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Abstract

Motivation: The difficulty to find new drugs and bring them to the market has led to an increased interest to find new
applications for known compounds. Biological samples from many disease contexts have been extensively profiled by
transcriptomics, and, intuitively, this motivates to search for compounds with a reversing effect on the expression of
characteristic disease genes. However, disease effects may be cell line-specific and also depend on other factors, such as
genetics and environment. Transcription profile changes between healthy and diseased cells relate in complex ways to
profile changes gathered from cell lines upon stimulation with a drug. Despite these differences, we expect that there will
be some similarity in the gene regulatory networks at play in both situations. The challenge is to match transcriptomes for
both diseases and drugs alike, even though the exact molecular pathology/pharmacogenomics may not be known. Results:
We substitute the challenge to match a drug effect to a disease effect with the challenge to match a drug effect to the effect
of the same drug at another concentration or in another cell line. This is welldefined, reproducible in vitro and in silico and
extendable with external data. Based on the Connectivity Map (CMap) dataset, we combined 26 different similarity scores
with six different heuristics to reduce the number of genes in the model. Such gene filters may also utilize external
knowledge e.g. from biological networks. We found that no similarity score always outperforms all others for all drugs, but
the Pearson correlation finds the same drug with the highest reliability. Results are improved by filtering for highly
expressed genes and to a lesser degree for genes with large fold changes. Also a network-based reduction of contributing
transcripts was beneficial, here implemented by the FocusHeuristics. We found no drop in prediction accuracy when
reducing the whole transcriptome to the set of 1000 landmark genes of the CMap’s successor project Library of Integrated
Network-based Cellular Signatures. All source code to re-analyze and extend the CMap data, the source code of heuristics,
filters and their evaluation are available to propel the development of new methods for drug repurposing. Availability:
https://bitbucket.org/ibima/moldrugeffectsdb Contact: steffen.moeller@uni-rostock.de Supplementary information:
Supplementary data are available at Briefings in Bioinformatics online.
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Introduction
The introduction of high-throughput transcriptome profiling
technology (e.g. DNA microarrays and RNA-sequencing) has
enabled scientists to gather insights on how sets of genes are
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dysregulated in human diseases. However, these observations
alone cannot be used to deduce how to revert an aberrant disease
transcriptome signature towards a healthy state, i.e. these do
not suggest a treatment by themselves. Two major issues arise:
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(i) how to assess a dataset’s suitability to measure the effect
of molecular treatments on the transcriptome; (ii) how should
molecular effects of treatments be matched with the molecular
effects of diseases in a suitable way?

Over the past two decades, advances in automation and
miniaturization have led to the development of Connectivity
Map [29] (CMap), an invaluable data collection of microarray
expression profiles of five cancer cell lines in response to
1300 small bioactive molecules, including Food and Drug
Administration–approved drugs, see [25]. CMap was the basis
for the Library of Integrated Network-based Cellular Signatures
(LINCS) L1000 project [12, 43], which greatly expanded the
number of tested perturbagens (including small molecules,
shRNA and biologics) to 25200 in nine cancer or immortalized
cell lines. Public gene expression databases, notably ArrayEx-
press [3] and Gene Expression Omnibus [5], offer additional
insights on drug effects in more than 6500 experiments.
Specific toxicogenomic resources, such as DrugMatrix [18],
the Comparative Toxicogenomics Database [10] and Open TG-
GATES [22], have been established with the aim to examine the
effects of drug-induced toxicity. Some years ago, this journal
provided an excellent overview on the general concepts for
gene-expression-based drug repurposing [32].

With better insights on the pharmacogenomics of drugs, new
ideas have emerged for repurposing compounds that are already
on the market, i.e. for those that have already undergone the
expensive process of clinical testing. An algorithm to filter drugs
for the changes to gene expression they induce was already
proposed with the first CMap paper [29] in 2006. The field has
matured and secondary databases have been developed that
curate clinical trial data for successful and unsuccessful repur-
posing efforts [7], from which methods for drug effect predictors
can learn, or that curate data from a variety of other clinical trial
databases [20]. Phenotypes that are clinically diverse to describe,
such as aging [11], are now subjected to repurposing. For the
many patients suffering from rare diseases, to repurpose exist-
ing drugs may be considered the shortest path to improve their
condition [42]. The comparison of drug effects with molecular
characterizations of disease enables individualized medicine in
a natural way.

The more we know how to best match the changed expres-
sion of genes under a disease with changes induced by a drug,
the more useful the CMap and its successor LINCS will become.
The description of the effects of a compound on the transcrip-
tome could then nicely extend the description of otherwise
yet uncharacterized compounds in public databases such as
ChEMBL [19] and PubChem [26]. In addition to the steadily falling
costs of generating such data de novo, a considerable wealth of
data is stored in expression databases such as ArrayExpress and
Gene Expression Omnibus, but these are not yet readily avail-
able for transcriptome-based similarity searches. Efforts such as
MEM [1] integrate these data—but for a different kind of cross-
experiment comparison on single gene expression levels. Once
drug effect data are better understood, successors to the rou-
tines presented in this paper are likely to be integrated towards
sophisticated web services to guide repurposing research.

With only the effect on the transcriptome known, but not the
compounds’ protein targets, virtual screening techniques based
on chemical / structural data are complementary tools for repur-
posing. For example, the chemical properties of compounds can
be used to derive pharmacophores, which are suggestive for
additional compounds to investigate. These technologies and
data are increasingly available to be integrated into accompa-
nying workflows [4, 35, 39].

While these datasets represent a wealth of information, the
application of finding drugs with potentially beneficial effects
to a particular disease presents a challenge. Ideally, we would
like to identify drugs that suppress the genes contributing to the
disease and increase the expression of genes that alleviate the
disease. However, transcriptomic snapshots cannot distinguish
cause from effect—for example, which genes are causative for a
disease and which are in physiological feedback loops, activated
in response to disease processes? A good overall matching/re-
versal should necessarily indicate the identification of a good
drug candidate. As an alternative, one could integrate data from
complementary sources like established molecular networks
and statistical genetics to direct the selection of disease-relevant
genes.

Of the many genes changed in their expression by a disease,
not all are of the same importance for a phenotypic effect.
Also, many strongly co-regulated genes do not offer additional
insights but give a bias over a single representant of such a
cluster. We therefore propose to use a reduced set of genes for
the comparison, which could increase the robustness of any
method used to find similarities thereafter.

In the present study, the CMap raw data were reanalyzed
and presented in a way that preserves the redundancy in drug
effects across the different microarray platforms, cell lines and
drug concentrations. Our hypothesis is that any computational
approach that aspires to match drugs to diseases by comparing
transcriptional profiles should also manage to match the drug
to the expression profile of the same drug, just with that drug
measured under different conditions, but with the same genes
that are primarily affected.

We implemented routines to filter for genes, i.e. for their high
expression in a cell line, for their high fold changes (FCs) with
respect to baseline expression, high Z score or low P value. Addi-
tionally, we performed a network-based selection of genes with
our FocusHeuristic [16]. This array of options for gene filtering
was systematically evaluated for their effects on the similarity
scores to identify the same drug in another concentration or
tissue or platform only based on changes in gene expression
levels.

This work supports the community to quickly assess the
performance of heuristics to match expression profiles that
share the same molecular trigger. We believe that this is an
easier problem than matching a drug effect to disease expression
data due to the confounding effects of tissue heterogeneity and
polygenicity. As we show, it is already difficult enough to clearly
separate similarity scoring functions and gene filters by their
performance.

Approach
For this project, the raw Affymetrix data of the CMap were
formatted into the data structure presented in Figure 1. This
CMap data structure offers 3675 instances of drugs tested on a
particular combination of cell line, concentration and platform.

For this work, we assess several scoring functions of drug
similarity by their success rate to find the same drug in another
instance, i.e. despite the drug’s concentration, cell line or
platform being different. This is possible for a subset of 1549
instances of the total of 3675 that refer to a drug that was tested
in multiple conditions. The difficulty to identify the same drug
we expect to depend on the number of genes changed by the
drug and their specificity for that drug.

All instances are treated in the same way for this analysis,
disregarding the number of instances covering the same drug.
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Figure 1. Data prepared for each technological platform of CMap. The CMap

data are presented as a list of three matrices, each representing a technological

platform (U133AAofAv2, HG-U133A, HT_HG-U133A). The matrices are three-

dimensional. All show the same subset of Entrez [46] genes as rows. Every drug

at each concentration for each cell line represents a column. A third dimen-

sion offers log fold changes, absolute expression levels (log abundance) and

information on reliability gathered from an analysis of the technical replicates:

their variance, Z score, the P value from a t test against the untreated cell

culture, the t score of that test, degrees of freedom and the number of cases

(replicates of treatment with the drug) and controls available for that drug at

that concentration.

We review only basic scoring functions that work context free,
i.e. that do not benefit by learning from molecular effects of other
instances in CMap.

All scoring functions are applied on every instance in the
above described subset of 1549 CMap instances to compare these
with all 3675 instances available. By sorting the similarity scores
for each instance, we assign a first (‘best’) position at which
the same drug (at different concentration/cell line/platform) is
reoccurring and a last (worst) position. Figures 2 to 5 show,
for different scoring functions, on the Y axis the number of
instances for which the same drug is among the maximum
accepted ranks set by the threshold on the X axis.

Methods
All data processing was performed with the R statistics suite
[37]. CMap raw data from Affymetrix.CEL files and their anno-
tations (from https://portals.broadinstitute.org/cmap) were con-
verted to a three-dimensional data frame (Figure 1). The microar-
ray expression data were normalized using RMA and adjusted
for batch effects using the ComBat function of the sva R package
[31]. Supported by the annotation file provided by CMap, the drug
names were mapped to PubChem [26] identifiers. Gene names
were mapped using BioConductor’s org.Hs.eg.db [8] database and
completed with BioMart [13, 14, 27] to minimize the number of
unmapped transcripts. Plots were implemented with help of the
ggplot2 R package [47].

Similarity scoring functions were implemented for the L1

‘Manhattan’ norm (|x − y|), L2 ‘Euclidian’ norm (
√

(x − y)2) and
the L∞ ‘maximum’ norm (max(x, y)). Kolmogorov–Smirnov test
and Pearson and Spearman correlation were carried out using
the R statistics suite [37]. Jaccard scores were implemented to
work on either absolute or relative changes in gene expression,
with an optional additional constraint on genes to change in the
‘same direction’ (both up- or both down-regulated). FCs in gene
expression were defined to be the log2 ratio between treated
compared to untreated (control) conditions. As a control we
analogously implemented a Jaccard score with the constraint on
genes to change to opposite directions. From the rsgcc R package
the Gini method [33] was tested (gcc). Biweight midcorrelation
was implemented by the WGCNA [30] and the biwt [21] packages.

Mutual information measures were contributed by the R pack-
ages parmigene [40] (knnmi) and minerva [2]. See Supplement
Table 1 for an overview.

Figures 2 to 5 use the abbreviations ‘FC’ in parentheses to
indicate that the scoring function was applied on the gene
expression log ratio directly. ‘FC*(Abs-FC)’ has the log ratio multi-
plied with the expression level in the control samples. ‘FC/(Abs-
FC)’ puts the change in relation to the expression level.

For gene filtering we applied the FocusHeuristic [16] as a
reference for network-based approaches (employing the human
STRING 10 network [44] with combined score above 0.9 as
extracted using the STRINGdb R package [17]) and implemented
filters for the highest expressed or most changing genes. The
1000 landmark genes of the CMap project’s successor LINCS
were retrieved from the annotation of the NCBI GEO dataset
GSE92742 ’gene info’.

Results and Discussion
This presentation of the CMap data offers multiple (see Figure 1)
numerical values per gene to describe the change in expression
upon exposure of a drug and a statistical description of the
confidence in the change to be real. The use of these values
is 2-fold. First, these values can be used to filter for genes
that are most informative for a comparison, i.e. to direct the
search to the genes that are most characteristic for each drug.
Second, these values are also the input for similarity scoring
functions. While the (logarithmic) FC by itself is a prominent
input for similarity scoring, its combination with the absolute
expression level of a gene or comparing with the predictivity
of a random variation of expression levels allows for additional
insights. This study shows in supplementary Tables 2 and 3 that
for integrating absolute expression data it makes no practical
difference whether the absolute expression levels of untreated
cells (methods have suffix ‘corrected’ in their name) or treated
cells are used.

The performance of a scoring function is evaluated by the
number of instances that have a matching drug (y axis) among
the most similar expression profiles when testing the first x
ranks, as set by the threshold of maximum accepted ranks.
The Pearson correlation performs best (Figure 2) followed by the
L2 norm. Differences become more apparent when inspecting
the ‘worst-case’ performance, i.e. the lowest ranking position at
which the same drug is ranked. Moreover, the performance of
z scores was not found to be superior over using FCs directly,
suggesting that a low variance of gene expression in response
to a drug is not indicative of a gene’s contribution. Also, when
applying similarity scores on FCs, filtering for genes with abso-
lute expression performs better than for genes on lowest P
values, highest z scores or the highest FCs themselves. The
Kolmogorov–Smirnov test compares the distribution of changes
alone, much like a comparison by Q-Q plots, and does not shine
in this evaluation (‘rel.ks’ in supplementary tables).

We find that L1 and L2 benefit from being run on the differ-
ences of non-logarithmic expression levels (scoring functions with
‘raw’ in their name, compare Supplementary Tables 1 and 2). This
may be explained by the larger numeric difference of the most-
changing transcripts versus the rest—as if this was an intrinsic
filter for significance. (The logarithmic representation is needed
to achieve a symmetry for up- and down-regulation.)

Predictions improve with more genes contributing to the
comparison of drug effects, but fewer than 100 genes already
yield near-optimal results when using only the most highly
expressed genes (Figure 3). The methods SameGenes and

https://portals.broadinstitute.org/cmap
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Figure 2. Similarity scores based on the FC. The figure indicates the performance

of several similarity scores, each represented in a different color. For each

drug-platform-cell line-concentration instance in CMap, based only on pairwise

comparisons of the change in gene expression, a similarity score yields a ranking

for all other instances. The X axis represents a threshold, i.e. a maximal rank up

to which an instance shall be accepted to contribute to the evaluation. In the

upper plot, the Y axis indicates the number of all CMap instances that have

at least one occurrence where the respective same drug was observed below

(i.e., ranking better than) that maximal rank x. In the lower plot, the Y axis

counts the number of instances for which all occurrences of the same drug are

below that maximal rank. The yellow streak results from 100 invocations of a

scoring function returning random numbers. While all scores perform better

than random, the Pearson correlation is the most successful. The legend is

sorted according to the performance of each scoring function, from best to worst

performance, at a maximal rank of 250 (indicated by the vertical gray bar).

SameDir, counting the number of genes jointly affected/chang-
ing to the same direction, were found to be non-competitive. The
Jaccard implementation normalizes above-mentioned counts by
the overall number of genes changed in the dataset. It was found
to be the most robust scoring function, when sorting for the last

Figure 3. Abundance and change as gene filters. Analogously to Figure 2, the

Pearson correlation as a similarity function is run on different subsets of genes.

Genes are filtered for their maximal abundance, selecting the 5, 10, 100 and 10 000

most expressed (‘Abs n’) or most changing genes (‘FC n’) in comparison with the

performance of the complete set (‘all’). With either filter, at around 1000 genes is

a maximum of the performance.

rank of the same drug to be found. (With filters on genes applied
first, this leads to a division by zero error when thresholds to
recognize a differential expression are too strict and no genes
are found to be differently expressed.)

The methods used for generating gene expression correlation
networks are not performing better than the Pearson correlation
(Figure 4). The scorings of bicor, gcc and Pearson are similar.
The performance of mutual information scoring functions of the
minerva package is inferior, despite the considerable additional
computational effort these require. The methods did not benefit
from being applied on the z score instead of the log ratio and also
the constraint on ‘the genes that are also used by LINCS’ does not
improve their performance (see tables in supplement).
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Figure 4. Similarity functions from software packages for calculating gene

expression correlation networks. Pearson is provided for reference, see also the

preceding figure. MINE-GMIC, MINE-MIC and MINE-MEV represent the many

mutual information routines by the minerva package. biwt and the mine routines

are computationally too expensive to be evaluated on the full set of genes.

Similarity scoring functions tested in this analysis can be
applied to describe the similarity of any pair of expression
profiles, for any subset of genes. Their selection we consider
to be reasonably complete with respect to routines that are
easily implemented or directly offered by R and are context
free. The Pearson correlation returned the same ranks as our
implementation of the cosine measure [15].

While every scoring function we tested performed better
than random, the different approaches did not correlate
with each other but were most successful on different drugs
(Supplementary Figure 6). The scoring functions were applied
to the CMap data that were directly derived from the ‘.CEL’
files after correcting for batch effects (Figure 1). Most of these
functions however are completely agnostic about the nature of

the data presented and as such would also be applicable on
transformations of that data. For instance, after mapping the
CMap expression data to a gene–protein interaction network,
the transformed data could represent scores for connections
between genes instead of scores for the genes themselves. Or,
a principal component analysis could be performed and the
similarity scores could then be calculated based on the loadings
of the instances.

Not all genes need to be considered as an input for the
similarity score. Figure 5 indicates that filtering for the most
expressed or most changed genes improves the performance.
The integration of network data by the FocusHeuristics brings
good improvements, e.g. to the L2 scoring function. But while
improving the results of the Pearson correlation, there is no
advantage over using simpler gene filters. When only consider-
ing those genes that act as representations of correlating gene
sets, as performed by the LINCS project, this is also beneficial. It
should be noted that the gene selection by LINCS is static, i.e.
it is not adjusted to the data observed in the individual drug
experiment.

Historically, the roots for matching compounds with a desired
effect from a large database with known targets in clinical
applications lie in structural biochemistry. With the increased
availability of transcriptomic profiles, the repurposing of drugs
is increasingly based on comparing effects on gene regulation. As
a consequence, this alleviates the need to single out explicit drug
targets—the comparison is performed on the cell line’s systemic
effect. The CMap [29] is still the most popular systematic data
collection of drug effects on the transcriptome. Its successor
project LINCS [12, 43] has dramatically reduced the number of
transcripts from a whole transcriptome approach down to 1000
genes. Here we have shown (Figure 5) that the reduction to this
LINCS set of genes is not expected to reduce the performance
of drug-effect predictions. All methods tested perform better on
the 1000 most expressed genes than on the most expressed 100
genes. But their performance is slightly reduced when all genes
are input to the similarity scoring function.

We are not aware of scores that work on gene regulatory
features. These could be derived from static data, e.g. as pre-
sented with g:Profiler [38] or enrichr [28], or from deep learning
efforts like ExPecto [51]. The integration of the right similarity
functions, filters and features for matching expression profiles
and diseases may be a challenge for deep learning itself.

Our effort on the CMap whole transcriptome data could
be repeated for the 1000-gene datasets from the much more
diverse LINCS project. The scoring functions perform better on
its reduced gene set, but the challenge to identify the same
drug in a set of drug effects is still difficult enough. Even with
a completely independent implementation on other datasets,
the Pearson scoring was found robust in its performance when
gene filters were applied or the absolute expression levels were
integrated. The Pearson correlation may hence serve as a refer-
ence to determine the gain by new approaches to map drugs to
changes in expression profiles.

The wet-lab work required for proving or disproving a pre-
dicted drug effect is considerable. When only few wet-lab exper-
iments can be afforded to prove a finding, our analyses indicate
that it is unlikely to match a drug’s effect across cell lines,
concentrations and technical platforms: from the upper diagram
of Figures 2 to 5 we can derive that only 20% of instances can find
a match within the first 100 ranks. This success rate matches
findings by Pabon and coworkers on the LINCS dataset [36].

Therefore, these data suggest that additional information
or better predictors are required to be able to make use of
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Figure 5. External data contributing to selection of 1000 genes. Close to 1000

genes were selected by the CMap successor, LINCS, to represent drug responses.

The FocusHeuristics (“Focus”) reduces gene interaction networks on the basis of

gene expression changes, here run with parameters to also yield a reduction to

1000 genes. These filters are shown in the context of the Pearson and L2 similarity

scores. The ‘same dir’ scoring function counts the number of genes changing to

the same direction with a log ratio > 0.5 in both instances.

CMap-based repurposing in the wet-lab. The scoring functions
presented in this study already contribute to the workflows
of repurposing tools such as Cogena [24], Dr Insight [9] and
NFFinder [41], embedded in various kinds of pre- and/or post-
processing, such as clustering or gene set enrichment analyses.
One may of course ask what part of the workflow is contributing
how much to the quality of the findings, and why? For instance,
a motivation for the development of Dr Insight was to dispense
with any need to predetermine the length of a gene query
signature (that is, the size of the subset of characteristic genes).
In our study we show in Figure 5 that indeed the quality of
predictions increases with more input genes. Most likely, also

other parameters of a complex method such as Dr Insight could
be evaluated and potentially be improved, based on a systematic
evaluation in a setup as demonstrated in the current study.

Our approach to assess scoring functions can also be used for
evaluating machine learning (ML)-based methods for drug repo-
sitioning. We require no external (literature or database) meta-
data about the similarity of diseases or the shared structural
properties of the compounds, as seen in some recently published
evaluations such as ‘DeepSide’ [45] or ‘DeepDR’ [50]. This way,
the challenge is to find the same drug only by its transcriptional
fingerprint—across concentrations, technical platforms and tis-
sues. Applied to evaluating the quality of models based on ML,
the rank(s) at which the transcriptomic effects of the same drugs
are evaluated can be used as a semi-quantitative indicator of
prediction quality.

ML approaches likely can be adapted to outperform the
context-free scoring functions addressed in this review [49].
We used an objective evaluation based on the multiplicity of
same-drug instances of CMap to investigate the effect of settings
such as the contribution of network data and the reduction
of the number of genes, on performance of predicting drug
similarity. Analogously, such an objective assessment will also be
possible and useful for analyzing the performance of emerging
ML methods, and how these are affected by such settings.

Conclusion
In summary, our work provided some interesting accomplish-
ments and insights such as the following. The re-analysis of the
CMap.CEL files provides a resource to assess the performance of
methods to match drug effects with molecular characteristics of
diseases. The performance of all tested basic similarity scores
is better than random. The best performing score is the Pearson
correlation applied on FCs combined with a filter for the 1000
most changing genes. The performance of all tested similarity
scores is improved by multiplying the FC with the expression
level in the control experiments. The reduced set of genes of
CMap successor LINCS has a positive effect on all tested scoring
functions’ performance.

The mapping of drugs to diseases by their effects on gene
expression levels is related to the mapping of diseases to each
other, e.g. for co-morbidities or shared clinical symptoms, sug-
gesting that one may refer to external data to filter for the
presumably most-relevant genes [6, 34]. One may for instance
refer to genetic insights such as from genome-wide association
studies. An inspiring contribution is the tissue-effect database
TSEA [23], facilitating insights from tissue-specific drug effect
studies pertaining to diseases. It will be very interesting to watch
the development of this integrative field.

In the future, the mere mapping of drugs with diseases will
be superseded by a need to interpret molecular drug effects.
From the perspective of individualized medicine, there will be
a high demand to customize drug combinations and/or opti-
mized drug treatments, based on the patient’s drug response
profile and genetic constitution. The information to enable the
meta-analysis of diverse datasets (e.g. transcriptomic, chemoin-
formatic, genomic) will necessitate FAIR data practices, which
facilitate the sharing and usage of machine-readable datasets
[48]. This work exemplifies how an increased FAIRness of CMap
may contribute to better data practices. Coupled with models
for cellular differentiation and/or the ongoing developments
of personalized in vitro disease models, the concepts outlined
in the present study work towards an integrated therapeutic
approach.
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Key Points
• Reanalysis of Connectivity Map (CMap) whole-genome

transcriptome data to elucidate effects of the same
drug in different cell lines, concentrations or when
measured on different platforms.

• Use of the CMap dataset to review a series of simi-
larity scores and gene filters on their ability to find
the same drug only by comparing the effects on the
transcriptomes.

• The reduction from whole-genome to a subset of 1000
genes in the CMap successor Library of Integrated
Network-based Cellular Signatures had no negative
effect on the performance of scoring functions.

• Setup provides an infrastructure to objectively evalu-
ate future means for drug repurposing.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.
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