of ion features, 3491 ions were acquired by untargeted metabolomics. In to-
tal, the 778 and 1449 metabolites were tentatively identified in the chromatograms using
widely targeted metabolomics and untargeted metabolomics, respectively, by comparing
their fragment patterns with a mass spectral database. In terms of the types of metabo-
lites, they were mainly amino acids, terpenoids, phenylpropanoids, alcohols, aromatics,
phenols, nucleosides, flavonoids, and alkaloids, which is in line with the main types of
fungal metabolites.

Figure 1. (a) Representative total ion chromatogram by the widely targeted metabolomics approach.
(b) Base peak chromatogram by the untargeted metabolomics approach.

2.2. Principal Component Analysis

As the most widely used unsupervised pattern recognition method, principal com-
ponent analysis (PCA) can intuitively demonstrate the overall distribution of samples.
The R2 value obtained from PCA is regarded as an important indicator, with larger R2

values indicating better fitting of the model. As can be seen from the PCA score plots
(Figure 2a,b), all samples were within 95% confidence intervals, whether using widely
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targeted metabolomics (R2X = 0.703) or untargeted metabolomics (R2X = 0.685). Three
biological replicates were clustered, demonstrating good experimental reproducibility.
OSBSz showed a separation trend from OSBSh, which indicates that the metabolites of
OSBSz were significantly different from those of OSBSh. To obtain reliable and high-quality
metabolomic data, quality control (QC) samples are usually used for quality control during
detection. The smaller the difference between QC samples, the higher the stability of the
method and the higher the quality of the data. The dense distribution of two QC samples
in the PCA score chart shows that the data are reliable.

Figure 2. (a,b) PCA model score of the widely targeted metabolomics approach (a) and the untargeted
metabolomics approach (b). (c,d) PLS-DA model score of the widely targeted metabolomics approach
(c) and the untargeted metabolomics approach (d). (e,f) Statistical validation of the PLS-DA model
using permutation analysis for the widely targeted metabolomics approach (e) and the untargeted
metabolomics approach (f).

2.3. Partial Least Squares Discriminant Analysis

PCA may cause misjudgment in classification, and data must be further analyzed
by supervised partial least squares discriminant analysis (PLS-DA). Compared with PCA,
PLS-DA has a stronger ability to extract variation information between groups. From the
PLS-DA score plots (Figure 2c,d), it can be seen that OSBSz and OSBSh performed very
differently, data points of OSBSz and OSBSh were significantly distinguished, regardless of
which detection means were applied, which was consistent with the PCA results. The model
fitting parameter (R2X) of the widely targeted metabolomics and untargeted metabolomics
approaches was 48.3% and 63.1%, respectively, and the model discrimination parameter
(R2Y) was 89.1% and 99.1%, respectively, indicating that the model had a good fit. To check
if the PLS-DA model was overfitted, 200 permutation tests were performed [24]. As shown
in Figure 2e,f, the R2 and Q2 values in the original model were very close to 1, which proved
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that the established model conformed to the real situation of the sample data. This means
that the PLS-DA model was not overfitted and the model was reliable.

2.4. Screening of Differentially Expressed Metabolites

As shown in Tables S1 and S2, the widely targeted metabolomics and untargeted
metabolomics approaches were employed to screen out 70 and 96 differentially expressed
metabolites, respectively. As shown in Figure 3a,b, the differentially expressed metabolites
mainly included amino acids, nucleosides, alcohols, alkaloids, esters, and flavones. The
differentially expressed metabolites identified by widely targeted metabolomics mainly
included amino acid, nucleoside, and acid metabolites, such as threonine, proline, arginine,
asparagine, gemcitabine, flavin adenine dinucleotide (FAD), and 5-Methyltetrahydrofolic
acid. The differentially expressed metabolites identified by untargeted metabolomics
mainly included tyrosine, arginine, DOPA, epalrestat, indospicine, and 2’-Deoxycytidine.
Furthermore, metabolites such as 4-Hydroxybenzaldehyde, arginine, and lumichrome were
identified by both techniques. These results constitute encouraging preliminary findings in
favor of the use of metabolomics to explore potential biomarkers.

Figure 3. Differentially expressed metabolite classification pie chart. (a) Widely targeted
metabolomics. (b) Untargeted metabolomics.

Comparative analysis between OSBSh and OSBSz using the widely targeted metabolomics
approach showed that OSBSh contained more bromocriptine, lumichrome, pyridoxine,
arginine, and 2-picolinic acid than OSBSz (Figure 4a). Perhaps these metabolites are
important components of the sclerotia and closely related to the physiological activities
of the host. For example, arginine participates in biochemical reactions such as ammonia
detoxification and the immune system. Arginine is an important metabolite to maintain
the survival of the host. 5-Methyltetrahydrofolic acid, nicotinic acid adenine dinucleotide,
tetrahymanol, citrostadienol, melibiose, and salsolinol were more abundant in OSBSz.
Using the untargeted metabolomics approach, the levels of sancycline, glycyrin, pirbuterol,
neotame, rubrophen, geniposidic acid, arginine, methionylleucine, 4-Pyridoxic acid, and
ethosuximide were higher in OSBSh. 3-Phenylpropanoic acid, phthalic acid, and epalrestat
were more abundant in OSBSz (Figure 4b). These metabolites may be involved in the
germination, maturation, and aging of the stroma.

2.5. Hierarchical Cluster Analysis

Hierarchical cluster analysis (HCA) of metabolites based on their characteristics can
be used to classify the metabolites that have the same characteristics into one group, and to
then find the variation of metabolites between OSBSz and OSBSh. HCA was applied to
the top 20 differentially expressed metabolites. The results showed that using the widely
targeted metabolomics approach (Figure 5a), nicotinic acid adenine dinucleotide, oxymor-
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phone, and homoserine were highly expressed in OSBSz, whereas 5-aminovaleric acid,
6-aminocaproic acid, 2-picolinic acid, betaine aldehyde, riboflavin, tripdiolide, lumichrome,
ornithine, proline, citrulline, arginine, asparagine, threonine, 4-Hydroxybenzaldehyde,
and histidine were highly expressed in OSBSh. Among them, arginine was also highly
expressed in OSBSh in the untargeted metabolomics, which was consistent with the top
20 differentially expressed metabolites chart. These results suggested that the differences
between OSBSz and OSBSh may be regulated by these key substances.

Figure 4. The top 20 differentially expressed metabolites. (a) Widely targeted metabolomics.
(b) Untargeted metabolomics.

Figure 5. Hierarchical cluster analysis for OSBSz and OSBSh. (a) Widely targeted metabolomics.
(b) Untargeted metabolomics.
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2.6. Analysis of Differentially Expressed Metabolite Pathways and Enrichment Analysis

Pathway enrichment analysis revealed that the enriched pathways were mainly in-
volved in metabolism and then biosynthesis. In total, 18 and 12 metabolic pathways were
enriched, respectively (Figure 6a,b). As shown in the bubble chart, the abscissa where the
bubble is located and the size of the bubble represent the influence value. The larger the
bubble, the greater the importance of the pathway. The ordinate where the bubble is located
and the color of the bubble represent the p value of the enrichment analysis. The redder the
bubble, the closer the p value is to 0, hence the enrichment is more significant. It was found
that the differentially expressed metabolites detected by widely targeted metabolomics
were primarily involved in nicotinate and nicotinamide metabolism, thiamine metabolism,
riboflavin metabolism, glycine, serine, and threonine metabolism, and arginine biosyn-
thesis (Figure 6c). The differentially expressed metabolites detected by the untargeted
metabolomics were mainly involved in arginine biosynthesis, terpenoid backbone biosyn-
thesis, porphyrin and chlorophyll metabolism, and cysteine and methionine metabolism
(Figure 6d). Specifically, these metabolic pathways may be the key to determine the differ-
ences between OSBSz and OSBSh, and important differentially expressed metabolites play
a crucial role in the key pathways. The common metabolic pathways of the differentially
expressed metabolites were screened by the two methods, including arginine biosynthesis,
cysteine and methionine metabolism, arginine and proline metabolism, aminoacyl-tRNA
biosynthesis, porphyrin and chlorophyll metabolism, and pyrimidine metabolism. Argi-
nine is found among the differentially expressed metabolites of the two detection methods,
and arginine is involved in normal activities of the body as an important amino acid.

Figure 6. (a,b) Differentially expressed metabolic pathway maps of OSBSz and OSBSh. (a) Widely
targeted metabolomics. (b) Untargeted metabolomics. (c,d) Differentially expressed metabolite enrich-
ment analysis of OSBSz and OSBSh. (c) Widely targeted metabolomics. (d) Untargeted metabolomics.
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3. Discussion

To the best of our knowledge, this is the first study to compare widely targeted
metabolomics and untargeted metabolomics combined with multivariate data analysis
approaches to explore the metabolite differences between OSBSz and OSBSh. The identifi-
cation of metabolites has always been an important challenge in metabolomics research.
At present, there is no metabolomic analysis platform that covers all metabolites without
bias [25,26]. In this study, two detection methods brought different results. The num-
ber of metabolites identified varied greatly; 778 and 1449 metabolites were detected by
widely targeted and untargeted metabolomics, respectively. There are two main reasons
for this difference. First, there are differences in underlying qualitative principles between
the two detection modalities. For the widely targeted metabolomics approach, the data
acquisition principle is multiple reaction monitoring (MRM) technology based on triple
quadrupole MS. The noise interference of MS signals can be significantly reduced under
the dual mass screening of parent ions and daughter ions; their identification is more
accurate, reproducible, and sensitive [27]. However, untargeted metabolomics relies on the
parent ion’s signal intensity when selecting it for fragmentation and secondary scanning,
which is performed on parent ions that meet a threshold range according to a set signal
threshold of parent ions; for this reason, metabolites were detected in higher numbers by
untargeted metabolomics than by widely targeted metabolomics. Second, the extraction of
metabolites is a crucial part of metabolomics studies, which directly affects the range of
detectable metabolites as well as the number of metabolites extracted [28,29]. In the present
study, the extraction solutions for the widely targeted and untargeted metabolomics were
methanol:H2O (3:1) and methanol:acetonitrile:H2O (2:2:1), respectively. The addition of
acetonitrile, included because of its better separation, symmetrical peak shape, and stable
baseline, enabled the solution to sufficiently extract the metabolites of OS. The extraction
of metabolites is a key part of the experiment, and effective extraction is the premise for
the successful detection of metabolites. Therefore, accurate identification of metabolites is
necessary in the metabolomics study of OS.

Scientific acquisition of differentially expressed metabolites is another challenge in
metabolomics [30]. During multivariate data analysis, since unsupervised PCA causes false
positives when classifying, analysis by supervised PLS-DA is necessary to visualize the
overall distribution of the samples. Irrespective of the detection method used, significant
differences were found between OSBSz and OSBSh. Metabolites with VIP > 1 and p < 0.05
were considered as differentially expressed metabolites in this study [31,32]. In previous
studies, some important differential metabolites showed significant biological activity.
Epalrestat is used to treat diabetes, kidney disease, heart disease, and retinopathy and
can relieve diabetic neuropathic pain [33,34]. Flavin adenine dinucleotide (FAD) is an
essential component of the body’s intracellular multifunctional oxidase system, involved
in intracellular redox and electron transport systems in mitochondria, and associated with
in vivo metabolism of sugars, fats, proteins, etc. Moreover, FAD can be used to lower blood
pressure [35]. DOPA is an effective drug for the prevention and treatment of Parkinson’s
disease, carbon monoxide poisoning, and other conditions [36]. Therefore, the differentially
expressed metabolites provide a material basis for revealing the pharmacodynamics of OS
and may be potential biomarkers for OS. Both assays focused on 4-Hydroxybenzaldehyde,
arginine, and lumichrome. 4-Hydroxybenzaldehyde is one of the main active components
of Gastrodia elata, which exerts protective effects against ischemic stroke. Furthermore, it
inhibits thrombus formation, protects the blood–brain barrier, and relaxes vascular smooth
muscle. It is expected to be developed into a new drug for the prevention and treatment
of ischemic stroke [37]. It may play an important role in the treatment of cardiovascular
and cerebrovascular diseases. Arginine is a semi-essential amino acid, which is involved
in protein biosynthesis and host immune reactions. Clinically, arginine supplementation
is used to treat some cardiovascular diseases, such as hypertension and coronary heart
disease [38]. Lumichome is one of the photodegradants of vitamin B2. It participates in
biological oxidation in vivo, is related to energy metabolism and carbohydrate, protein,
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nucleic acid, and fat metabolism, and also shows antitumor activity [39]. Based on these
observations, it can be speculated that 4-Hydroxybenzaldehyde, arginine, and lumichrome
are extremely important in the growth process of OS, and they may be important effective
components for the prevention and treatment of diseases by OS.

The purpose of enrichment analysis is finding biological pathways that play a key role
in a biological process, and revealing and understanding the basic molecular mechanisms of
biological processes. In this study, we found that the key pathways in which the important
differentially expressed metabolites of OS are mainly involved were arginine biosynthesis,
cysteine and methionine metabolism, arginine and proline metabolism, aminoacyl-tRNA
biosynthesis, porphyrin and chlorophyll metabolism, and pyrimidine metabolism. The mi-
crobial/ plant arginine biosynthesis pathway offers the potential capacity of antimicrobial
and biocidal benefits [40]. Gut microbiota played a critical role in promoting the host resis-
tance to low-temperature stress in Bactrocera dorsalis by regulating its arginine and proline
metabolism pathway [41]. The aminoacyl-tRNA biosynthesis pathway is important for pro-
tein synthesis and is most strongly associated with the detoxification of ammonia [42]. This
suggests that the low temperature resistance, biological control and nutrient absorption of
OS is related to key pathways. The shortcomings of both methods could only be relatively
quantified, and due to the small number of replicates, more common components were not
obtained in the analysis of differentially expressed metabolites. It was suggested that the
database of fungal resources should be expanded, refined, and specialized so that there is
symmetry between the two methods that were compared. In future metabolome studies of
OS, detection methods should be selected according to the purpose of the study. To obtain
oridonin metabolic fingerprints, to obtain more comprehensive metabolite information, or
to rapidly classify the samples, untargeted metabolomics is perhaps the best choice. Widely
targeted metabolomics can be used for a focused analysis of the metabolites associated
with a certain class of compounds for a specific metabolic pathway, for oridonin quality
assessment, and for the identification of metabolites. If untargeted metabolomics was
first used for preliminary metabolite targeting, further targeted exploration with widely
targeted metabolomics may maximize the information obtained by metabolomics.

In summary, the present study provided the metabolic profiles of different parts of OS
as well as references for quality assessment, further research of the chemical composition
of OS, and phenotype analysis. Moreover, by multivariate statistical analysis, potential
biomarkers, and key metabolic pathways were highlighted, which provide support for the
study of the pharmacological effects of OS. Importantly, the contrasting metabolome results
of the present study provide a basis for method selection in future metabolome studies.

4. Materials and Methods
4.1. Materials

Wild OS from Baima Snow Mountains were collected in June 2021. The bacterial
membrane was first washed with distilled water, and OS was cut from the base of the
stroma into two parts, the stroma and sclerotia. The stroma was labeled as OSBSz-x and
the sclerotia was labeled as OSBSh-x. Three biological replicates were used for each group.

Instruments for widely targeted metabolomics include ultrahigh-performance liquid
chromatograph (Sciex, Framingham, MA, USA), a high-sensitivity mass spectrometer
(Sciex, Framingham, MA, USA), and a centrifuge (Thermo Scientific, Waltham, MA, USA),
and a water purification system (Merck Millipore, Burlington, MA, USA). Instruments for
untargeted metabolomics include ultrahigh-performance liquid chromatography (Waters,
Milford, MA, USA), a high-resolution mass spectrometer (Thermo Scientific, Waltham,
MA, USA), a low-temperature high-speed centrifuge (Eppendorf, Hamburg, Germany), a
vortex (Qilin Bell Instrument Manufacturing Co., Ltd., Haimen, China), a water purification
system (Millipore, Burlington, MA, USA), and a refrigerated vacuum concentrator (Gene
company limited, Hong Kong, China).
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4.2. Metabolite Extraction

In the widely targeted metabolomics approach, freeze-dried samples were crushed
with a mixer mill for 1 min at 60 Hz. Then a 100-mg aliquot of each sample was transferred
to an Eppendorf tube. After the addition of 1.5 mL of extraction solution (methanol:water,
3:1, precooled at−40 ◦C, containing internal standard), extraction was performed overnight
at 4 ◦C on a shaker. Then samples were centrifuged at 12,000 rpm for 15 min at 4 ◦C.
The supernatant was carefully filtered through a 0.22 µm microporous membrane and
transferred into a fresh 2 mL glass vial. From each sample, 40 µL was taken, and these
aliquots were pooled as QC samples and stored at−80 ◦C until UHPLC-MS analysis [43,44].

In the untargeted metabolomics approach, after thawing the samples slowly at 4 ◦C,
25 mg was put into a 1.5-mL Eppendorf tube. Next, 800 µL of the extraction solution
(methanol:acetonitrile:water, 2:2:1, precooled at −20 ◦C) was added, and 10 µL of the
internal standard and two small steel balls were added. Samples were placed in a tissue
grinder (50 Hz, 5 min). After ultrasonic treatment in a water bath at 4 ◦C for 10 min,
samples were stored at −20 ◦C for 1 h. Centrifugation was performed at 25,000 rpm at 4 ◦C
for 15 min. After centrifugation, 600 µL of the supernatant was removed and drained by
a vacuum concentrator. Next, a 200 µL complex solution (methanol:H2O, 1:9) was added
for redissolution, followed by vortex shock for 1 min, ultrasonic treatment in a water bath
at 4 ◦C for 10 min, and centrifugation at 25,000 rpm for 15 min at 4 ◦C. The resulting
supernatant was used for further analysis [45,46].

4.3. UHPLC-MS Conditions

In the widely targeted metabolomics experiments, UHPLC separation was carried out
using an ExionLC system. Mobile phase A was 0.1% formic acid in water and mobile phase
B was acetonitrile. The column temperature was set at 40 ◦C. The auto-sampler temperature
was set at 4 ◦C and the injection volume was 2 µL. The gradient for chromatographic
analysis was as follows: 0–0.5 min, 2% B; 0.5–10 min, 50% B; 10–13 min, 95% B; 13–15 min,
2% B.

A Sciex QTrap 6500+ was applied for assay development. Typical ion source parame-
ters were: ion spray voltage: +5500/−4500 V; curtain gas: 35 psi; temperature: 400 ◦C; ion
source gas 1 pressure: 60 psi; ion source gas 2 pressure: 60 psi; DP: ±100 V.

In the untargeted metabolomics experiments, the chromatographic column used was
BEH C18 (1.7 µm, 2.1 × 100 mm, Waters, Milford, MA, USA). The positive ion mode
mobile phase was an aqueous solution containing 0.1% formic acid (liquid A) and methanol
containing 0.1% formic acid (liquid B), and the negative ion mode mobile phase was an
aqueous solution containing 10 mM ammonia formic acid (liquid A) and 95% methanol
containing 10 mM ammonia formic acid (liquid B). The column temperature was set at
45 ◦C. The flow rate was 0.35 mL/min and the injection volume was 5 µL. The gradient
for chromatographic analysis was as follows: 0–1 min, 2% B; 1–9 min, 2–98% B; 9–12 min,
98% B; 12–12.1 min, 98% B; 12.1–15 min, 2% B.

A Q Exactive HF mass spectrometer was used for MS data acquisition. Typical ion
source parameters were: sheath gas flow rate: 40; aux gas flow rate: 10; spray voltage in
positive ion mode: 3.80 V; spray voltage in negative ion mode: 3.20 V; capillary temperature:
320 ◦C; aux gas heater temp: 350 ◦C. To provide more reliable experimental results, the
samples were randomly sorted to reduce systematic errors.

4.4. Data Processing and Statistical Analysis

For widely targeted metabolomics, Sciex analyst work station software Version 1.6.3
(Sciex, Framingham, MA, USA) was employed for MRM data acquisition and process-
ing. MS raw data files were converted to the TXT format using MSconventer. R software
Version 4.0.0 (https://www.r-project.org/ (accessed on 19 September 2020)) was used for
peak detection and annotation. For untargeted metabolomics, the acquired mass spectral
raw data were imported into Compound Discoverer 3.1 (Thermo Scientific, Wilmington,
NC, USA) for data processing, mainly including peak extraction, retention time correction,

https://www.r-project.org/
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adduct ion merging, missing value filling, and background peak labeling. Finally, the
compound molecular weight, retention time, peak area, and identification results were
exported. PCA, PLS-DA, and 200 permutation tests were performed using SIMCA soft-
ware Version 14.1 (Umetrics AB, Umeå, Sweden). The metabolic pathway analysis of
the differentially expressed metabolites was performed by the online tool MetaboAnalyst
(https://www.metaboanalyst.ca/ (accessed on 11 March 2022)).

4.5. Metabolite Identification and Analysis of Differentially Expressed Metabolites

Metabolites were identified by combining the mzCloud (https://www.mzcloud.org/
(accessed on 1 March 2022)), ChemSpider (https://www.chemspider.com/(accessed on
1 March 2022)), HMDB (https://hmdb.ca/ (accessed on 1 March 2022)), KEGG (https://
www.genome.jp/kegg/compound/ (accessed on 1 March 2022)), and LipiMaps (https://
www.lipidmaps.org/ (accessed on 1 March 2022)) databases. The main parameters for
metabolite identification are precursor mass tolerance, < 5 ppm; fragment mass tolerance,
< 10 ppm, RT tolerance, < 0.2 min. The differentially expressed metabolites were iden-
tified based on variable importance in a project (VIP) > 1 in the PLS-DA model and the
Student’s t test (p < 0.05) using SPSS software Version 19.0 (IMB Corp., Armonk, NY, USA).
Differentially expressed metabolite classification pie charts and HCA charts were drawn
by SPSS software Version 19.0. The relative abundance of the top 20 metabolites with VIP
was log-normalized, the 1–20 metabolites correspond to Tables S1 and S2, and the relative
abundance charts were drawn with GraphPad Prism software Version 9.3 (Graphpad,
San Diego, CA, USA).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27113645/s1: Table S1: Differentially expressed metabo-
lites in samples of the widely targeted metabolomics approach; Table S2: Differentially expressed
metabolites in samples of the untargeted metabolomics approach.
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