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Face masks do not completely prevent transmission of respiratory infec-
tions, but masked individuals are likely to inhale fewer infectious
particles. If smaller infectious doses tend to yield milder infections, yet ulti-
mately induce similar levels of immunity, then masking could reduce the
prevalence of severe disease even if the total number of infections is unaf-
fected. It has been suggested that this effect of masking is analogous to
the pre-vaccination practice of variolation for smallpox, whereby susceptible
individuals were intentionally infected with small doses of live virus (and
often acquired immunity without severe disease). We present a simple epi-
demiological model in which mask-induced variolation causes milder
infections, potentially with lower transmission rate and/or different dur-
ation. We derive relationships between the effectiveness of mask-induced
variolation and important epidemiological metrics (the basic reproduction
number and initial epidemic growth rate, and the peak prevalence, attack
rate and equilibrium prevalence of severe infections). We illustrate our
results using parameter estimates for the original SARS-CoV-2 wild-type
virus, as well as the Alpha, Delta and Omicron variants. Our results suggest
that if variolation is a genuine side-effect of masking, then the importance of
face masks as a tool for reducing healthcare burdens fromCOVID-19may be
under-appreciated.
1. Introduction
Early in the COVID-19 pandemic, face masking was discouraged outside
healthcare settings [1,2], and inadequate supplies of masks created significant
challenges for healthcare workers [3–5]. By 3 April 2020 appreciation of the
potential value of masking had increased sufficiently for the US Centers for
Disease Control and Prevention (CDC) to recommend the wearing of face cover-
ings in public [6]. Similar recommendations were made in Canada on 6 April
2020 [7] and in the UK on 11 May 2020 [8]. Over the course of the pandemic,
evidence that masking is an effective tool to reduce community transmission
of SARS-CoV-2 has continued to accumulate [9–16].

An additional potential benefit of masking—even in situations where it fails
to prevent transmission—was proposed in the summer of 2020 by Gandhi &
Rutherford [17] and Gandhi et al. [18]. They noted that if transmission occurs
in the presence of face masks, then the infecting viral inoculum is likely to be
smaller than is typical when masks are not worn. If smaller inocula tend to
lead to less severe infections, then—even if masks fail to block transmission
completely—masking could reduce morbidity and mortality from COVID-19
and boost the level of herd immunity in the population.

The notion that promoting mild infections could be an effective disease con-
trol strategy has a long history. In the eighteenth century, it was common to
infect children with smallpox intentionally—a process known as variolation—
by administering a small inoculum of smallpox virus taken from an infected
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person [19–24]. While SARS-CoV-2 infections are never
intentional, Gandhi & Rutherford [17] refer to SARS-CoV-2
transmission via small inocula that penetrate masks as vario-
lation. In this paper, we explore the potential benefits of
SARS-CoV-2 variolation using a mathematical model.

We begin in §2 by reviewing evidence that supports the
hypothesis that face masking may promote SARS-CoV-2
variolation. In subsequent sections, we present and analyse
a simple model that allows us to investigate potential effects
of variolation induced by face masking.
rnal/rsif
J.R.Soc.Interface

19:20210781
2. Variolation as a side effect of face masking
Face masks can reduce the probability of transmission either
through outward or inward filtration. Outward filtration
occurs when droplets containing viral inoculum are captured
when leaving the mouth or nose of an infected person [25].
Inward filtration occurs when viral particles are prevented
from entering someone’s nose or mouth.

Gandhi & Rutherford [17] suggested that people who are
infected with SARS-CoV-2 when wearing a face mask might
experience less severe illness, because the size of the viral inocu-
lum they receive is reduced by inward filtration. Assuming that
individuals infected in this way still develop lasting immunity,
they can be considered variolated. Variolation in this sense
might not reduce the total proportionof thepopulation infected,
butwould nevertheless benefit the population by increasing the
proportion of infections that are mild or asymptomatic [17].

The variolation hypothesis, as originally formulated by
Gandhi & Rutherford [17], depends on three key assumptions:

Reduced inocula: individuals who are infected while wear-
ing a mask receive a smaller viral inoculum than if they
had not been masked.

Reduced severity: smaller viral inocula tend to yield
infections with milder symptoms, i.e. there is a positive
dose–response relationship.

Acquired immunity: mild infections still provide long-lasting
natural immunity to the disease.

Reduced inocula is plausible because masks are known to
filter droplets that may contain virus particles [26].

Reduced severity from smaller inocula is indicated by
several lines of evidence. The dose–response relationship
is supported by an investigation in Madrid that found that
‘distinct sizes of viral inoculum at the time of exposure’ could
explain different illness courses in three clusters of SARS-CoV-
2 infection (infecteds in different clusters developed
COVID-19 with different severity, and the only clear difference
among the clusters was the degree of SARS-CoV-2 exposure)
[27]. In addition, disproportionately severe disease outcomes
were documented following a choir rehearsal in the state of
Washington in March 2020 [28]; the observed severity of illness
among attendees is consistent with a positive dose–response
relationship because infected individuals likely spew many
more virus particles when singing, compared to simply talking
at a social gathering. Finally, an experimental study exposed
hamsters to SARS-CoV-2 in a laboratory and found that
COVID-19 symptomsweremuch less severe in infected animals
that were shielded by a surgical mask partition [29].

Immunity after mild infection is suggested by a 2020
study in the New York City area, where 13.7% of a sample
of healthcare personnel (HCP) were found to have antibodies
to SARS-CoV-2 [30]; HCP were not asked if they were
symptomatic, but 5% (11%) of those who tested positive for
SARS-CoV-2 antibodies reported low (medium) likelihood
of SARS-CoV-2 exposure. Another study found that 15% of
those with SARS-CoV-2 antibodies reported never having
COVID-19 symptoms [31]. Other investigations have revealed
that antibodies to SARS-CoV-2 were present in individuals
five months after asymptomatic or mild infections [32,33].
Thus, asymptomatic and mild SARS-CoV-2 infections likely
do provide at least some protection against reinfection.
3. Model
We investigate the potential effects of facemask-induced
variolation by expanding the standard Susceptible-Infectious-
Removed (SIR) model [34,35].

We assume that all members of the population are identi-
cal—and that the population is homogeneously mixed—so
we do not distinguish between situations in which poor face-
masks are worn universally by everyone versus situations in
which better masks are worn by a subset of the population;
thus, masks are implicitly assumed to be distributed to
individuals at random.

We capture the variolating effect of facemasks by imagin-
ing that adherence to facemasking causes a proportion m of
infections to be mild, and we therefore refer to m as the
probability of mild infection. Mild infections might be shorter
and/or less transmissible (however, the effective infectious
period for severe infections could, in practice, be shorter
than for mild infections, because severe cases are likely to
be isolated quickly). Thus, three distinct effects—causing
mild infections, reducing transmission rate and potentially
shortening infectious periods—contribute to the overall
effectiveness of mask-induced variolation. We allow for the possi-
bility that immunity decays [36], but assume the duration of
immunity is the same following mild or severe infections.

Figure 1 presents a flow chart for the model, which we
represent formally as a system of ordinary differential
equations (ODEs),

dS
dt

¼ nN � LS� mSþ dðN � S� Im � IsÞ, ð3:1aÞ
dIm
dt

¼ mLS� gmIm � mIm, ð3:1bÞ
dIs
dt

¼ ð1�mÞLS� gsIs � mIs, ð3:1cÞ
dRm

dt
¼ gmIm � mRm � dRm ð3:1dÞ

and
dRs

dt
¼ gsIs � mRs � dRs, ð3:1eÞ

where the force of infection is

L ¼ bm
Im
N

þ bs
Is
N
, ð3:1fÞ

and the total population size is

N ¼ Sþ Im þ Is þ Rm þ Rs: ð3:1gÞ

All the state variables are listed in table 1. Rm and Rs do
not appear in the first three lines of equation (3.1) and can
be ignored for the purposes of dynamical analysis.
We retain equations (3.1d,e) for convenience, to keep track



S

Im

Is

Rm

Rs

mLS

(1–m)LS

�
m Im

� s 
I s

va
rio

lat
ion

infection

recovery

recovery

decay
of immunity

de
at

h
µS

µIm

µIs

µRm

µRs

�Rm

�Rs

�N

birth

Figure 1. Flow chart for the model defined by equation (3.1). The state variables are defined in table 1, and the parameters are defined in table 3.

Table 1. State variables for the model specified in figure 1 and equation
(3.1). All variables represent numbers of individuals.

state variable meaning

S susceptible to infection

Im mildly infectious (variolated)

Is severely infectious

Rm removed, after mild infection

Rs removed, after severe infection
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of the numbers of immune individuals who had mild versus
severe infections.

Estimated values of parameters associated with COVID-
19 are listed in table 2. We use these estimates to set default
values for the parameters of our model, which are listed in
table 3. Since we ignore the latent stage in our model, we
use the estimated mean generation interval for COVID-19
in place of the mean infectious period in our model (cf.
[49,52]). We ignore disease-induced mortality, but we (more
than) compensate for this by assuming for simplicity that
the death rate from other causes (μ) is equal to the birth
rate (ν); thus, births are balanced by deaths and the popu-
lation size (N) is constant. Figure 2 shows prevalence and
cumulative incidence time series, obtained by solving
equation (3.1) numerically with the default parameters.
4. Analysis
4.1. Basic reproduction number (R0)
The contribution to R0 from infectors who are mildly infec-
tious is the probability of mild infection (m), times the
transmission rate from mildly infectious individuals (bm),
times the expected time that a mildly infectious individual
is infectious (1=ðgm þ mÞ). There is a similar contribution
from severely infectious individuals, hence

R0 ¼ m
bm

gm þ m
þ ð1�mÞ bs

gs þ m
: ð4:1Þ

A formal calculation, applying the method of [54] to equation
(3.1), yields the same expression.
4.2. Dimensionless stage durations
The mean time spent in the mildly infectious state, as a
fraction of the mean lifetime, is

1m ¼ m

gm þ m
: ð4:2aÞ

Similarly, for severe infections, we have

1s ¼ m

gs þ m
: ð4:2bÞ

The mean across both types of infections is

1 ¼ m 1m þ ð1�mÞ1s: ð4:2cÞ

It is worth noting that

1 � max f1m, 1sg , 1: ð4:3Þ

The mean duration of immunity, as a fraction of the mean
lifetime, is

h ¼ m

d
: ð4:4Þ



Table 2. Parameter estimates (and 95% confidence intervals) for COVID-19; these estimates are examples from published studies and are not based on a
systematic review of the literature. WT refers to the wild-type virus. The latent period (time from exposure to infectiousness) is extremely difficult to estimate,
so the incubation period (time from exposure to appearance of symptoms) is often used as a proxy. The incubation period for the Alpha variant was estimated
to be 2

3 � ðTinc for WTÞ [37]. R0 is expressed in terms of the model parameters in equation (4.1). R0 for the Alpha, Delta and Omicron variants were

approximated using estimates of the increase in transmissibility for each successive variant, i.e. WT �!1:5� Alpha [38], Alpha �!1:5� Delta [39–41] and

Delta ————�!4:2� ½2:1��9:1��
Omicron [42].

parameter meaning estimate references

Tlat mean latent period 3.7 [3.3–3.9] days WT [43]

4.0 [3.5–4.4] days Delta [44]

Tinc mean incubation period 6.4 [4.9–8.5] days WT [45]

4.2 [3.2–5.6] days Alpha [37]

5.8 [5.2–6.4] days Delta [44]

∼3 days Omicron [46]

Tinf,m mean infectious period for mild infections 9 [6–11] days [47]

Tinf,s mean infectious period for severe infections 14 [8–20] days [48]

Tgen,m mean generation interval for mild infections Tlat + Tinf,m days [49, equation (4.1)]

Tgen,s mean generation interval for severe infections Tlat + Tinf,s days [49, equation (4.1)]

Timm mean immune period 7 [6–8] months [32,33,50]

R0 basic reproduction number 3 [2.1–4.6] WT [38]

4.5 [3.15–6.9] Alpha [51]

6.75 [4.7–10.4] Delta [39–41]

28.4 [9.9–94.6] Omicron [42]
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4.3. Equilibria and stability
The system described by equation (3.1) always has a disease
free equilibrium (DFE), at which S =N and all other compart-
ments are empty. In addition, if R0 . 1 then there is an
endemic equilibrium (EE) given by

Ŝ
N

¼ 1
R0

, ð4:5aÞ

Îm
N

¼ m 1m

�
1� 1

R0

� hþ 1
hþ 1

� �
ð4:5bÞ

and
Îs
N

¼ ð1�mÞ 1s 1� 1
R0

� �
hþ 1
hþ 1

� �
: ð4:5cÞ

In the limit of permanent immunity (δ→ 0, η→∞), the
final factors in equations (4.5b,c) simplify to 1. Since 1 , 1,
decay of immunity (η <∞) necessarily increases equili-
brium prevalence. Theorem 2 of [54] establishes that R0 ¼ 1
is the boundary between local stability and instability of
the DFE. In fact, the model (3.1) is a special case of
the class of SIR models with multiple parallel infectious
stages considered by Korobeinikov [55]. Consequently,
theorem 1 of [55] establishes that the DFE is globally asymp-
totically stable (GAS) if R0 � 1, and that the EE is GAS if
R0 . 1.
4.4. Initial growth rate (r)
The initial exponential growth rate of an epidemic beginning
near the DFE of equation (3.1) is the largest eigenvalue of the
Jacobian derivative of the vector field ð _S, _Im, _IsÞ at the DFE.
This Jacobian has a first column (− δ− μ, 0, 0), so −(δ + μ) is
an eigenvalue. The other two eigenvalues are determined
by the submatrix

mbm � ðgm þ mÞ mbs
ð1�mÞbm ð1�mÞbs � ðgs þ mÞ:

� �
ð4:6Þ

If we write, for convenience,

b ¼ mbm þ ð1�mÞbs, ð4:7Þ
then the larger of the two eigenvalues of (4.6) is

r ¼ 1
2

�
b� �

gm þ gs þ 2m
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
bþ ðgm � gsÞ

�2 � 4mbmðgm � gsÞ
q 


: ð4:8Þ

Note that, as written, the discriminant in equation (4.8) is
manifestly positive if gm � gs, but it can also be written1

�
b� ðgm � gsÞ

�2 þ 4ð1�mÞbsðgm � gsÞ, ð4:9Þ

which is manifestly positive if gm � gs. In the limit of equal
mild and severe infectious periods, the initial growth rate is
simply

r ¼ b� ðgþ mÞ, if gm ¼ gs ; g: ð4:10Þ
For any initial growth rate r (equation (4.8)), the initial dou-
bling time, i.e. the time required for prevalence to double
during the exponential growth phase, is

T2 ¼ log 2
r

: ð4:11Þ
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Figure 2. Solution curves for the model (3.1) with the parameter values specified in table 3 (birth rate for Canada). The initial conditions were
ðS, Im, IsÞ=N ¼ ð0:9999, 0:00008, 0:00002Þ. Panel (b) shows the proportions in the removed compartments (approximately cumulative incidence in those com-
partments), which converge to the indicated values derived in equation (4.18).
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4.5. Final size
If there is no source of new susceptibles (ν = μ = δ = 0), we can
derive a final size relation based on equation (3.1). Following
[56,57], we look for a constant of the motion that is the sum of
log(S/N ) and a linear combination of the other state vari-
ables. Solving for coefficients that cause the time-derivative
of this expression to vanish, we find that

FðtÞ ¼ log
S
N

� ð1�mÞ
�bm

gm
� bs

gs

� Im
N

þm
�bm

gm
� bs

gs

� Is
N

þ
�
m
bm

gm
þ ð1�mÞbs

gs

�Rm þ Rs

N
ð4:12Þ

is a constant of the motion. In particular, F(0) = F(∞); conse-
quently, since ðS, Im, IsÞ ! ðN, 0, 0Þ as t→ 0 and
ðIm, IsÞ ! ð0, 0Þ as t→∞ (and noting that the coefficient of
the final term in equation (4.12) is R0) we have

0 ¼ log
Sð1Þ
N

þR0

�Rmð1Þ þ Rsð1Þ
N

�
: ð4:13Þ

Writing Z = 1− S(∞)/N and noting that

Rmð1Þ þ Rsð1Þ
N

¼ Z, ð4:14Þ

we obtain the standard final size relation [34,57],

log ð1� ZÞ ¼ R0Z: ð4:15Þ
With the same approach, but insisting that the coefficient of
Rs vanishes, we find another constant of the motion

FmðtÞ ¼ log
S
N

þ 1�m
m

bs

gs

Im
N

� bs

gs

Is
N

þ 1
m
R0

Rm

N
: ð4:16Þ

Considering the limits t→ 0 and t→∞ yields

Rmð1Þ
N

¼ m
R0

log ð1� ZÞ: ð4:17Þ

From this expression and equations (4.14) and (4.15), we
therefore have exact expressions for the mild and severe
attack rates,

Zm ;
Rmð1Þ

N
¼ mZ and Zs ;

Rsð1Þ
N

¼ ð1�mÞZ: ð4:18Þ

Solving equation (4.15) for Z [57], we can write

ZsðmÞ ¼ ð1�mÞ 1þ 1
R0ðmÞW0

��R0ðmÞ e�R0ðmÞ�� �
, ð4:19Þ

where W0 is the principal branch of Lambert’s W function
[58]. In equation (4.19), we have emphasized the dependence
of Zs on m (including the dependence of R0 on m, equation
(4.1)), since we are especially interested in understanding
how an increase in the proportion of cases that are mild
influences the expected number of severe infections.



Table 3. Parameters of the model described in figure 1 and equation (3.1). The probability with which masking causes infections to be mild (m) is unknown.
Our default value is chosen to be substantial so that for illustrative graphs constructed with fixed m (figures 5, 6 in §5) the effect of mask-induced variolation
is non-negligible. The recovery rates can be interpreted as the rates of ‘recovery or death’ since we do not explicitly model disease-induced mortality (cf. final
paragraph of §3). The death rate μ refers to mortality from causes other than the focal disease. Note that mild illness is assumed to be associated with mild
infectiousness. All birth rates were estimated for the years 2015–2020. We use a default latent period of Tlat = 3.7 days for all variants. The generation interval
for an SEIR model is Tlat + Tinf [49, eqn (4.1)]. Setting γx = 1/Tgen,x in our model yields dynamics more similar to an SEIR version (cf. [49,52]), so it is a better
approximation of the real world than an SIR version with 1/γ taken to be the observed mean infectious period. The transmission rate for severe infections (bs)
is set for each variant using equation (4.1) with m ¼ 0 and the associated R0 estimate listed in table 2. After specifying bs, we then set
bm ¼ ðbm=bsÞ � bs.

parameter meaning expression or default value

m probability that an infected individual develops mild illness 0.6

bm transmission rate from mildly infectious individuals equation (4.1)

bs transmission rate from severely infectious individuals equation (4.1)

bm=bs ratio of transmission rates 1/2

gm recovery rate from mild infections 1/Tgen,m
gs recovery rate from severe infections 1/Tgen,s
ν per capita annual birth rate [53] 0.0105 (Canada)

0.0115 (UK)

0.012 (USA)

μ per capita annual death rate ν

δ rate of decay of immunity 1/Timm
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4.6. Peak prevalence
Another way of writing equation (4.12) is

1
R0

bm

gm

Im
N

þ bs

gs

Is
N

� �
¼ 1� S

N

� �
þ 1
R0

log
S
N
, ð4:20Þ

which does not depend explicitly on the probability m that an
infection is mild (there is implicit dependence on m through
R0; equation (4.1)). In the limit that mild and severe infections
have the same reproduction number (bm=gm ¼ bs=gs),
the left-hand side of equation (4.20) reduces to the total
prevalence,

I
N

¼ Im þ Is
N

, ð4:21Þ

and equation (4.20) agrees exactly with the formula for the
phase portrait I(S) of the standard SIR model. The right-
hand side of equation (4.20) is maximized at S ¼ N=R0, so
inserting S ¼ N=R0 into the equation (4.20) yields the peak
prevalence formula for the standard SIR model,

Ipeak
N

¼ 1� 1
R0

�
1þ logR0

�
: ð4:22Þ

This formula will provide a good approximation to the peak
total prevalence in our model (equation (3.1)) to the extent
that the left-hand side of equation (4.20) approximates total
prevalence near its peak. Figure 3 compares total prevalence
(equation (4.21)) with the left-hand side of equation (4.20) for
the full range of possible mask-induced increase in the prob-
ability of mild infection (0 � m � 1) with other parameters
fixed at the values specified in tables 2 and 3. The figure indi-
cates that approximating peak prevalence with the left-hand
side of equation (4.20) is reasonable (the maximum relative
error is 5.5%).

If we approximate the susceptible population S at peak
total prevalence by N=R0, then inserting S ¼ N=R0 into
equation (4.20) provides an estimate of how prevalence at
its peak is partitioned between mild and severe cases. Of
course, we can approximate the value of S at peak total
prevalence to any desired accuracy by solving equation
(3.1) numerically; with that approach, we can use equation
(4.20) to determine, to any desired accuracy, the partitioning
of peak prevalence between mild and severe cases.

In practice, the peak prevalence of severe cases is what is
most important from the point of view of stress on health care
systems, and it is simplest to find the peak of Is directly from
numerical solutions of equation (3.1). However, it is impor-
tant to bear in mind that Is is the number of individuals
who are still contributing to transmission dynamics but are
suffering from disease that is so severe that they will need
substantial healthcare. Is does not include people who have
already been isolated in hospitals or other settings (and can
therefore be considered unable to cause further infections).
Thus, Is is a measure of upcoming healthcare demand, as
opposed to the current burden on the system. The peak
healthcare burden can be estimated roughly by multiplying
the peak of Is by TH/Tgen,s, where TH is the mean length of
stay in hospital and Tgen,s ¼ 1=gs is the mean time spent in
the Is compartment of our model (cf. tables 2 and 3).
5. Illustration of results for COVID-19
Figure 4 shows how several important epidemiological risk
metrics depend on the variolating effect of masking, if it
acts principally by increasing the probability of mild infection
(m). Each panel shows three curves, associated with the esti-
mated basic reproduction number for the original wild-type
SARS-CoV-2 virus (WT, R0 � 3; [38]), the Alpha variant
that began to spread in late 2020 (R0 � 4:5; [51]), the Delta
variant that emerged in the spring of 2021 (R0 � 6:75;
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[39–41]) and the Omicron variant that emerged in late 2021
(R0 � 28; [42]). R0 for each variant is assumed to take the
observed value in the limit of no variolating effect (m ¼ 0)
and then to decrease according to equation (4.1). All other
parameters are fixed at the default values listed in tables 2
and 3; in particular, we assume that the transmission rates
of mild and severe infections (bm, bs) are independent of
their probability of occurrence (m, 1�m).

Figure 4b shows that the initial growth rate of the epi-
demic is strongly dependent on the probability m, and is
more sensitive to m if the variant is more transmissible. As
m is increased from 0 to 1, the initial doubling time increases
from 5.1 to 65 days for WT (upper limit not shown on the
graph), 2.9 to 11 days for Alpha, 1.8 to 5.0 days for Delta
and 0.37 to 0.79 days for Omicron. (Note that these are
estimates of expected doubling times in a completely suscep-
tible population, whereas the doubling times actually
observed when the later variants emerged were in popu-
lations that already had substantial levels of immunity from
previous infections and vaccination.)

Figure 4c–e shows that risk measures related to severe
infections decline substantially with m, as expected since
severe illness is completely eliminated in the limit of perfect
variolation (m ! 1; all cases mild). Variolation has relatively
greater effect (on prevalence of severe illness) for more
transmissible variants.

Figures 5 and 6 show how the same risk metrics depend
on the relative transmissibility of mild infections (bm=bs) and
the relative length of mild infections (gs=gm). The horizontal
scale in figure 5 ends at 1 because it is implausible that mild
infections are intrinsically more transmissible than severe
infections. By contrast, the horizontal scale in figure 6 extends
beyond 1 because it is plausible that the time during which
an infection can be transmitted is shorter for severe infections
(e.g. severe cases are likely to be isolated sooner and more
stringently). The similarities between figures 5 and 6 can be
attributed to the fact that increasing bm or decreasing gm
has a similar effect on R0 (equation (4.1)).
6. Discussion
We have explored the potential role of mask-induced vario-
lation in reducing the impact of COVID-19 (or other directly
transmitted infectious diseases). Our approach has been to
analyse a highly idealized mathematical model (figure 1
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and equation (3.1)) that captures the key mechanisms that
we wished to investigate, namely the potential for masking
to cause a proportion of infections to be mild, reduce the
probability of infection upon contact and/or change the
infectious period. Because our model does not attempt to
be realistic in detail, conclusions we draw are qualitative
only. However, the simplicity of the model has made it poss-
ible to derive results analytically, so qualitative conclusions
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can easily be drawn for pathogens with reproduction num-
bers or generation intervals that are different from those of
SARS-CoV-2.
6.1. Summary of results
Our main results are analytical formulae that show how
the model parameters—including the probability of mask-
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induced mild infection (m), the relative transmissibility of
mild infections (bm=bs) and the relative length of mild infec-
tions (gs=gm)—influence the initial epidemic doubling time
(equation (4.11)), the peak prevalence of severe infections
(§4.6), the attack rate for severe infections (equation (4.19))
and the equilibrium prevalence of severe infections (equation
(4.5c)). These results are illustrated for parameters that are
representative of four variants of SARS-CoV-2 in figures 4–6.
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— Figure 4 shows that if masking primarily influences the
probability that an infection is mild (m), then more effec-
tive masking strongly affects transmission (reducing R0)
and lengthens the doubling time substantially, especially
for less transmissible variants. In addition, the peak
prevalence of severe cases is strongly affected (and the
effect on peak prevalence is substantially greater for
more transmissible variants). The expected number of
severe cases during the initial wave of infections is also
strongly dependent on m, but is not sensitive to transmis-
sibility over the range of R0 observed for SARS-CoV-2
variants. The equilibrium prevalence of severe cases
also declines with m (equations (4.1) and (4.5c)).

— Figures 5 and 6 show the effects of greater transmissibility
of mild infections (increasing bm), and longer infectious
periods of mild cases (increasing 1=gm), respectively.
The effects are similar, as might be expected given that
R0 � b=g (equation (4.1)).

Overall, increasing the effectiveness of mask-induced variola-
tion—whether by increasing the probability that an infection
will be mild, reducing the transmissibility of mild infections
or reducing the length of mild infections—has the potential to
drastically impact disease control, by slowing spread and redu-
cing the magnitude of the epidemic peak (‘flattening the curve’
[59,60]), reducing the number of severe cases in the initial wave
and reducing the prevalence of severe cases at equilibrium.

6.2. Limitations
The principal limitation of our analysis is that the hypotheti-
cal variolating effect of facemasks is unproven. We do not
know that masking does tend to induce milder infections
nor, if so, that variolated individuals attain a similar level
of immunity as those who are infected in the absence of
masks. Comments [61] and responses [62–64] to Gandhi &
Rutherford’s initial article [17] make clear that further exper-
imental and observational research is required. It is also
worth noting that even if mask-induced variolation were
very effective, promoting it could ‘implicitly encourage reck-
less behaviour’ [63] and consequently could present
additional challenges for public health messaging.

6.3. Conclusion
Beyond qualitative conclusions, we are not likely to be able to
make more powerful inferences without experimental studies
that convincingly quantify the magnitudes of the effects that
induce variolation from masking. If such experimental data
do become available—and support the hypothesis that mask-
ing induces a substantial variolating effect—it will then be
worth expanding our simple model (3.1) to include explicit
latent periods, hospitalization, age and social structure (e.g.
schools, workplaces) and heterogeneities in adherence to
masking and other control measures. With appropriate data
andmore realisticmodels,wemaybe able tomake quantitative
inferences that could usefully inform policy decisions.

In the context of the highly transmissible Delta and Omi-
cron variants [39–42], and the potential evolution of new
SARS-CoV-2 variants that are even more transmissible and/
or more successfully evade existing vaccines [65], a better
understanding of the effectiveness of masking in promoting
variolation could be of great value. At the time of writing,
vaccines for children under 5 are not yet approved [66,67],
but approval is expected soon [68,69]. While vaccine avail-
ability for people of all ages is imperative, substantial
vaccine hesitancy [70] and breakthrough infections among
the vaccinated [71–74], make achieving herd immunity
through vaccination an unattainable target at present. If
that situation persists, potential mask-induced variolation
could contribute to COVID-19 control as we transition to
endemicity.
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Endnote
1The equivalence of the expressions for the discriminant in (4.8) and
(4.9) can be verified directly, or by recognizing that the results must
be invariant to changing the labelling of mild and severe: m→ s,
s→m, m→ (1−m).
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