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Abstract: Senescent cells are relatively stable, lacking proliferation capacity yet retaining 

metabolic activity. In contrast, cancer cells are rather invasive and devastating, with 

uncontrolled proliferative capacity and resistance to cell death signals. Although 

tumorigenesis and cellular senescence are seemingly opposite pathological events, they are 

actually driven by a unified mechanism: DNA damage. Integrity of the DNA damage 

response (DDR) network can impose a tumorigenesis barrier by navigating abnormal cells 

to cellular senescence. Compromise of DDR, possibly due to the inactivation of DDR 

components, may prevent cellular senescence but at the expense of tumor formation. Here 

we provide an overview of the fundamental role of DDR in tumorigenesis and cellular 

senescence, under the light of the Yin-Yang concept of Chinese philosophy. Emphasis is 
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placed on discussing DDR outcome in the light of in vivo models. This information is 

critical as it can help make better decisions for clinical treatments of cancer patients. 
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1. Introduction 

1.1. DNA Damage  

The integrity and fidelity of DNA is pivotal for accurately passing genetic information from 

generation to generation. However, over an individual’s lifespan, DNA is constantly exposed to 

exogenous and endogenous insults. Exogenous sources of damage can come from harmful chemicals, 

ultraviolet light (UV) and ionizing radiation (IR), whereas endogenous hazards arise from reactive 

oxygen species (ROS) produced in normal metabolic processes, telomere shortening induced by cell 

division and “DNA replication stress” imposed by activation of oncogenes or inactivation of tumor 

suppressor genes. In response to DNA damage, organisms are capable of launching repair 

mechanisms, predominantly homologous recombination (HR) and non-homologous end joining 

(NHEJ), to counteract the potential damage. HR is mostly error-free, requiring an intact sister 

chromatid as a template for repair, by contrast, NHEJ is error-prone due to the lack of an intact 

template. The molecular mechanisms of DNA damage repair are not the primary focus of our review 

as this has been comprehensively reviewed by Thompson et al. [1]. 

1.2. DNA Damage Response (DDR) 

In addition to repair mechanisms, individuals have evolved a so called “DNA damage response”, 

which is responsible for invoking a myriad of cellular events in response to genotoxic stress. DNA 

damage response is mainly mediated by the activation of ATM (ataxia telangiectasia mutated)-CHK2 

(cell cycle the checkpoint kinase 2)-p53 and ATR (ataxia telangiectasia and rad3-related)-CHK1 (cell 

cycle checkpoint kinase 1)-CDKs (Cyclin-dependent kinases) pathways. Once activated, these 

signaling cascades can trigger cell cycle arrest (so called “checkpoint”), thereby gaining time for DNA 

damage repair and preventing the propagation of damaged cells [2–5]. ATM and ATR belong to the 

same family and share some functional redundancy. However, these proteins are distinct because they 

respond to different aberrant DNA structures. ATM, in principle, is elicited by double-strand breaks 

(DSB) and recruited via interaction with DSB sensors, MRN complex (MRE11-RAD50-NBS1) [6–12]. 

In contrast, ATR is induced by single-strand breaks (SSB) and engaged by its partner protein, ATRIP 

(ATR interacting protein) through interaction with the SSB sensor RPA (replicative protein A) [13–17]. 

Consequently, phosphorylated ATM and ATR, acting as transducer proteins, can active the effector 

kinases CHK1 and CHK2, with the help of the mediator proteins; MDC1 (mediator of DNA damage 

checkpoint), 53BP1 (p53-binding protein 1), BRCA1 (breast cancer 1) for ATM, and TopBP1 

(topoisomerase-binding protein 1) and Claspin for ATR [1,18,19] (Figure 1). Under normal 

circumstances, p53 is easily degraded and hence rarely detected. Upon stress, p53 is phosphorylated 

and stabilized following ATM and, to a less extent, ATR stimulation [20–23]. Additionally, p53 
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stabilization can be achieved through ARF (alternate reading frame) activation imposed by  

oncogene-induced replication stress [24]. The stimulation of ARF relieves the inhibitory effect of 

MDM2 (mouse double minute 2 homolog) on p53 [25–27]. Once p53 is stabilized and activated, it can 

orchestrate a range of cellular stress responses including cell cycle arrest, senescence and apoptosis. 

The various outcomes are determined by the intensity of stress as well as the tissue and cellular  

context [28,29].  

Figure 1. DNA damage and DNA damage response (DDR). Both external insults and 

internal hazards can cause DNA damage. DNA damage response is coordinated by various 

proteins whose functions can be categorized as DNA damage sensors, transducers, 

mediators, and effectors. Double strand DNA damage (DSB) can be detected by MRN 

complex (sensor) to recruit and activate transducer ATM (ataxia Telangiectasia mutated) to 

activate CHK2 (effector), with the help of DDR mediators MDC1 (mediator of DNA 

damage checkpoint), 53BP1 (p53-binding protein 1), and BRCA1 (breast cancer 1). In 

contrast, single strand DNA damage (SSB) could be detected by sensor protein, RPA 

(replicative protein A), to recruit and activate transducer ATR (ataxia telangiectasia- and 

Rad3-related), to activate CHK1 (effector), with the help of mediators TopBP1 

(topoisomerase-binding protein 1) and Claspin. p53 and CDKs are the major downstream 

substrates in response to DSB and SSB respectively. 

 

2. Pathways of Senescence-Associated Cell Cycle Arrest  

The cell cycle, comprised of S phase (DNA synthesis), M phase (mitosis) and two gap phases (G0 

and G1), is coordinately regulated by cell cycle proteins (cyclins), cyclin-dependent kinases (CDKs) 

and cyclin-dependent kinase inhibitors (CDKIs). CDKIs are negative modulators of cell cycle and 

hence also viewed as tumor suppressor genes. CDKIs can be grouped into two categories, the KIP⁄CIP 

family (p21Cip1, p27Kip1 and p57KipII) and the INK4 family (p16Ink4a, p15Ink4b, p18Ink4c and p19Ink4d). As 
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illustrated in Figure 2, through cellular events triggered by genomic stress, stimulated p53 

transactivates p21, which, in turn, inhibits CDK2/cyclin E and thereby retains Rb (Retinoblastoma) in 

an inactive unphosphorylated state. Unphosphorylated Rb suppresses the function of the G1/S  

phase-promoting, E2F, and as a result, cells are subjected to proliferation arrest and DNA damage 

repair [30–32]. Compelling evidence also points to a critical role of p16 as one of the central 

modulators of cell cycle arrest. The p16 can inhibit the CDK4-6/cyclin D complex thereby reducing 

Rb phosphorylation and subsequent downstream signal transduction pathways. Thus, cells will arrest 

in G1 phase and fail to complete the cell cycle. Since both pathways engage pRb, it is plausible to 

speculate proliferation arrest, in response to cellular stress, which is coordinately regulated by 

p53/p21/pRb/E2F and p16/pRb/E2F signal transduction pathways.  

Figure 2. p53/p21/pRb/E2F and p16/pRb/E2F signaling pathway. The INK4a/ARF locus 

encodes both ARF (alternate reading frame) and p16 protein. ARF could stimulate p53 

through inhibition and degradation of MDM2 (mouse double minute 2 homolog). 

Activated p53 transactivates p21, which, in turn, inhibits CDK2/cyclin E with the 

consequent inhibition of CDK2-dependent phosphorylation of Rb. Unphosphorylated Rb 

suppresses the function of the G1/S phase-promoting factor, E2F, and as a result, cells are 

subjected to proliferation arrest and DNA damage repair. Similarly, p16 can inhibit the 

CDK4-6/cyclin D complex thereby reducing Rb phosphorylation and subsequent 

downstream signal transduction pathways. Thus, cells will arrest in G1 phase and fail to 

complete the cell cycle. Bmi1, a polycomb group protein, is a transcriptional repressor of p16. 

Bim1 also has a potential inhibitory role on reactive oxygen species (ROS) production [33].  

 

Senescence is a permanent form of cell-cycle arrest, first discovered in normal human fibroblasts by 

Hayflick [34]. Unlike normal cells, senescent cells are relatively stable, lacking proliferation capacity 

but retaining metabolic activity. These cells possess large and flattened morphology, increased 

intracellular particles, as well as enhanced senescence-associated β-galactosidase (SA-β-gal) activity. 

Under normal circumstances, as cells cycles, telomere, a special structure at the ends of chromosomes, 

is gradually shortened. When the length of the telomere reaches a certain limit, cell proliferation is 

halted and cellular senescence is elicited [35]. Such senescence is known as replicative senescence. In 

addition to the replicative senescence, senescence can also result from DNA damage aroused from 
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oxidative stress or oncogene activation-induced replication stress, which is termed as premature 

senescence, or oncogene-induced senescence (OIS) [36–39].  

Consistent with the notion that senescence is a permanent form of cell cycle arrest, factors central to 

checkpoint events, such as p53, p21, p16 and Rb, are also key regulators of the senescence program. In 

human cells, replication senescence is commonly dependent on p53/p21/pRb/E2F pathway, whereas 

premature senescence can be mediated through p53/p21/pRb/E2F pathway, p16/pRb/E2F pathway or 

both [35,40]. Mechanistically, little is known as to how a cell chooses one way over the other, 

however, some evidence implies that it might be associated with types of stimulus and cell  

context [41–44]. Given the complexity of cellular responses to various stimuli, the chances are that 

these pathways could be cooperative and intertwined in stress-induced senescence and associated cell 

cycle arrest [45,46]. 

3. DDR Is the Common Link between Tumorigenesis and Senescence 

It has been known for decades that constitutive activation of oncogenes, such as Ras, is capable of 

driving the proliferation of malignant tumor cells [47]. Together with the observations that expression 

of the same oncogenes in normal cell culture leads to cell senescence rather than cell  

transformation [36,48,49], it raises an obvious question as to how oncogenes lead to both tumor and 

senescence in a similar scenario. One explanation to reconcile the paradox is that oncogene-induced 

DDR and resultant senescence may occur prior to tumorigenesis, imposing an intrinsic barrier to the 

development of the malignant tumor. In effect, a large body of emerging evidence from both bench 

and clinical works supports this conception [50–52]. In the early stages of tumor formation, many 

factors along the DDR pathway, such as ATM, CHK1, CHK 2, p53 and p16, as well as markers of 

DNA damage foci, such as H2AX and 53BP1, could be detected, mostly in their phosphorylated 

activated form [50,51,53–58]. Senescent cells and their specific markers, such as SA-β-Gal, were also 

present in precancerous lesions [53,59–64]. The correlation between markers of activated DDR with 

those of cellular senescence reinforces the crucial role of DDR signaling in oncogene-induced 

senescence [50,51,65]. Remarkably, markers for senescence-associated DDR were attenuated or absent 

in the later stage of cancer [53,59–62], leading to the speculation that senescence impinges selective 

pressure on hyper-proliferative tumors with mutations of checkpoint genes. Agreeably, cells escaped 

from OIS by depletion or inhibition of several important DNA damage signaling factors,  

such as 53BP1, ATM, CHK1, CHK2, and p53, predisposes to cell proliferation and oncogenic  

transformation [36,50,51,53,54,57,58]. Collectively, based on the results summarized above, the 

following concepts are emerging: (1) DNA damage is the common driving force for both 

tumorigenesis and cellular senescence (2) senescence-associated DDR acts as a natural barrier for 

tumorigenesis, and abrogation of the barrier may rescue defective cell growth and limit cell senescence 

in the incipient malignant form but at the expense of tumor progression [66–68]. The outcome as to 

whether cells predispose to tumor or senescence upon DNA damage is largely dependent on the 

competence of DDR signaling. To achieve the “Yin-Yang balance” of DDR, signaling is critical for 

preventing both tumors and senescence. The Yin and Yang of DDR in tumors and senescence could be 

further exemplified in the light of a number of in vivo mice models with genetic deletions of certain 

genes involved in the DDR pathways. 
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3.1. p53  

Given the critical role of p53 as the “guardian of the genome”, its activity must be tightly regulated. 

Either too much, or too little p53 activity will have adverse effects, as demonstrated comprehensively 

in various mouse models using gene manipulation to alter p53 levels [69,70]. The p53 null mice are 

largely tumor-prone, consistent with the fact that p53 mutations are the most prevalent mutations in 

human cancers [71–74]. By contrast, mice with high p53 activity, such as p53+/m mice, are less  

cancer-prone compared to the control mice, but display obvious age-related phenotypes such as tissue  

atrophy [69,75]. The overall high p53 activity in p53+/m mice was attributed to the stabilization and 

enhancement of the p53 by the m allele product [69]. These findings clearly demonstrated the 

existence of a delicate balance between the tumor suppression and age promoting functions of p53. To 

optimize the outcome of p53-dependent DNA damage response and tip the Yin-Yang balance between 

tumor suppression and age promoting it is crucial to involve p53 in clinical applications. Cancer 

protection without negatively affecting aging was observed in mice containing an extra copy of p53 

(super-p53 mice) [76,77]. In contrast to the p53+/m mice model, the desired phenotype from super-p53 

mice might be attributed to the maintenance of the normal regulation of p53 activity. Nevertheless, 

super-p53 mice raise great hopes of involving p53 as a potential anti-tumor treatment and further 

studies are needed to ascertain whether this scenario could be sustainable in humans. 

3.2. p21 and p27 

It is commonly noted that p53-induced senescence is executed, at least partly, via p21  

upregulation [45]. The p21 levels are elevated in prematurely senescing fibroblasts in both humans and 

mice displaying premature aging syndromes, and p21−/− mice exhibited deficiencies in senescence 

response in comparison to WT mice after UV damage [78–81]. In support of the notion that p53/p21 is 

the major determinant in response to telomere-dysfunction-aroused replicative senescence, p21 

deficiency could reverse the short lifespan of mice with telomerase deficiency (Terc−/−) [82,83]. By 

contrast, lacking p53 increases genomic instability and cancer formation in vivo, thereby reducing the 

lifespan of mice with dysfunctional telomeres [84,85]. In the early age of p21−/− mice, tumor is rarely 

detected and an increased tumor formation occurs at an average age of 16 months, with the most 

common tumor types being sarcomas and B cell lymphomas [86,87]. Mice with genetic deletion of 

DDB2 (damaged DNA binding protein 2), a significant player in recognizing DNA damage in NER 

(nucleotide excision repair), exhibited reduced senescence response and induced enhanced incidence 

of UV-induced skin cancers in comparison to wild-type mice [81,88–91]. A stronger inhibition of 

premature senescence and accelerated tumor formation in the DDB2−/− p21−/− mice compared to the 

DDB2−/− single knockouts, further support the tumor-suppressive role of p21 [92]. However, taking 

into consideration the extremely low incidence of p21 mutations in human cancer and the less drastic 

tumor-prone phenotype in p21-deficient mice in comparison to mice deficient in other tumor 

suppressors, such as p53 or p16, the tumor suppressive role of p21 is not viewed as crucial. Recently, 

the tumor suppressive role of p21 was complicated by findings indicating that p21 has an inhibitory 

role in apoptosis [93–95]. The involvement of p21 in these pathways could confer its oncogenic 

activities, particularly in lymphomas [96,97]. 
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Similar to p21, p27, another member from the KIP/CIP family, binds and inactivates CDK2-cyclin 

E and CDK2-cyclin A complex thereby inhibiting cell-cycle progression [98]. The p27 expression is 

frequently reduced in human epithelial cancers, and is correlated with tumor progression and poor 

survival [99–103]. Targeted disruption of p27 in the mouse model leads to multi-organ hyperplasia, 

loss of senescence markers and an increased tumor latency [104–108]. 

3.3. BRCA1 

The tumor suppressor BRCA1 is intimately associated with an increased risk of breast and ovarian 

cancer [109–114]. BRCA1 is a DNA damage repair protein crucial for maintaining genomic stability. 

The abrogation of the full-length isoform leads to genomic instability and embryonic death [114–118]. 

This lethal phenotype is partially due to the excessive activation of the ATM-CHK2-p53 axis which 

leads to accelerated aging, in response to untimely repaired chromosome breaks in the absence of 

BRCA1 [119,120]. In support of this notion, loss of p53 prolonged the survival of BRCA1 mutant 

embryos from E7.5 to E9.5 [121]. Moreover, haploid loss of p53 in BRCA1 null mice (BRCA1Δ11/Δ11 

p53+/−) could completely overcome embryonic lethality, but display cancer susceptibility mostly in 

female mice, and premature aging, mainly in male mice [119,122]. The survival of BRCA1Δ11/Δ11 

p53+/− mice makes it a surrogate model to study the link between BRCA1 and aging. Consistent with 

the contribution of DDR cascade in BRCA1 deficiency, enhanced ATM and CHK2 activity was 

observed in BRCA1Δ11/Δ11 embryos. Consistently, absence of ATM, CHK2 or 53BP1 can mean escape 

of embryonic lethality in BRCA1 knockout mice and suppression of accelerated aging albeit at the 

expense of entering a tumor-prone state [120,123] (Figure 3). These observations highlight the critical 

role of genetic integrity, whose compromise may disturb organismal homeostasis and result in 

senescence and cancer. 

Figure 3. Yin and Yang of the ATM-CHK2-p53 signaling pathway upon BRCA1  

mutation-associated premature aging and tumorigenesis. ATM-CHK2-p53 signaling 

pathway senses DNA damage/genomic instability and acts as a gatekeeper to eliminate 

mutations, but, as a side effect, it may also lead to premature aging. 
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3.4. p16 and Bmi1 

It is evident that p16, another important component within the DDR network, is largely involved in 

the senescence program, acting not only as an effector but also a biomarker of senescence [124–129]. 

The expression of p16 is markedly elevated with age in both rodents and human tissues [128,129]. 

Nevertheless, mice deficient in p16 displayed an increased incidence of tumorigenesis and loss of 

inactivation of p16 accounts for more than 30% of human tumors [130–133]. Hence, p16 is 

ubiquitously linked to both tumorigenesis and senescence. Bmi1, a polycomb group protein, is a 

transcriptional repressor of p16. Overexpression of Bmi1 could extend the replicative life span of 

primary cells but promote the formation of lymphomas [42,134–137]. Conversely, mouse embryonic 

fibroblasts deficient in Bmi1 possess high p16 activity and undergo premature senescence, which can 

be relieved partially in the absence of p16 [42]. However, the median survival of Bmi1−/− mice cannot 

be extended by p16 deficiency, but instead it could be improved by complete loss of CHK2 [33]. It is 

postulated that this may be due to the inhibition of ROS-induced DDR. 

Collectively, p53/p21 and p16/Rb pathways are not only important for DDR signaling, but also 

critical in maintaining cellular and genomic homeostasis. Several lines of evidence indicate p53/p21 

and p16/Rb pathways are collaborative. For instance, MEF derived from p21 and p16 double knockout 

mice displayed no evidence of cellular senescence to Ras-induced senescence and have a higher 

incidence of cancer compared to either of the single KO mice [138,139].  

4. Will the Yin-Yang of DDR Be Beneficial for Clinical Treatment of Cancer? 

The key mechanism of the most prevalent cancer therapy, radiation therapy and chemotherapy, is to 

damage DNA and consequently trigger DDR, tumor growth arrest, apoptosis and senescence [140–142]. 

The extensive DNA damage induced by these current therapies inevitably puts patients to severe side 

effect risk such as hair loss and bone marrow suppression [143]. Given the frequent loss of critical 

DDR proteins in cancer, new possibilities for tumor intervention have been postulated to re-establish 

the barrier or even induce tumor to senescence through exogenously introducing or molecular targeting 

of proteins involved in the DDR signaling. Recent studies found that chemotherapy or gene therapy, by 

modulating the activity of p16, p53, pRb or p21, could navigate tumor cells to senescent cells and have 

a substantial therapeutic effect on tumor inhibition [61,144–146]. More recently, a number of 

senescence-inducing small molecules entered clinical trials [147–151]. Certainly, the safety of  

pro-senescence therapy needs to be carefully evaluated before translating it into a clinically relevant 

context. Senescence is frequently accompanied with oxidative stress, altered tissue microenvironment 

and release of inflammatory cytokines [147,152,153]. All of these could potentially promote cancer 

and aging phenotypes [40,154]. Greater understanding of the molecular mechanisms involved in 

senescence and tumors will provide valuable new insights into how to bypass undesired side effects in 

senescence-inducing treatment. In the near future, it is warranted to consider the combination of  

pro-senescence strategies with already established treatments. 
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5. Conclusions 

Organisms are natural perfectionists and dedicated hard workers. In case of any threat, a myriad of 

mechanisms engage in an intricate interplay to keep damage to a minimum. Networks of molecules 

have evolved to work coordinately to maintain the homeostasis of the body. However, imbalanced 

DNA damage response, upon genotoxic stress, can endanger cellular homeostasis, leading to the 

transition from a healthy to a disease state, including senescence and cancer. As we learned from 

ancient Chinese philosophy, finding the balance between “Yin and Yang” will ensure both health  

and longevity. 
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