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Long noncoding RNAs (lncRNAs) have been demonstrated to play key roles in various

biological processes. However, the contributions of lncRNAs to Seneca Valley virus

(SVV) infection and host defense remain largely unknown. In this study, differentially

expressed lncRNAs and mRNAs in SVV-infected PK15 cells were detected by

genome-wide analysis. A total of 14,127 lncRNAs and 63,562 mRNAs were

identified, and 1,780 lncRNAs were differentially expressed. The functional prediction of

SVV-induced lncRNAs showed high associations with biological regulation and

many immunity-related signaling pathways, including the B-cell receptor pathway,

RIG-I-like receptor signaling pathway, and NF-kappa B (NF-κB) signaling pathway. We

next screened lncRNAs and target genes related to immune response pathways and

further demonstrated their differential expression in SVV-infected PK15 cells. Our study

investigated the function of lncRNAs involved in SVV infection and provided new insight

into the pathogenic mechanisms of SVV.
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INTRODUCTION

Seneca Valley virus (SVV) is a nonenveloped, single-stranded RNA virus with a genome length
of 7.3 kb that belongs to the genus Senecavirus in the family Picornaviridae and causes a
disease characterized by vesicles, coronary band hyperemia, and lameness (1). The virus is
indistinguishable from other swine vesicular diseases, such as foot-and-mouth disease (FMD),
swine vesicular disease (SVD), vesicular stomatitis (vs.), and vesicular exanthema of swine (VES),
which was first isolated from cell culture media and considered a cell culture contaminant in the
USA in 2002. Subsequently, and recently, many countries have reported SVV infection associated
with porcine idiopathic vesicular disease (PIVD), and its outbreak affects the productivity and
economics of the pork industry to some extent (2–4).

Since the first SVV was isolated from swine in Guangdong Province, China, in 2015 (2),
researchers have paid great attention to monitoring its prevalence and clarifying the clinical
characteristics of different district-isolated strains. From 2015 to 2019, many provinces in China
reported SVV infection in swine herds (5–7). Further understanding of the mechanism is crucial
for the prevention and control of SVV-induced disease.

Long noncoding RNAs (lncRNAs), which are 200 bp to 100 kb in length, are highly conserved
sequences of noncoding RNAs that usually reside in the nucleus (8). lncRNAs can regulate
gene expression by transcriptional and posttranscriptional regulation and recruit transcription
factors (9). Studies have indicated that lncRNAs play a role in immune processes, inflammatory
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responses, cancer, neurobiology, and stress. Meanwhile, lncRNAs
can also regulate cell proliferation and death (10–12). Recent
results have shown that lncRNAs play a vital role in regulating
the transcription of viral and host genes, affecting the host
antiviral response (13). lncRNAs have been demonstrated to
regulate signaling steps and activation processes and can
alter receptor function or regulate transcription factor binding
and translocation. Some lncRNAs can directly modulate the
expression of cytokines (14).

In this study, SVV-infected PK15 cells and uninfected
cells were researched by high-throughput RNA sequencing.
The differentially expressed (DE) mRNAs and lncRNAs were
screened. The possible lncRNAs involved in SVV infection
were screened.

MATERIALS AND METHODS

Sample Preparation
K15 cells were cultured at 37◦C and 5% CO2 in the high-glucose
Dulbecco’s modified Eagle medium (Gibco, CA, USA) containing
10% FBS (Gibco). PK-15 cells were infected with SVV CHhb17
(GenBank accession no. MG983756) at a multiplicity of infection
(MOI) of 0.01 for 16 h. When PK15 cells showed an obvious
cytopathic effect (CPE), the supernatant was discarded, and the
cells were washed with phosphate-buffered saline three times.
Then the cells were digested, and total RNA was extracted from
the infected cells using an RNeasy Kit (Qiagen) according to the
instructions of the manufacturer. The concentration and purity
of RNA were measured by a Nanodrop (IMPLEN, CA, USA).
RNA sample quality testing was completed by the company
(RiboBio, Guangzhou, China).

RNA Sequencing and Data Analysis
Three replicates of virus-infected and control samples were
used for lncRNA sequencing (RNA-seq). Sequencing libraries of
lncRNAs were constructed by the NEBNext Ultra Directional
RNA Library Prep Kit (New England Biolabs, MA, USA)
for Illumina HiSeq after the depletion of rRNA by Ribo-
ZeroTM rRNA Removal Kits (Epicenter, WI, USA). RNA-seq was
performed using an Illumina HiSeqTM2500 (Illumina, CA, USA).
All the reads from RNA-seq were aligned to the pig genome using
the TopHat 2.0 program (15), and the resulting alignment files
were reconstructed with Cufflinks (16). CPATwas used to predict
lncRNAs (17). According to the parameters of read length ≥ 200
nucleotides, exon number≥ 2, FPKM≥ 0.5, and coding potential
score < 0, the potential lncRNA transcripts were screened and
identified using Potential Calculator, Pfam-scan, and Coding-
Non-Coding Index. FPKMs (expected number of fragments per
kilobase of transcript sequence per million base pairs sequenced)
of both lncRNAs and mRNAs were calculated. When the p <

0.05, the DE transcripts were significantly different.

Gene Ontology and KEGG Pathway
Analyses
The GOseq method was used to conduct Gene Ontology (GO)
analysis, and the genes were annotated cellular component (CC),
biological process (BP), and molecular function (MF). KOBAS

v3.0 software was used to analyze the KEGG pathways. p < 0.05
were considered significantly different.

Real-Time PCR and Statistical Analysis
To further verify the sequencing results, PK15 cells were cultured
at 37◦C and 5% CO2 in high-glucose Dulbecco’s modified Eagle
medium containing 10% FBS. PK-15 cells were infected with
SVV CHhb17 at a multiplicity of infection (MOI) of 0.01 for
16 h. Then the supernatant was discarded, the cells were washed
with phosphate-buffered saline three times and digested, and
total RNA was extracted from infected cells using an RNeasy Kit
(Qiagen) according to the instructions of themanufacturer. First-
strand cDNA was synthesized using Random Primer. The target
genes were determined using an Applied Biosystems 7500 Real-
Time PCR System. The relative expression levels of lncRNAs and
the predicted target gene were normalized to GAPDH using the
2−11Ct method. Data from three independent experiments were
analyzed using one-way ANOVA. All data are demonstrated as
the mean± S.D. (∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001).

RESULTS

Differential Expression of Long Noncoding
RNAs and MRNAs in SVV-Infected and
Mock-Infected PK15 Cells
PK15 cells cultured at 37◦C and 5% CO2 were infected with
SVV CHhb17 at a multiplicity of infection (MOI) of 0.01. At
16 h postinfection, the SVV-infected PK15 cells showed obvious
shrinkage and clustering (Figure 1A). Before the disintegration
and death of PK15 cells, the cells were digested and collected,
and total RNA was extracted from the infected cells. The
expression profiles of lncRNAs and mRNAs in the mock-infected
and SVV-infected PK15 cells were analyzed by hierarchical
clustering. A total of 14,127 lncRNAs and 63,562 mRNAs were
identified. 8,287 lncRNAs and 54,445 mRNAs were expressed. As
shown in Figure 1B, 1,780 lncRNAs were differentially expressed,
including 638 upregulated lncRNAs and 1,142 downregulated
lncRNAs. A total of 10,847 mRNAs were differentially expressed;
of these mRNAs, 4,047 mRNAs were upregulated, and 6,800
mRNAs were downregulated (Figures 1C,D).

Genomic Features of Long Noncoding
RNAs in PK15 Cells
The genomic features of annotated lncRNAs, mRNAs, and new
lncRNAs were analyzed. As shown in Figure 2A, new lncRNAs
were shortest in transcript length. Compared with the transcript
length of mRNAs, annotated lncRNAs were much shorter. The
exons of annotated lncRNAs, mRNAs, and new lncRNAs were
significantly different. The numbers of exons in new lncRNAs
were fewest, and mRNAs possessed the most exons (Figure 2B).
To further analyze the average expression levels of annotated
lncRNAs, mRNAs, and new lncRNAs, boxplots were generated.
As shown in Figure 2C, the expression levels of annotated
lncRNAs were lowest and those of new lncRNAs were highest.
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FIGURE 1 | Differential expression of lncRNAs and mRNAs in SVV-infected and mock control PK15. (A) PK15 cells uninfected with SVV. (B) PK15 cells infected with

SVV. (C) Volcano plots of DE lncRNAs. (D) Volcano plots of DE mRNAs.

Functional Prediction of Seneca Valley
Virus–Induced Long Noncoding RNAs
lncRNAs function through various mechanisms, and lncRNAs
often regulate their neighboring genes. In our study, KEGG
and GO enrichment analyses of the identified mRNAs were
performed to investigate the function of these lncRNAs
in SVV-infected PK15 cells. GO analysis showed that 21
pathways were possibly influenced by SVV infection (Figure 3A).
KEGG analysis showed that these annotated lncRNAs were
involved in the B/T-cell receptor signaling pathway, RIG-I-
like receptor signaling pathway, cytokine–cytokine receptor
interaction, NF-kappa B (NF-κB) signaling pathway, and Janus
kinase (JAK)/signal transducer and activator of transcription
(STAT) pathway, which are involved in immune and antiviral
responses (Figure 3B). Furthermore, the function of new
lncRNAs in SVV-infected cells was investigated. The results
showed that most of the functions of these lncRNAs were
related to immune cell differentiation and immune response
(Figures 4A,B).

Target Genes of Differentially Expressed
Seneca Valley Virus–Induced LncRNAs
Next, we analyzed the possible target genes of the DE lncRNAs. A
total of 40,421 target genes might be regulated by DE-annotated
lncRNAs, including 1,873 in cis and 38,548 in trans. The new
DE lncRNAs might regulate 58,175 target genes, including
1,134 in cis and 57,051 in trans (Figures 5A,B). These genes are
involved in organismal systems, metabolism, human diseases,
environmental information, and host processing. Organismal
systems contain Fc gamma R-mediated phagocytosis, Toll-like
receptor signaling pathway, B-cell receptor signaling pathway,
Fc epsilon RI signaling pathway, leukocyte transendothelial
migration, long-term depression, T-cell receptor signaling
pathway, dopaminergic synapse, serotonergic synapse, natural
killer cell–mediated cytotoxicity, glutamatergic synapse,
chemokine signaling pathway, and cholinergic synapse.
Metabolism included glycerolipid metabolism and inositol
phosphate metabolism. Human diseases included the bacterial
invasion of epithelial cells, morphine addiction, and pathways in
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FIGURE 2 | Genetic features of mRNAs, annotated lncRNAs, and novel lncRNAs. (A) Density map of the length distribution of mRNAs, annotated lncRNAs, and novel

lncRNAs identified by RNA-seq analysis. (B) Distribution of the number of exons in mRNAs, annotated lncRNAs, and novel lncRNAs identified by RNA-seq. (C)

Boxplot analysis of the expression features of mRNAs, annotated lncRNAs, and novel lncRNAs.

FIGURE 3 | Functional prediction of SVV-induced annotated lncRNAs. (A) Gene Ontology (GO) analysis of the functional annotation of differentially expressed

annotated lncRNAs. (B) KEGG pathway analysis of the functional annotation of differentially expressed annotated lncRNAs.

cancer. Processing included apoptosis, p53 signaling pathway,
cytokine–cytokine receptor interaction, NF-kappa B signaling
pathway, cell cycle, cell adhesion molecules (CAMs), mTOR
signaling pathway, TNF signaling pathway, JAK-STAT signaling
pathway, endocytosis, and MAPK signaling pathway.

Validation of Differentially Expressed
MRNA and Long Noncoding RNA
Expression Levels
To confirm the results of RNA sequencing, several lncRNAs
and target genes that may be involved in the immune response
were verified by real-time RT–PCR. Several important signaling

pathways, including the NF-kappa B signaling pathway,

TNF-α signaling pathway, and JAK-STAT signaling pathway,

which play an important role in the innate antiviral immune

response, were assessed by qPCR. As shown in Figure 6, NF-
κB, DDX58 (DExD/H-box helicase 58), TRIM25 (tripartite

motif containing 25), PI3K (phosphoinositide 3-kinase),

STAT2, STAT4, and TNF-α (tumor necrosis factor alpha) were

upregulated in SVV-infected PK15 cells (Figures 6A–C), while
VCAM (vascular cell adhesion molecule) and IL7 (interleukin 7)
were downregulated (Figures 6B,C). Moreover, the associated
lncRNAs, XR_002337191.1, XR_002336113.1, XR_002345858.1,
XR_001300083.2, XR_002338995.1, XR_002342050.1,
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FIGURE 4 | Functional prediction of SVV-induced new lncRNAs. (A) Gene Ontology (GO) analysis of the functional annotation of differentially expressed new lncRNAs.

(B) KEGG pathway analysis of the functional annotation of differentially expressed new lncRNAs.

FIGURE 5 | Interaction analysis of differentially expressed annotated lncRNAs and target genes. (A) Interaction analysis of differentially expressed annotated lncRNAs

(orange) and target genes (pink). (B) Interaction analysis of differentially expressed new lncRNAs (orange) and target genes (pink).

XR_001303460.2, XR_001309120.2, and XR_002337463.1,
were differentially expressed in SVV-infected PK15 cells. All
results were consistent with the RNA sequencing results,
confirming the reliability of the sequencing data.

DISCUSSION

Viral and host interactions are an important aspect to explore the
pathogenesis of viruses. With a deep understanding of lncRNAs,
research has shown that the lncRNA expression is correlated with
neighboring protein-coding genes (18, 19). By regulating lncRNA

neighboring protein-coding genes, a large number of lncRNAs
are produced in the host and their rapid transcription lncRNAs,
and they can regulate the molecular biological function of
the host to affect virus replication. Furthermore, lncRNAs can
encode peptides that directly regulate host cell function (20),
implying that more unknown functionality of lncRNAs needs to
be further explored.

Although many studies indicate that lncRNAs regulate the
evasion of immune responses of viruses (21, 22), research on
lncRNAs in the field of antiviral therapy is still in its infancy.
Recent research shows that lncRNAs are regulators of antiviral
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FIGURE 6 | RT–qPCR confirmation of new lncRNAs and target genes in PK15 cells in response to SVV. (A) NF-kappa B signaling pathway. (B) TNF signaling

pathway. (C) JAK-STAT signaling pathway. *Stands for significant difference, **stands for more significant difference, ***stands for most significant difference.

responses through the modulation of cytokine/IFN pathways or
receptor function (14). Cytokines/IFNs are vital immune defense
mechanisms that protect the host. The cytoplasmic receptors,
melanoma differentiation–associated gene (MDA5), and retinoic
acid–inducible gene I (RIG-I), are major receptors for detecting
viral nucleic acids. Foreign RNAs in the cytosol are mainly
recognized by RIG-I and MDA5 receptor activation and result
in nuclear translocation of transcription factors such as NF-
κB and interferon regulatory factors (IRFs), which induce the
expression of proinflammatory cytokines and the production of
type I IFN (IFN-I). IFN-I can interact with IFN receptors and
activate the Janus kinase/signal transducers and activators of
transcription (JAK-STAT) pathway to secrete antiviral proteins,
playing antiviral functions. In our study, KEGG and GO analyses
showed that these lncRNAs in SVV-infected PK15 cells were
involved in the RIG-I-like receptor signaling pathway, and NF-
κB, DDX58, and TRIM25 were upregulated in the SVV-infected
PK15 cells.

TRIM25 is a type I and type II IFN-inducible E3 ligase
that belongs to tripartite motif proteins. It was first identified
as an “estrogen-responsive finger protein” (EFP) (23). TRIM25
is involved in many cellular processes, especially innate
immunity (24). TRIM25 plays a role by mediating K63-linked
polyubiquitination to regulate RIG-I signaling (25). Meanwhile,
type I IFN production is related to TRIM25-mediated K48-
linked ubiquitination and subsequent proteasomal degradation
of the larger MAVS isoform (26). TRIM25 is involved in RIG-
I/MDA5-mediated induction of IFN-I pathways, and studies

have shown that TRIM25-mediated RIG-I CARD ubiquitination
and RIG-I signal transduction are suppressed by influenza
A virus NS1 (27, 28). A severe acute respiratory syndrome
coronavirus nucleocapsid can interfere with TRIM25-mediated
RIG-I ubiquitination to inhibit type I IFN production (29). The
nucleocapsid protein of the porcine reproductive and respiratory
syndrome virus also interferes with TRIM25-mediated RIG-
I ubiquitination to antagonize its antiviral activity (30). In
addition, TRIM25 regulates the viral proteins for ubiquitination
and degradation to affect virus replication. TRIM25 can promote
the ubiquitination and degradation of VP3 of an infectious bursal
disease virus to inhibit virus replication (31). Recent research
has shown that Lnczc3h7a promotes a TRIM25-mediated K63-
linked ubiquitination of RIG-I and accelerates downstream
signal transduction, affecting effective antiviral defense (32).
Furthermore, the expression level of the annotated lncRNA,
XR_002337191.1, which was predicted to target TRIM25, was
upregulated in SVV-infected PK15 cells. Our results showed
that the expression level of lncRNA, XR_002336113.1, and its
predicted target gene, DDX58, were both upregulated in SVV-
infected PK15 cells. DDX58 is a cytosolic viral RNA receptor
and is involved in the RIG-I/MDA5 receptor signaling pathway
to induce type I IFN-mediated host protective innate immunity
against viral infection (33, 34).

Moreover, the expression level of the annotated lncRNA,
XR_002345858.1, which was predicted to target NF-κB, was
downregulated in SVV-infected PK15 cells; interestingly, NF-κB
was upregulated after SVV infection. These results suggest that
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SVV infection might activate the RIG-I and NF-κB signaling
pathways and that XR_002345858.1 might negatively regulate
NF-κB reproduction. Researchers have demonstrated that the
lncRNA, NKILA, regulates HIV-1 replication and latency by
repressing NF-κB signaling (35). Whether XR_002345858.1
regulates SVV infection needs to be further explored.

lncRNAs not only regulate signaling steps and activation
processes but also alter receptor function or regulate
transcription factor binding and translocation. Cytokines
such as IL6 and IL7 activate the JAK-STAT signaling pathway to
initiate an antiviral response (36, 37). Our study found that many
differentially expressed lncRNAs are involved in the JAK-STAT
signaling pathway. Meanwhile, the STAT2 and STAT4 expression
levels were significantly increased after SVV infection, together
with those of the annotated lncRNA XR_002338995.1 target
of STAT4. The lncRNA XR_002342050.1 and its predicted
target gene IL7 were both downregulated in SVV-infected
PK15 cells (Figure 6C). These results indicated that SVV
infection can regulate the JAK-STAT signaling pathway. SVV
regulates the expression of IL7 by the lncRNA XR_002342050.1-
mediated regulatory mechanism and should be researched in
the future. B cells are an important component of adaptive
immunity (38). They produce and secrete millions of different
antibody molecules to recognize a different foreign antigen.
The B-cell receptor (BCR) is an integral membrane protein
complex that recognizes antigens and activates downstream
B-cell receptor signaling pathways. PI3K (phosphatidylinositol
3-kinase) is an important downstream effector of the BCR
signaling pathway (39, 40). Meanwhile, PI3K also plays a role
in multiple signaling pathways, such as JAK-STAT and NF-κB.
Our study found that the expression of PI3K was increased
by SVV infection, although the lncRNA XR-001309120.2
target of PI3K was downregulated in SVV-infected PK15
cells. TNF-α is a well-known pro-inflammatory factor that
plays an important role in the immune response; it induces
VACM1 and activates NF-κB, and a variety of noncoding
RNAs participate in the regulation of TNF (41, 42). Our
results showed that SVV infection upregulated the TNF-α and
NF-κB expressions, and interestingly, VACM1 expression was
inhibited. The mechanism by which SVV regulates VACM1
needs further study.

Our data have provided new insights into the interaction
between the SVV and host response. We analyzed the expression
changes of lncRNAs and targeted mRNAs in SVV-infected PK15
cells. The data suggested that some lncRNAs may be involved
in the process of SVV infection and provided a new direction
for understanding host lncRNA–mRNA interactions during SVV
infection. The role of lncRNAs in the defense against SVV
invasion will be explored further in future work.
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