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Abstract

Decision making has been studied with a wide array of tasks. Here we examine the theoreti-
cal structure of bandit, information sampling and foraging tasks. These tasks move beyond
tasks where the choice in the current trial does not affect future expected rewards. We have
modeled these tasks using Markov decision processes (MDPs). MDPs provide a general
framework for modeling tasks in which decisions affect the information on which future
choices will be made. Under the assumption that agents are maximizing expected rewards,
MDPs provide normative solutions. We find that all three classes of tasks pose choices
among actions which trade-off immediate and future expected rewards. The tasks drive
these trade-offs in unique ways, however. For bandit and information sampling tasks, in-
creasing uncertainty or the time horizon shifts value to actions that pay-off in the future. Cor-
respondingly, decreasing uncertainty increases the relative value of actions that pay-off
immediately. For foraging tasks the time-horizon plays the dominant role, as choices do not
affect future uncertainty in these tasks.

Author Summary

Numerous choice tasks have been used to study decision processes. Some of these choice
tasks, specifically n-armed bandit, information sampling and foraging tasks, pose choices
that trade-off immediate and future reward. Specifically, the best choice may not be the
choice that pays off the highest reward immediately, and exploration of unknown options
vs. exploiting known options can be a normatively useful strategy. We characterized the
optimal choice strategies across these tasks using Markov Decision Processes (MDPs). The
MDP framework can characterize optimal choice strategies when choices are affected by
the value of future rewards. We found that uncertainty and time horizon have important
effects on the choice strategies in these tasks. Specifically, in bandit and information sam-
pling tasks, increasing uncertainty increases the value of exploring choice options that
tend to pay off in the future, while decreasing uncertainty increases the value of choice op-
tions that pay off immediately. These effects are increased when time horizons are longer.
Foraging tasks differ in that uncertainty plays a minimal role. However, time horizon is
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still important in foraging. Specifically, for long time horizons, travel delays to rewards be-
come less relevant.

Introduction

Decision making has been studied with a wide array of tasks. Choices in many of these tasks ei-
ther do not affect future choices or are modeled as if they do not affect future choices. For ex-
ample, when asked to choose between gambles (e.g. 50% chance of $20 or 100% chance of
$11), the choice in the current trial does not affect the gambles presented in the next trial, or
the information on which one decides in the next trial. Correspondingly, even reinforcement
learning tasks, where choices do affect the information that will be available for future choices,
are often modeled using delta rule reinforcement learning (DRRL) or logistic regression, nei-
ther of which provides a normative description of the task. These modeling approaches assume
that current choices should be driven entirely by past outcomes without considering how they
will affect the future.

Many interesting decision making problems, however, require consideration of how current
choices will affect the future [1-7]. For example, there has been interest in the explore-exploit
tradeoff [8-17], information sampling [4,6], and foraging [18,19]. Explore-exploit trade-offs
exist in any real-world decision making context where one has to choose between continuing
to exploit a known option, for example a familiar restaurant, vs. exploring an unknown or
novel restaurant. Similarly, information sampling underlies many deliberative choice processes
where one collects information before committing to a decision. For example, one might study
product reviews or ratings before making a large purchase. These tasks require more sophisti-
cated choice strategies because choices can be driven by future expected values. In other words,
the best choice may not be the one that delivers the largest immediate reward. The best choice
may lead to larger rewards in the future at the expense of smaller immediate rewards. Choices
in these tasks can be modeled with markov decision processes (MDPs). MDPs provide a gener-
al modeling framework, useful in tasks where the future depends upon what one chooses in the
present. If one assumes that an agent is maximizing the expected (discounted or undiscounted)
total reward, MDPs can be used to provide normative, or at least approximately normative, so-
lutions to most current decision problems.

While the choice behavior of subjects often deviates from normative behavior [4], particu-
larly in patient groups [5,20,21], normative models are still important. Specifically, normative
models identify the information on which decisions should be based, and the computations
that must be carried out on that information. These two points can be conceptualized as the
strategy optimal for the task. Further, normative models can be parameterized to fit the behav-
ior of individual subjects [4,5,22]. This approach can provide insight into how subjects are de-
viating from the normative model and therefore it can suggest specific deficits or biases, as
opposed to an overall change in task performance.

Here, we used MDPs to model n-armed bandit, information sampling, and foraging tasks.
Normative solutions to some of these tasks, to our knowledge, do not currently exist in the lit-
erature. There is, however, a long theoretical literature on binary bandit tasks [23,24], and
some foraging tasks have been modeled using the marginal value theorem [25]. For MDPs, the
development of approximation techniques using basis functions has opened up the solution of
a much larger class of problems than was tractable previously [26]. The normative solutions
provide insight into the optimal strategies. We also used the models to examine several specific
questions. For example, when is it useful to explore in a bandit task, and which features of the
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task can increase the value of exploring? How can non-stationarity drive exploration? Further-
more, once the tasks were mapped into the MDP framework we could examine their similari-
ties and differences. This showed that decisions in all of these tasks pose a trade-off between
immediate and future expected rewards. Further, we identified two factors that are important
to this trade-off in these tasks. The first is uncertainty and the second is the time horizon. In
bandit and information sampling tasks future expected values are relatively higher for options
about which there is more uncertainty. When there is less uncertainty, action values are driven
more by immediate expected reward. Further, uncertainty, and the value of exploring uncertain
options is more valuable when the time horizon is longer. We also show that reward rate maxi-
mization in foraging tasks with an undiscounted, infinite time horizon is insensitive to travel
delays to patches. In general with MDPs, infinite horizon undiscounted models are insensitive
to finite delays to rewards.

Results

We used markov decision processes, either partially observed (POMDPs) or fully observed
(MDPs) to model several choice tasks. For these models we are interested in the utility, u,. For
MDPs the utility depends on the state, and for POMDPs it depends on the information state.
We indicate both states and information states by s,. The utility is then given by the action, a,
that maximizes action value, Q(s.a):

4 (s) = max,., {Q(s, )}
The action value:
Q(st7 a) = I‘(St, a) + C(St, a) +7 Zjesp(ﬂsn a)ut+1 (])

can be broken down into the immediate: r(s,,a)+C(sp,a) and future: YZjcp(j|spa)ue (j) ex-
pected values, which we will call IEV and FEV respectively. The IEV is the expected reward, r
(spa), for taking action a in state s, plus a possible cost to sample, C(sa). These occur immedi-
ately. The FEV is the expected value of the utility of the next state, where the state transition
function or the probability of transitioning to state j when taking action a in state s,, is p(j|sp.a).
The FEV is an estimate of the (possibly) discounted future rewards that will be obtained, given
the current action. The state is the information on which decisions are based. For most of the
tasks, except the foraging tasks, the state is a hidden variable, and this hidden variable gives rise
to observations through an observation model. In this case, one is dealing with a partially ob-
servable Markov Decision Process (POMDP). The observations define the information state,
and one can infer the value of the hidden state using the observations. We explicitly refer to the
state as the information state for POMDPs.

Exploration in a stationary two-armed bandit

When the environment is unknown, and model-free reinforcement learning (RL) is used to
learn the environment [27], exploration can be used to drive the RL algorithm to sample from
the complete space of possible options. Here we deal with tasks where the environment is speci-
fied and MDPs (or POMDPs) can be used to calculate expected values for each state. Therefore
heuristic exploration does not have to be used to make choices. Exploration, if it is defined as
selecting options which have a smaller IEV but a larger action value, however, can still be opti-
mal [27]. If an agent is maximizing total expected reward, an option with a smaller IEV can be
selected if its FEV is relatively larger. Thus, immediate rewards can be foregone to obtain more
total rewards over the relevant time horizon. We began by examining the explore-exploit
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trade-off in a stationary 2-armed bandit task, in which both bandits paid-off with the same
fixed reward. The bandits varied, however, in the fraction of times they delivered a reward if
chosen. In this case the explore-exploit trade-off affects the first few choices, before both targets
have been sampled a few times. We modeled this as a finite state, finite horizon, undiscounted
POMDP, where the information states were the number of times each bandit was chosen, C;
and the number of times each bandit was rewarded, R;. This information state space is formed
by the sufficient statistics for the two bandit processes. Transitions through the information
state space occur after each choice and its associated outcome and they correspond to belief up-
dates for the process.

To examine the information state space for the bandit task more quantitatively, we can ex-
amine the distributions over expected future reward values generated in the task. Each of the
bandit options is represented by a tree of possible outcomes (Fig. 1A). Each node in the tree de-
fines the information state (i.e. R;,C;) for that option. The information state can be used to esti-
mate the underlying reward probability, q for each bandit option, where q is the hidden state of
the system. As one of the options is sampled, the tree is traversed. With a binomial likelihood
function and a beta(a.,B) prior, the posterior over reward probability is given by

p(qlr;, ;) o< p(r;, ¢;lq)p(q)

p(qlr, ) o< qi(1 —q)“ g (1 — q)""

¢—1;+p—1

p(qlr;, ¢;) o< g1 — q)

The beta prior is the natural conjugate prior for the binomial likelihood function. Therefore,
R a+r;

i —

G otp+¢’
where we have defined the actual choices and rewards as r;,c;, and the posterior choices and re-
wards as the data plus the prior R; = r; + o,C; = ¢; +o + B. If we start with a beta(o. = 1,8 = 1)
prior we have posterior values of R; = 1,C; = 2 for each bandit arm before any options have
been sampled (Fig. 1A). The possible posterior expected values are given by the nodes of the
tree (Fig. 1A). These nodes are also the immediate expected value for a choice, i.e.

the prior can be interpreted as data. The posterior expected value is (q|R;, C,) =

<r(s,a) >= %,’ and these values also define the transition probabilities. Thus, if one is in state,
R;,C; one transitions to R;+1,C;+1 with probability p(j = R, + 1,C, + 1|s, =R, C;,a) = 2—;and
one transitions to R;,Ci+1 with probability p(j = R,,C, + 1|s, =R,,C,,a) =1 — % This defines
two of the terms on the r.h.s. of equation 2 (ignoring the cost to sample). The other term on the
r.h.s. of equation 2 is the utility of the next state, u,;. These utilities are recursively related to
future utilities, uy,,, etc. However, in the final trial, assuming a task where there are a finite
number of trials and the number is known a-priori, there is no FEV because there will be no
choices in the following trial. Therefore, utilities in the final trial, t = N, are given by the IEV,
<ry(spa)>. The IEV for each state that can exist in the final trial can be directly calculated from
these information states. Once these are calculated, one can calculate the utilities for t-1, and
continue backwards until the utilities for the current trial can be calculated. This is the back-
wards induction algorithm ([28]; see methods).

When an option has not been sampled, any point in the tree can potentially be reached, al-
though not under the optimal policy, and the distribution over reward probabilities is broad.
This tree, therefore, represents the possible outcomes if one of the options is chosen repeatedly
(Fig. 1A). The state space for the task is, however, the product space over the nodes of two of
these trees (Fig. 1B), as it is constructed of all combinations of possible outcomes from each in-
dividual tree. When the FEV is calculated for one of the options, it is only calculated across the
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Fig 1. Bandit state space. A. A portion of the reward distribution tree, starting from a Beta(1,1) prior for one of the bandit options. As one of the options is
chosen, the outcomes traverse this tree. The number at each node indicates the posterior over the number of rewards (numerator) and the number of times
the option has been sampled (denominator). B. Product space across both bandit options. Blue lines (and fractions) indicate choice of option 1, red lines (and
fractions) indicate choice of option 2. The numerator and denominator of the fractions are as in panel A and define the posterior probability of a reward. Thick
lines show actions that would be taken from each node by an optimal policy, thin dashed lines show options that are not taken by an optimal policy. C.
Distribution of reward probabilities (i.e. choices/rewards) over a finite horizon (N = 8 choices) starting from two different beta priors (Option 1: Beta(1,1) and
Option 2: Beta(2,2)) which can be interpreted as different amounts of experience with the options. These priors correspond to being in the state 1/2:2/4
indicated in panel b with a box. The solid black bar under the x axis indicates q values for which p(q) is identical. Asterisks superimposed on the plots show
the means of the two distributions (0.575 and 0.585 for option 2 and option 1 respectively).

doi:10.1371/journal.pcbi.1004164.9001
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nodes in the full tree that are visited by the optimal policy. This is because the max operator in
equation 1 is an expectation over the policy that optimizes choices in each state. Thus, when
the FEV is calculated the expectation is taken over the portion of the product space (Fig. 1B)
where the expected action value of an option is greater than the other option (thick lines in
Fig. 1B). The expectation is not computed over the dotted lines (Fig. 1B) because an optimal
policy does not choose these actions. If we examine the distribution of reward probabilities
over a representative finite horizon (Fig. 1C) we see that options which have been sampled less
have higher expected values, when IEVs are each 0.5. In this example it is less likely that one
will encounter a reward probability (q) of 0.5 for options that have been sampled less, and
more likely that one will encounter options that have a reward probability greater than 0.8.
This increased mass over higher reward probability nodes in the tree drives exploration in
bandit tasks.

As an example, we examined a scenario in which bandit option 1 was sampled 6 times, and
rewarded three times (Fig. 2A). (Note that in this example the agent is not following the opti-
mal policy. Rather we have defined choices and outcomes to illustrate action values under par-
ticular scenarios.) The action value for option 1 exceeds the action value for option 2 during
the first three trials while it is being rewarded. The FEV, however, of option 2 is larger than the
FEV of option 1, even in the first 3 trials, during which option 1 is being rewarded. After option
1 is not rewarded once, it becomes more valuable to sample option 2 (i.e. Q(s,2) > Q(s,1) in
trial 5). After option 1 had been sampled 6 times and rewarded three times, its IEV is the same
as option 2, which had an expected value of 0.5 because of its prior. However, the action value
(IEV + FEV) favors option 2 at this point (i.e. trial 7). If option 2 is then sampled 6 times and
rewarded 3 times, the action values of the two options are again the same (i.e. trial 13). The ex-
ploration bonus (here taken as the difference in FEV between the two options on trial 4) is also
larger when the time horizon is longer (Fig. 2B). This is because option 2 can be exploited for a

0.16
Choose 2
012
0.08

0.04

difference in FEV

18 20 Oo 10 20 30 40 50 60 70 80

Time horizon

Choose 2

0 M_

Difference in value

0 2 4 6 8 10 12 14 16

Trial

* + 4+ 8 0684+ 4+ 44+ e+ ¢+ ¢+ +Choose1

18 20

Fig 2. Two armed bandit example. Panels A and C are shown for a 50 trial fixed horizon model. A. Difference in action value between option 1 and option 2.
Blue dots indicate rewarded choice, black dots indicate unrewarded choice (R+ = rewarded, R- = unrewarded). Bracket indicates difference in future
expected value shown in panel B. Results are for a finite time horizon model with a 50 trial horizon and no discounting. The agent is not following the optimal
policy in this example. Choices and outcomes were fixed to illustrate a specific point. B. Difference in future expected value on trial 4 as a function of time
horizon. C. Difference in action value in a scenario in which one of the targets is chosen, and it is rewarded every time except in trial 16.

doi:10.1371/journal.pcbi.1004164.9g002
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longer time horizon if it is sampled and found to be better. When the first option chosen is re-
warded, and it continues to be chosen and rewarded, the action value of the second option will
not exceed the value of the first option (Fig. 2C), given these finite time horizons.

The exploration bonus is driven by three factors. Continuing on the example above, assume
option 1 has been sampled and option 2 has not been sampled. First, there is uncertainty about
option 2 (i.e. the prior distribution over possible reward probabilities for unsampled options is
broad, assuming a vague prior). Therefore, option 2 might be better than option 1. If option 1
cannot be better than option 2, because of the structure of prior knowledge, there is no explora-
tion bonus. The second factor, as shown above (Fig. 2B) is the time horizon [17]. If the time ho-
rizon is too short one cannot obtain enough additional rewards when option 2 is found to be
better than option 1, to make up for the scenarios (i.e. other episodes of the task) when option
2 is found to be not as good as option 1. This factor relies on the assumption that option 2
might be better than option 1. Third, if option 2 is sampled and it is not as good as option 1,
then one can switch back to option 1. On the other hand, if option 2 is better than option 1,
then one can stick with option 2. This preference for the option which will be found to be better
in the future, drives choices in the present via the max operator over action values in the utility
equation (equation 1), which operates on the distribution of future outcomes via the
embedded recursion.

3-armed bandit novelty task

We next examined a novelty task [5,8,29]. This is a 3-armed bandit task similar in several ways
to the 2-armed bandit task described above. The size of the reward is the same for each bandit
option, but the probability of receiving a reward when each option is selected differs. In addi-
tion to this, however, choice options are replaced by novel choice options at stochastic inter-
vals. Thus, after subjects accumulate experience with the current set of 3 bandit options for a
period of time, one of the options is replaced by a novel option. These replacements are sto-
chastic and not known in advance, but they are indicated to the subject. We modeled this task
with an infinite horizon, finite state, discounted POMDP. Consistent with the 2-armed bandit,
the information state is defined by R;,C; for each option. The full information state is now a
product space across 3 trees (Fig. 1A), so it is larger.

To examine this task we considered a scenario similar to the one examined for the 2-armed
stationary bandit. The action value of the chosen option (option 1) increased while it was being
rewarded in trials 1-3 (Fig. 3A, for the choices and rewards see Fig. 3D; note that these actions
are not chosen by the optimal policy. Rather they were chosen to illustrate the effect of experi-
ence with an option). The FEV also increased for all 3 options because of the overall increase in
the expected reward in the environment (Fig. 3C). However, similar to what was seen in the
2-armed bandit (Fig. 2A), the FEV was larger for unexplored options (Fig. 3B). Further, when
option 1 was replaced, after each of the options had been chosen a few times, its FEV increased
relative to the other two options (Fig. 3B, trial 15). Similarly, when option two was replaced on
trial 20, its FEV increased (Fig. 3B). As with the 2-armed bandit, when the discount parameter
was increased towards 1 (Fig. 3E), the exploration bonus increased (Fig. 3F). Thus, when a long
time-horizon is available to exploit a novel option if it is found to be more valuable, the FEV
for exploring that option increases. Every time a novel option is introduced, it is equivalent to
resetting that option to the beta(1,1) prior, resetting it to the start of the tree (Fig. 1A). Thus,
uncertainty drives an exploration bonus as long as a sufficient time horizon is available to ex-
ploit the novel option if it turns out to be better than the alternative options available. Corre-
spondingly, the substitution rate of novel options also affects the novelty bonus, by effectively
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expected value for choosing 1 vs. 2, etc.). C. Future expected values for the three options. Stars indicate trials on which novel choice options were
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options were introduced. Blue symbols indicate choices that were rewarded (R+), black symbols indicate choices that were not rewarded (R-). Position on the
y-axis indicates the choice (e.g. Ch 1 is choose option 1). E. Discount function for different discount rates. F. Exploration bonus (i.e. difference between
option 1 and option 2 when option 1 is replaced at trial 15) as a function of discount parameter, and as a function of the probability of substituting a novel
option. As discount parameter approaches 1, and the time horizon extends further into the future, the novelty bonus increases. There are 3 x-axes. The first
two correspond to plotting the novelty bonus as a function of either the calculated time horizon, or the discount. The x-axis enumerated in trials is the number
of trials, N = -1/loge(y), at which the utility is discounted by 1/e. The third is the x-axis for the substitution rate, plotted with y = 0.95. Substitution rate is p = 0.05
for time horizon line and all other data.

doi:10.1371/journal.pcbi.1004164.9003

limiting the time horizon (Fig. 3F). If the substitution rate is high, one likely will have less time
to exploit novel options that turn out to be good, before they are again replaced.

Exploration in non-stationary bandits

To examine exploration in related bandit tasks, we used an infinite horizon, discounted, con-
tinuous state, POMDP to model a non-stationary two-armed bandit task [9]. The information
state in this model is given by the mean and variance of the bandits, which are the sufficient
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statistics for the two processes. The bandits in this task returned continuous valued rewards
(e.g. 0-100). The means of the returned values for each bandit were non-stationary in time, fol-
lowing independent, random walks that decayed to 50. The actual reward earned on an indi-
vidual trial was given by a sample from a Gaussian distribution with the current mean, and a
standard deviation of 4. The IEV is given by the estimated mean of each bandit. The utility de-
pends on the estimated means of the two options (Fig. 4A) as well as the estimated variance of
the options (Fig. 4B). The effect of variance on utility also depends on the time-horizon

(Fig. 4B). The variance has a larger effect when the time horizon is longer. The effect of the var-
iance of the utility can be understood in the framework developed above for the stationary ban-
dit (Fig. 1). Specifically, when an option is not sampled its variance grows because of the
nonstationarity of the underlying generative model, effectively driving it backwards in the tree
(Fig. 1A). On the other hand, when an option is sampled its variance decreases, effectively driv-
ing it forwards in the tree (Fig. 1A). Thus, an option which has not been sampled for several tri-
als becomes similar to a novel option, and it should be explored.

We examined the choice sequence of the algorithm for some examples. If we consider an ar-
tificial case where the means are locked at 45 and 55 (but the algorithm still assumes the means
are non-stationary), and compare the sampling under two different discount parameters (effec-
tive time horizons) we see that the algorithm periodically samples the option with a smaller es-
timated mean, as its variance grows (Fig. 4C). In addition, when the discount parameter is
larger (y = 0.90 vs v = 0.99) the algorithm samples more often, consistent with the larger differ-
ence in utility for a given standard deviation for larger discount parameters (Fig. 4B). This can
also be seen clearly in the action values (Fig. 4E and F—Note that the algorithm stochastically
sampled option 1 first in panel E and option 2 first in panel F, which gives rise to the initial
downward vs. upward fluctuation). With the means fixed, the action values depend only on the
variance of the two processes, if we ignore the decay of the process to 50. When an option is
sampled its variance decreases and its utility decreases, and when an option is not sampled its
variance increases and its utility increases. The combination of these eventually drives the ac-
tion value of the recently unsampled option to exceed the action value of the option currently
being sampled (Fig. 4E and F), and the option which has not been recently sampled is then
sampled. This can be seen in example sequences drawn from the actual generative process as
well (Fig. 4G-H, the actual process values are identical for these two examples). In this case
when the algorithm is modeled with a longer time horizon it samples more (Fig. 4H).

Information sampling

We next examined an information sampling task, often referred to as the beads or urn task
[4,5,20,21,30]. In this task subjects are shown a sequence of beads drawn from one of two possi-
ble urns (Fig. 5A). One of the urns has q orange beads and 1-q blue beads and the other has q
blue beads and 1-q orange beads. After each bead is drawn subjects have three choices. They
can either draw another bead from the urn, guess that beads are being drawn from the predom-
inantly blue urn, or guess that beads are being drawn from the predominantly orange urn.
Sampling another bead usually involves an explicit cost-to-sample. In other words, subjects are
charged for collecting more information. In this task, the value of choosing an urn is given by
the IEV, because no more samples are allowed after an urn is chosen so FEV is zero, whereas
the value of sampling another bead is given by the FEV (minus the cost-to-sample), because
there is no reward if one does not try to infer the urn. Thus, this task explicitly sets up a trade-
off between immediate and future expected rewards, and in this sense it is similar to the ex-
plore-exploit trade-off in bandit tasks.
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(y =15). Discount rate y = 0.90. D. Same as panel C, except y = 0.99. E. Plot of action value for two options
for data plotted in C, y = 0.90. F. Action value for two options for data plotted in panel D, y = 0.99. G. Example
sequence of samples and estimates of mean and variance, y = 0.90 for means drawn from the generative
model. H. Example sequence of samples and estimates of mean and variance, y = 0.99.

doi:10.1371/journal.pchi.1004164.g004

In most cases subjects are told that they can draw only up to a maximum number of beads
and after the last bead is drawn they have to guess an urn. As such, the task can be modeled as
a finite horizon, finite state, undiscounted, POMDP. The information state space is simpler
than the state space in the bandit task, as it is given by a single tree (Fig. 5B), where instead of
rewards and no rewards, the state is given by the number of blue (or orange) beads that have
been drawn, and the total number of beads drawn. These form the sufficient statistics for the
process. As one draws beads, one works through the state space, similar to the situation with
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Fig 5. Beads task. A. Example distribution of beads in the beads in the jar task. B. State space for beads task. Example sequence of draws is taken from
panel C. C-F. Action value for the three choice options as a function of draws for example sequences. Bead outcomes are shown as orange and blue beads.
The star indicates the first trial on which the expected value of choosing an urn is greater than the expected value of drawing again. In this case an ideal
observer would guess the urn with the highest value. Not that this is the value after seeing the bead shown in the corresponding trial. In panels C-E, cost to
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doi:10.1371/journal.pcbi.1004164.g005
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the bandit tasks. For example, the first 3 bead draws for the example sequence shown in Fig. 5C
would go through the set of states shown (Fig. 5B). Unlike the bandit task, this task was mod-
eled with an uninformative prior on bead draws, because it is normally implemented by show-
ing subjects one bead before asking them to decide [21]. The action values for guessing either
of the urns or sampling again show that the value of guessing an urn increases as evidence for
that urn increases (i.e. more beads drawn of the corresponding color), and decreases as evi-
dence for the urn decreases, in a cumulative fashion (Fig. 5C-F). The value of sampling again is
initially above the value of guessing an urn, but at some point it drops slightly below. Note that
without a cost-to-sample (C(sy,a) = -0.005 in panels C-E and C(s,,a) = -0.025 in panel F) it is al-
ways best to sample all of the available beads. To examine the effect of the cost-to-sample, we
calculated values for two costs, on identical sequences of bead draws (Fig. 5E-F). When the cost
was lower (C(sy,a) =-0.005; Fig. 5E), it was optimal to delay the decision until after the 1t
bead was drawn, whereas when the cost was higher (C(s,,a) = -0.025; Fig. 5F) it was optimal to
decide after 2 beads. This task can be considered a pure exploration task: how long does one ex-
plore before committing to (exploiting) one of the choices? This is similar to exploring a novel
option for several trials, while always considering whether to switch back to the known option,
or sticking with the novel option. As the certainty about which urn is being drawn from in-
creases, picking an urn (which will deliver an IEV), as opposed to drawing again (which is valu-
able because of the FEV), becomes more valuable.

Foraging tasks

The final tasks we considered were foraging tasks. Much like the tasks examined above, these
tasks trade-off immediate and future expected values. Should one stay in the current patch
whose resources are being depleted (i.e. choose IEV) or travel to a new patch (i.e. choose FEV)
[19]2 Or, should one sample again (i.e. choose FEV) or commit to the current gamble on offer
(i.e. choose IEV) [18]? The state spaces for these tasks differ in a fundamental way from the
state spaces in the bandit and information sampling tasks (Fig. 6A and 7A). The state spaces
for the foraging tasks are recursive. Stated another way, the state spaces for the foraging tasks
do not represent learning or information accumulation. Learning or information accumulation
are not recursive because you do not return to the same state (technically, this is not completely
accurate, as one can with some probability, return to a previous state in either the non-
stationary bandit or the novelty bandit). Rather, in the foraging tasks the current state is pro-
vided to the animal and the animal does not have to estimate beliefs or distributions over states.
Therefore these tasks are MDPs, as opposed to POMDPs where the state is hidden. In the for-
aging tasks one observes the state directly.

Patch leaving task

In the patch leaving time task the subjects chose between staying in the current patch or travel-
ing to a new patch [19] in each trial. The state relevant to choices is defined by the current
amount of juice and the travel delay. If they stay in the current patch, they receive a (slightly de-
layed) reward, and the amount of reward that they will receive in the next trial if they again
choose to stay in the current patch is decreased. If they choose to leave the current patch they
have to wait for a known travel delay and they receive no immediate reward. The amount of re-
ward that will be received in the new patch is reset to a fixed level and the travel time to the
next new patch is sampled from the distribution of possible travel times (Fig. 6A). The patch
leaving time task was modeled as an infinite horizon, discounted MDP. The relevant state vari-
ables when a decision is made are given by the current travel delay and the current reward esti-
mate (Fig. 6A). From the model one can calculate the difference in action value for staying in
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doi:10.1371/journal.pcbi.1004164.9g006

the patch vs. leaving for another patch (Fig. 6B and 6C). It can be seen that the longer the travel
time, the longer one stays in the patch (Fig. 6D), consistent with what was shown previously
with heuristic models [19]. However, this effect only occurs for discount parameters less than
1. The undiscounted model is insensitive to finite travel times (Fig. 6E and 6F). This is because
undiscounted infinite horizon MDPs are insensitive to finite time delays. Stated another way, if
K is the mean first passage time to a state s, = j and from state j one follows the optimal policy,
then with an infinite horizon the value function can be written [26]:

. 1 K-1 " . 1 N-1 "
0 = im0 o)+ im (0 ),

From this it can be seen that actions taken prior to entering state j, at time K, do not matter.
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This is because the first sum is finite if the rewards are finite, and so it goes to zero in the limit.
In the foraging task, if K is the time to get to the inter-trial interval (ITT) after choosing to trav-
el, it doesn’t matter how long K is for finite K.

Foraging-by-sampling

The final task is a variant on standard foraging tasks. The state for this task is given by the cur-
rent gamble pair on offer and the state space includes all the possible gamble pairs. In most for-
aging tasks a decreasing marginal reward in the current patch eventually drives the action
value to leave the patch above the action value to stay in the patch, because leaving has a fixed
expected value. This task, however, used a paradigm in which one samples, in each trial, two
gambles from a set of six possible individual gambles (Fig. 7A). The six individual gambles
from which the pairs were drawn were shown for the current foraging bout and their reward
values were known (e.g. gamble 1 may have had a value of 12 points). In each round, a pair of
gambles from the set of individual gambles was sampled (15 possible pairs assuming sampling
without replacement from the 6, and symmetry of gambles). For example, if the gambles for a
given session were gl . .. g6, a subject might be shown in a single trial g3 and g5. They then
have to decide whether to engage with that offer pair, or sample again. If they sampled again, a
new pair was drawn from the current set of six possible gambles (perhaps g2 and g3). Every
time the subjects sampled again they also incurred a cost-to-sample. (Note that a cost-to-
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sample is paid at the time of sampling, and it does not decrease the value of future gambles, in
an MDP.) If they decided to accept the offer, they moved to a decision stage. In this stage the
probability that the reward associated with each gamble would be delivered was revealed, and
this probability was randomly assigned to each gamble every time the decision stage was en-
tered. The subjects had to choose one of the two gambles in the decision stage based on its mag-
nitude and the associated probability. For example they might be choosing between p,g; and
pags where pi is the probability that the subjects will receive reward gi if they choose that gam-
ble in the decision stage. The agent then selects the gamble that has the highest expected value.

The value of sampling again is given by the FEV. The FEV is not equal to the average values
of the individual gambles. The FEV is the expected value of future draws (see methods), plus
the cost-to-sample. The time horizon is long, and many future samples could be drawn. How-
ever, the cost-to-sample decreases the value of future samples linearly with time, when viewed
from the present decision. This can be compared to exponential discounting which exponen-
tially decreases the value of future samples. With a sufficient time horizon the FEV is fixed.
The task provided no explicit time horizon so we modeled it as a finite (although long) time ho-
rizon MDP. Therefore one simply samples until the IEV of the offered pair exceeds the (con-
stant) FEV (Fig. 7B). It is important to point out that sampling more in this foraging task,
unlike the beads task, does not improve the IEV. In other words, the IEV does not necessarily
increase with samples, although one can sample a pair with a better IEV. This is related to the
state space of the problem. Additionally, without a cost-to-sample, the optimum strategy
would be to sample until the pair with the highest value is drawn. The cost-to-sample creates a
situation where choice of a gamble pair that is not the largest is optimal, because it may cost
too much to obtain a better pair.

Discussion

We have applied markov decision process models (MDPs/POMDPs) to choice tasks that have
been used to study the explore-exploit tradeoff, information sampling and foraging. The mod-
els allowed us to determine the normative choice mechanisms in these tasks, and therefore
they provide insight into their similarities and differences. All of the tasks manipulate trade-
offs between immediate and future expected values (IEVs vs. FEVs). Temporal-discounting
tasks explicitly manipulate this trade-off. We have not considered them in the present study,
but we have modeled them previously using MDPs [5]. Normative exploration in the bandit
tasks can be defined as the choice of an option whose IEV is smaller but whose FEV is larger
than an option with which one has more experience. This also drives exploration when there is
non-stationarity, or when novel options are presented, because both of these increase uncer-
tainty. In information sampling tasks an explicit trade-off is setup between sampling again, the
action value for which is driven by the FEV (plus a small cost-to-sample), vs. inferring an op-
tion, the action value for which is driven by the IEV. Finally, foraging tasks also present the op-
tion of staying in the current patch, which has a larger IEV but a decreasing FEV, or traveling
to a new patch, an action for which the IEV is zero but the FEV is larger. Across these tasks the
IEVs and FEVs are calculated in different ways. In other words, the mechanisms that underlie
value estimation differ across tasks. When trying to understand the neural circuits and under-
lying neural processes that carry out decisions in these tasks, it will be important to understand
how these computations are carried out in the brain.

Task specific results

We began by examining the explore exploit trade-off in a two-armed bandit task, in which the
reward amount for both options was the same, but they differed on the fraction of times that
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they were rewarded. Bandit tasks have been used to study learning in healthy and clinical popu-
lations [31,32]. In the first few trials there is value to sampling both options, and unsampled
options have a larger FEV. This future expected value depends on three factors. First, the distri-
bution over possible reward probabilities for the unsampled option is broad, given by the prior.
Thus, the unsampled option may be more rewarding than the options which have been sam-
pled. Second, if the unsampled option is sampled, and it is not as good as the other options, the
subject can switch back to the other options. However, if the (previously) unsampled option is
better than the other options, the subject can stick with it. Finally, the time horizon must be
long enough to reap the rewards of investing samples in the novel option.

Heuristically, one could consider the following approximate example. Assume that one has
sampled one of two available options (call it option 1) and found that it is being rewarded 70%
of the time, and that one now has 100 more trials. One could then sample the alternative option
(option 2) 10 times. If option 2 is rewarded 80% of the time one could then stick with that op-
tion, gaining on average 80 rewards over the 100 trial horizon. If it is found that option 2 is only
rewarded 20% of the time, then one could switch back to option 1, gaining 0.2*10 + 0.7*90 = 65
rewards on average. If option 2’s (i.e. all option 2’s that one encounters, in repeated plays of the
task) are either rewarded 80% of the time, or 20% of the time, the average reward with this sim-
plified strategy will be 72.5 over the 100 trials, whereas it would only be 70 if one always stuck
with option 1. The 2.5 additional rewards on average is the exploration bonus. It depends on the
possibility that the novel option is better than the current option, the fact that one will switch
back to the alternative if it is better than the novel option, and having a sufficient time horizon.

We also examined two other tasks which are extensions of the bandit task. Specifically, a
non-stationary bandit [9], and a novelty task [5,8,29,33]. In the non-stationary bandit the
mean reward magnitudes of the two options follow independent random walks. When an op-
tion is sampled several times, a relatively accurate (i.e. low variance) estimate of its mean can
be derived. However, when an option is not sampled, the distribution of its mean becomes
broad. When a random walk is not observed for a period of time, the variance of its estimate
grows linearly with time. One way to conceptualize this, relative to the stationary bandit, is to
say that when an option has not been sampled for some time, it becomes like a new option, and
there is value in exploring it. This is true of any tasks that have an underlying non-stationarity
in the reward [34]. It is, however, variance in the estimate of the mean that drives the explora-
tion bonus. When the variance gets large, the option might be better than the current options,
and exploration is advantageous. Similarly in the novelty task, when a novel option is substitut-
ed for one of the options that has been sampled, the reward probability for the novel option is
unknown, and therefore it is valuable to explore it.

Next we examined the beads or urn task [4,5,20-22,30,35]. This is an information sampling
task, similar in structure to other sampling tasks [36]. The POMDP model for this task only op-
timized choices in single trials with an explicit cost-to-sample. It did not optimize reward rates
over multiple trials. Subjects are given the option to sample as much information as they would
like, before guessing an urn. The choice to sample rests on the belief that the FEV of sampling
is greater than the IEV of guessing an urn. In this respect, sampling is similar to exploring, as it
is a choice in favor of the FEV, relative to the IEV. It differs from exploration, however, in that
exploration in bandit tasks usually has some IEV. That is, choice of the unknown option in
bandit tasks usually leads to some reward. This does not need to be true in general. In informa-
tion sampling tasks, however, choosing to sample usually leads to zero IEV (or a slightly nega-
tive IEV, given by the cost to sample). In this way, sampling is more similar to foraging. It is
also worth pointing out that reaction time versions of perceptual inference tasks can be mod-
eled within a framework that is equivalent to the approach used here to model information
sampling [37,38]. Perceptual inference tasks, as well as many other choice tasks, are often
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modeled using a drift-diffusion framework, and it is assumed that when an evidence bearing
particle crosses a threshold a decision is made. The “threshold” crossing is a choice to stop sam-
pling. It is often inferred for drift diffusion models in perceptual inference tasks, on the basis of
behavioral reaction times. But with an MDP the threshold can be calculated dynamically, on
the basis of current levels of belief, costs-to-sample, and transition probabilities [38]. Thus, an
optimal threshold can be inferred for any tractable task.

The final tasks we considered were foraging tasks. These tasks also trade-off immediate vs.
future expected values. The choice to forage leads to a zero IEV. The action value of choosing to
forage is entirely an FEV. Foraging tasks differ from the tasks considered above, because their
state spaces have a recursive structure and the state is observed, not inferred from information
bearing observations. The tasks loop through their recursive state spaces over and over again.
The choice is defined as a comparison between current and future stochastic offers. The current
offer can be to stay in the patch and collect an approximately known, decreasing reward, or take
the current pair of gambles that have been offered. The future stochastic offer can be explicitly
calculated from the information given. It is either the value of a new patch, given the current
travel time, or the expected value of the decision stage for the set of gambles that can be drawn
from the current set. These average values are fixed with a sufficient time horizon. Therefore the
strategy is to either stay in the current patch until the reward value drops below the value of
leaving, or to sample gambles until the sampled gamble is worth more than the expected value
of future samples. In foraging tasks there is generally no updating of distribution estimates, and
therefore foraging differs fundamentally from exploration, in this respect.

Factors driving choice strategies across tasks

There are two important factors that drive choice preferences across these tasks. The first is un-
certainty, and the second is the time horizon. Uncertainty affects these models in two ways.
First, in bandit tasks when novel options are available, or equivalently when non-stationary op-
tions have not been explored for some time, the distribution of possible reward values is broad
and uncertainty is high. Therefore, sampling the options a few times to learn about them is
valuable, given a sufficient time horizon. The value of this uncertainty is driven by the future
expected value. The sampling itself, however, decreases uncertainty about the options. When
one learns that an option either is, or is not valuable, then one can act accordingly. Thus, in-
creased uncertainty drives value through the FEV. Because we used models that maximize ex-
pected reward, uncertainty does not affect IEV. However, as uncertainty can lead to a larger
FEV, decreasing uncertainty and therefore decreasing FEV increases the relative importance of
IEV on the total action value. The same reasoning applies to the information sampling tasks.
As long as uncertainty is high, the FEV is high. When uncertainty is decreased, however, the
IEV of guessing an urn becomes larger. Interestingly, and in contrast to this, increasing uncer-
tainty in temporal-discounting tasks actually decreases preference for delayed, larger rewards
[5]. (Temporal-discounting tasks are tasks in which subjects are offered a choice between an
immediate smaller reward and a delayed larger reward.) This is because of the state space of
temporal-discounting tasks. One can model temporal discounting tasks using an MDP
which, at each time step, includes the possibility of exiting the path to the reward and terminat-
ing in a state with no reward, with some probability. If this probability of terminating in a
no reward state increases, it becomes less likely that one will get to the reward, for a fixed
delay to the reward. Interestingly, this is thought to be a fundamental factor that drives crime
[39].

Time horizon is also important. In infinite horizon problems the time horizon is controlled
by the discount parameter. In bandit problems, the time horizon affects the relative value of
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a(1,1), r(1,1) = 1000
a(2,1), r(2,1) = 1

a(1,2),r(1,2) =1

Fig 8. Example MDP. Note that from state 1, picking action 1 leads to a reward of 1000, and a deterministic
transition to state 2. Picking action 2 from state 1 leads to a reward of 1 and a deterministic transition to state
2. Only one action is available in state 2. It leads to a reward of 1 and a deterministic self-transition.

doi:10.1371/journal.pcbi.1004164.9008

exploration. In stationary problems the time-horizon affects the relative value of exploring
novel or unknown options. Longer time-horizons, or discount parameters closer to 1, increase
the value of exploration. In non-stationary environments this relationship is more complex, as
the non-stationarity limits the effective time-horizon of any policy. In foraging tasks, however,
time horizon is also important. In undiscounted infinite horizon problems, travel times are ir-
relevant. If one has an infinite, undiscounted time horizon, then any finite travel time does not
affect value. In the non-stationary bandit task, when the discount parameter approaches one,
the algorithm samples options with lower means more often. As another example, consider the
simplified MDP shown in Fig. 8. The undiscounted, infinite horizon solution to this problem
does not favor action 1 over action 2 [40] because the relative value of this initial transient re-
ward will be zero in the infinite time limit. Methods such as sensitive discount optimality exist
to deal with such situations, although these can only be applied to tractable state spaces [40].
However, a discounted MDP favors action 1, in this case. This suggests that temporal discount-
ing, in some form, is ubiquitous because it is always biologically (or computationally) relevant.
Whether discounting is specifically exponential or hyperbolic, or takes on some other form is
less the issue. More important is some sort of monotonic decrease in the value of future re-
wards with distance into the future.

Conclusion

The explore-exploit trade-off is often modeled with heuristics. A strong criticism of heuristics
is that they explain no more than they assume, and tell us no more than the data does [28].
Heuristics, however, can provide reasonable solutions to engineering problems, often provide
insight into patterns in the data, and may better approximate behavior than normative models
[15]. For example, recent work has explicitly examined the role of noisy vs. directed explora-
tion, and found that human subjects use both directed and noisy exploration strategies [31]. In
some cases, however, heuristics can be difficult to interpret. For example, the beta or inverse
temperature parameter in delta-rule reinforcement learning (DRRL) is often thought to control
the “explore-exploit” trade-off. This parameter can only control noise in choice processes,
however, and standard implementations of DRRL do not turn this noise down as reward values
are learned. Therefore, exploration cannot be differentiated from noise in the choice process
using this parameter and poor learning looks like exploration. Several more sophisticated vari-
ants including Thompson sampling [41,42] and related algorithms [43], however, decrease ex-
ploration with learning and can achieve minimal regret.

In an MDP framework exploration need not be undirected or noisy. Exploration can be an
intentional, directed, normative strategy if there is sufficient knowledge of the environment
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and the agent has sufficient computational resources. One does not necessarily explore so
much as one learns or accumulates information (bandit or information sampling tasks) until
the additional information indicates that an alternative choice is better. Every choice delivers
some information, because one is always transitioning through states as choices deliver infor-
mation in these tasks. Equivalently, leaving the current patch in a foraging task is an explicit
calculation of the relative value of traveling to a new patch, the expected value of which is
characterized by some probability distribution over patch values. It is possible that animals
have relatively unsophisticated strategies for dealing with these issues. It seems likely, howev-
er, that they have developed at least a good approximation to the underlying normative utili-
ties, at least in tasks that match the animal’s ecological nitch or on which the animals have
extensive experience.

Methods
Markov decision processes

We modeled the tasks using markov decision processes with either observable (MDP) or par-
tially observable (POMDP) states. Tasks were modeled as finite or infinite horizon, discrete
time, and discounted (i.e. with a discount parameter ¥ < 1) or undiscounted (i.e. with a dis-
count parameter ¥ = 1) as indicated in the manuscript. Some models also included a cost-to-
sample. For discrete state models the utility, u, of a state, s, at time t is

u(s) = maz,, {r(s,a) + Cls,a) + 7Y p(ls.a)u., ()} (1)

jes

where A, is the set of available actions in state s at time t, r(s,) is the reward that will be ob-
tained in state s at time t if action a is taken. The variable C(s,,@) is a cost-to-sample, which
may be zero. The summation on j is taken over the set of possible subsequent states, S at time t
+1. It is the expected future utility, taken across the transition probability distribution p(j|s,c).
The transition probability is the probability of transitioning into each state j from the current
state, s if one takes action a. The y term represents a discount factor. The terms inside the curly
brackets are the action value, Q(s,@) = r(s,@) + C(sp0) + YZjcp(j|s») 111 (), for each available
action. For continuous state models the utility is

(5) = mascy, {1(500) + Clsa) +7 [ p(ls )i 6))

All state integrals over continuous states were calculated with discrete approximations. Equa-
tions 1 and 2 assume a reward maximizing agent, through the max operator.

For discrete state, finite horizon models with tractable state spaces, we used the backward
induction algorithm to calculate utilities and action values [28]. This was done for the 2-armed
stationary bandit, beads and sampling foraging tasks. With a finite horizon the final state deliv-
ers a reward, but no further actions are possible. Therefore, if we start by defining the utilities
of the final states, we can work backwards and define the utilities of all previous states. Specifi-
cally, the algorithm proceeds as follows [40], where N is the final state.

1.Sett=N

uy(sy) = r(sy) forallsyeN.
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2. Substitute t-1 for t and compute

u,(s,) = max {r(sm a)+C(s,,a) +7 ZP(”SH a)u, (])}

acA,
t jes

Set

A, = arg maz {T(SH a) +C(s,,a) +7 Y pljls., a)um(j)}

acA,
St jes

3.1f t = 1 stop, otherwise return to 2.

The non-stationary 2-armed bandit, novelty and patch-leaving foraging tasks were modeled
as infinite horizon POMDPs or MDPs. The utilities were fit using the value iteration algorithm
[40]. This algorithm proceeds as follows. First, the vector of utilities across states, v°, was initial-
ized to random values. We set the iteration index, n = 0. Then computed:

= s (s 7 D s, ) g

nt1 " and exam-

After each iteration we calculated the change in the value estimate, Av = v
ined either ||Av||< € or span(Av) <€&. The span is defined as.span(v) = maxcs v(s)—mingcg v
(s) For infinite horizon undiscounted models the value continues to grow with iterations of
equation 3, but the spans converge [40]. This is because the final state values are the average
costs per stage plus a differential. This only applied to the foraging patch leaving example with
discount parameter equal to 1. We only examined differential values, in that case, so the aver-
age cost per stage is subtracted out, because it is added to all states.

We also used approximate methods for the non-stationary 2-armed bandit and the novelty
task, as their state spaces were intractable over relevant time horizons. For these POMDPs we

defined a basis, and then approximated the utility with
. M
W)=, ad(s). (4)

In all cases we used fixed basis functions so we could calculate the basis coefficients, a; using
least squares techniques. We assembled a matrix ¢;; = ¢;(s;), which contains the values of the
basis functions for specific states, s;. We then calculated a projection matrix

H=0®0) '@ (5)
And calculated the approximation
v = Hw. (6)

The bold indicates the vector over states, or the sampled states at which we computed the ap-
proximation. When using the approximation in the value iteration algorithm, we first compute
the approximation,v. We then plug the approximation into the right hand side of equation 3,

vt = maz,., {r(s, a) + 72 s PUlsi a)v" (j) } We then calculate approximations to the

new values »"*' = Hy"™'. This is repeated until convergence.

For basis functions we used piece-wise polynomials and/or b-splines [44]. For b-splines see
[44]. For piecewise polynomials, the first basis functions are given by h,(x) = x"". For an order
K spline (i.e. for cubic K = 3), i goes from 1 to K+1. In addition to these global polynomials, we
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also add hj(x) = (x—tj)K for the J knots, ;. Because all of the state spaces were multidimensional
and the piece-wise polynomial basis varied between knots, we also had to compute products of
the basis functions across dimensions. Computing the full tensor product basis space was usu-
ally intractable. It created a projection matrix that either could not be stored in memory or iter-
ation over the very large projection matrix was so slow that the algorithm would not converge
in a reasonable amount of time. Therefore we started with linear terms and added interaction
terms of increasing order (i.e. second order, third order, . . .) until the approximation stopped
improving. We did not find an improvement by going beyond the quadratic terms.

Knot locations were explored systematically to find locations that led to good approxima-
tions. Approximations were checked in several ways. First, we plotted v"** vs. 9" to see that
they were consistent after convergence, as well as checking the variance of the residual. Second,
we added knots to see if the fit was improved. Third, we increased the order of the polynomial
to see if the fit was improved. Cubic polynomials (i.e. K = 3) were used in all cases. When the
order was increased beyond cubic the value iteration often diverged. Finally, performance of
the approximate inference MDP for the novelty task could be compared to a corresponding fi-
nite horizon model, at least for short time horizons to see if they made consistent predictions.

For the novelty task, the numerics were easier to implement if we approximated the number
of samples for each option (N) and the probability that it was rewarded (p). We used a 3rd
order B-spline basis. Knot locations for N were 0 and 150, and the algorithm was optimized at
(using Matlab colon operator notation) N = ¢%#* and p = 0: 0.25: 1. The N values were not inte-
gers, but this does not affect evaluation of the value function. Interactions up to second order
were included. For the non-stationary two-armed bandit, the means were fit with a 3" order B-
spline, and the standard deviations were fit with a 2nd order piece-wise polynomial. This ap-
proach gave well-behaved value functions. The node locations for the means were given by -30
50 and 130. The means were evaluated at 0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100. The node loca-
tions for the standard deviations were given by 0.25, 1, 3, 5, and 15. The standard deviations
were evaluated at 0.5, 1, 2, 3,4, 5, 7 and 14. Interactions between all basis functions up to sec-
ond order were included in the model.

Task specific details of the MPD models

The stationary two-armed bandit task. In the stationary two-armed bandit task one can
select one of two possible bandits (actions) in each trial. Each bandit pays out with some fixed,
stationary probability, and the reward amount is always the same. We modeled the task with a
finite horizon, finite state, undiscounted POMDP. The state space is a discrete information
state, therefore the underlying model is a discrete MDP. The state space is given by the number
of times each option is chosen, and the number of times each option is rewarded, including
prior information. This state space grows with trials, limiting the time horizon that can be
modeled. We use lower case to indicate actual choices and rewards (ry, ¢y, 15, ¢;), and upper
case to indicate posterior expected values, that incorporate prior information about choices
and rewards (R;, Cy, R,, C,). For a single option, assuming a beta(a.,B) prior, the expected pos-

otr;

o+t

Zi; State transitions are given by q. If option i

terior reward probability, g, is (q|R,, C) = & = . The expected reward for each option

under a beta(1,1) prior is< r(s,,a = i) >=¢q =
is chosen, there is a transition to R;+1,C;+1 with probability R;/C; and there is a transition to R;,
C:+1 with probability 1-R;/C,;. Utilities for this model can be calculated using backwards
induction.

The non-stationary two-armed bandit task. In this task there are again two bandit op-
tions. The reward delivered by each bandit is continuous, and the expected reward follows a de-
caying random walk. We modeled this task using an infinite horizon, continuous state,
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discounted, POMDP. In this case the information state is continuous, so the model is more
complex than the previous POMDPs. The utilities were modeled using a basis approximation.
The state space is an information space given by the current estimate of the mean and variance
of the payout for each bandit [45]. We used the state transition model given in the original pub-
lication [9], except we only modeled two bandits to constrain the dimensionality of the model
and make it tractable. The mean of the reward payout is given by a decaying random walk:

x(t) =Jx,(t — 1)+ (1 —2)0 +n, (7)
The payout is given by:
yi(t) = x(t) +n, (8)

With 7, ~N (0,02 = 7.84),n,~N (0, g, = 16) A =0.9836 and 6 = 50. Both noise distributions

were i.i.d. A Kalman filter can be used to track the mean for this model. The Kalman filter up-
date for the mean and variance of the chosen option, following a reward, y;(t),is given by:

Xt 4+ 1) = x,(8) + 1, (0n(8) — x,(1)) (©)

K, = 6.,/(6;, + )

6;'2,t+1 = (1 - Klﬂ,t)a—z?.t
And for the unchosen option
X(t+1) =)+ (1-1)0 (10)
6?.t+1 = j'26-1'21 + O-;Zc

The information state is all past observed outcomes [45]. Because the non-stationary bandit
model is Gaussian, however, the sufficient statistics are given by the mean and variance of the
Gaussian distribution for each bandit. Therefore the information space for this POMDP, equiv-
alent to the state space for the MDP, can be compactly represented: b, = (i, 6, [t,, 6,) as the
estimated mean and standard deviation (or variance) of each bandit. We do not have to retain
all past outcomes, and the size of the information state space does not grow with time. For this
model, the utility equation requires computation of an expectation over the observed variable
given the information state. Specifically,

“GAst

ulb) = mao {150, 7 [ p0rlb ol 00 1)
yeS
This integral was calculated numerically by discretizing y over +/- 2 standard deviations, and

sampling 10 points. Increasing the range of y or density of sampling had minimal impact on
the result. The reward expectation is given by:

5. = [ s, alpla o) (12)

which is the mean of the Gaussian. The distribution over observed values is given by:

pslbna) = [ [ pOilsa)plo 5 b)plb s, (13
X[+l X!
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Because of the linear Gaussian statistics, the integral in 16, which calculates the marginal distri-
bution of x;,; and y;; gives y,,,~N(%,(t +1),6;,,, + ¢%)) and x,, ~N(x,(t + 1),67,,,) [46].
The novelty task. The novelty task is a 3-armed bandit task. As with the 2-armed bandit,
the options are rewarded with different probabilities but the amount of reward is always 1. The
reward probabilities for each bandit are stationary while that option is available. On each trial
there is a 5% chance that one of the bandit options will be replaced with a new option. We have
previously modeled this task with a truncated time horizon [5]. However, the exploration
bonus increases with increasing time horizon. Therefore we wanted an approach that allowed
us to examine longer time horizons. We used approximate methods to fit an infinite horizon,
discrete state, discounted POMDP. The underlying model is, however, a discrete MDP. The
state space is the number of times each option has been chosen, and the number of times it has
been rewarded, s, = {R;, Cy, R,, C,, R3, C5}. This state space was approximated using a continu-
ous approximation sampled discretely. The immediate reward estimate is given by the maxi-
mum a-posteriori estimate, r(s,,a = i) = ;% The set of possible next states, s, is given by

the chosen target, whether or not it is rewarded, and whether one of the options is replaced
with a novel option [5]. Thus, each state leads to 21 unique subsequent states. We define gi =
rd(sp0r = i), and pgywitcn = 0.05, as the probability of a novel substitution. The transition to a sub-
sequent state without a novel choice substitution and no reward is given by:

p(...,C+1LR,...ls,=[..,C,R,...],a=choosei) = (1 — g)(1 — p.irc)
and for reward by

p(..,CH+LR+1,...|s,=[..,C,R,...],a = choosei) = q,(1 — P 1)

i N

When a novel option was introduced, it could replace the chosen stimulus, or one of the other
two stimuli. In this case if the chosen target, i, was not rewarded and a different target, j, was re-
placed, we have

pt(. .G+ LR, C=0,R =0[s,=[..,C,R,...],a= choosei) = (1 = q,)Psirer/3

and if the chosen target was not rewarded and was replaced
p(...,C=0,R,=0,...]s,=1...,C,R,...],a = choosei) = (1 — g,)P.icn/3
And correspondingly, following a reward and replacement of a different target, j, we have

pt(...,Ci—l— LR+1,C=0,R=0|s,=[..,C,R,...J,a= choosei) = qPoviren] 3

and

p(...,C.=0,R,=0,...]s,=[...,C,R,,...],a = choosei) = qp, /3
Note that when a novel option is substituted for the chosen stimulus, the same subsequent
state is reached with or without a reward.

The beads task. In the beads task, the goal is to infer which of two urns is being drawn
from, given a sequence of draws from one of the urns [4]. The proportion of beads in the urns
is given. Beads are drawn from one of the urns, one at a time. After each bead is drawn, one can
either guess that the urn with mostly blue beads is being drawn from, or that the urn with
mostly orange beads is being drawn from, or one can ask to see another bead. We modeled the
task as a finite horizon, discrete state, undiscounted POMDP. Because the information state
space is discrete (i.e. outcomes can only be blue or orange beads) the underlying model is given
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by a discrete state MDP. For the current simulations the ratio of beads in the urns was always
60/40. The maximum number of beads that could be drawn was 12. The reward for being cor-
rect was 1, and the penalty for being wrong was 0, and the cost to sample was -0.005. The state
space is given by the number of draws (#,), and the number of blue (#,) beads that have been
drawn, s, = {n4,n,}. For guessing the blue urn, a = blue, we have:

r(s,,a = blue) = Cp, + Cp, (14)

where C, is the cost of an error (0 for the results here) and C. is the reward for being correct,
which we set to 1. The probability that we are drawing from the blue urn py, is given by

(ng=2mp)] 1
_1
1+ (1 — q) ] (15)

where q is the fraction of beads in the majority urn. The probability of the orange urn, p,, is
then 1-p;,. The second term in equation 1, which is the value of the next state, is 0 for choosing
either blue or orange urns, because choosing an urn terminates the sequence. For drawing
again, a = draw, we have

Q(s;,a =draw) = C + Zjesp(ﬂs” a)”tﬂ(i) (16)

by =

where C; is the cost of drawing (-0.005 unless otherwise stated). From a given state, sy, if one
draws again, one draws either a blue or an orange bead, so the two subsequent states are, s;,; =
ng+1, ny+1 if a blue bead is drawn or s, ; = ng+1, ny, if not. And the transition probabilities are

p(n;+1,n,+1 |s, = [ny,n,],a = draw) = qp, + (1 — q)p,, and

pt(nd + lanb |St = [ndvnb]va = draw) = (1 - q)pb +qp,-

Patch foraging task. The state spaces for the foraging tasks are shown in Figs. 6A and 7A.
We modeled the patch leaving task [19], as an infinite horizon discrete state MDP. We exam-
ined both discounted and undiscounted cases. The state space was given by the current juice
level, the current travel delay, travel time (0 if not traveling), reward delay time (0 if not in the
reward delay) and inter-trial interval (ITT) time (0 if not in the ITI). To simplify the state space
we used a time-scale of 100 ms, and juice units of 20 pL. The ITI (1500 ms), travel (variable
from 500 ms to 10,500 ms) and reward (400 ms) delays were modeled as a series of states with
deterministic transitions. These are not shown explicitly in Fig. 6A. Thus, one always transi-
tioned from ITI; to ITL, . .. to ITI;5 (i.e. a 1500 ms ITI), and then transitioned from ITI,5 to
the choice state. There was a corresponding sequence of deterministic transitions for the travel
and reward delays, both of which terminated in the ITI. The final state of the reward delay de-
livered a reward amount equal to the current reward. In this way, time was modeled explicitly.
Reward was deterministically, not stochastically, reduced by 20 ul per choice to stay in the cur-
rent patch, to simplify the model. The choice state was the only state that had more than one
action available, and at that point one could stay in the current patch, or travel to a new patch.
The only stochastic transition in the model was the transition to a new travel delay for the new
patch, after the current patch was left. The probability of transitioning to each of the travel de-
lays was uniform. Thus, p(travel delay = i|s,a = leave patch) = 1/11, with 11 travel delays
(500 ms to 10500 ms with 1000 ms intervals).

Foraging by sampling task. In the foraging by sampling task, subjects are shown a set of 6
gambles for each foraging bout [18]. Each gamble has a different reward associated with it. At

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004164 March 27,2015 24/28



®PLOS

COMPUTATIONAL

BIOLOGY

Theory of Choice

each point, two gambles are sampled as a pair from the 6 and offered to the subjects. If the sub-
jects reject the current pair, that pair is returned to the set, and a new pair of gambles is sam-
pled from the set of 6. If subjects accept the gamble, they move on to a decision stage. In the
decision stage subjects are told the probability that gamble 1 of the pair will pay out its reward
and the probability that gamble two will pay out its reward. The subjects then have to select ei-
ther gamble 1 or gamble 2 from the pair. They are then told whether or not they “won” on that
trial. They then return to a new gambling bout, with 6 new individual gambles.

For this task [18], we only modeled the foraging stage. The decision stage is deterministic. It
is assumed that subjects will select the option that has the highest expected value in that stage.
We modeled the task using a finite horizon (60 sample max), undiscounted, discrete state
MDP. The horizon could be shortened because of the cost-to-sample, but the state space for
this task is small and the algorithm runs quickly. Utilities were modeled using backwards in-
duction. The average values define the utilities in the last state (i.e. trial 60) where it is assumed
the subjects would have to take the gamble on offer, and then these utilities were propagated
backwards to the current trial. The state space was given by the number of combinations of
gambles because at each point in the foraging stage, one pair was on offer. The 6 individual
gambles leads to 15 pairs of gambles, assuming sampling without replacement from the gam-
bles on offer, and combining symmetric pairs (i.e. gamble 2,3 is the same as gamble 3,2). Indi-
vidual gambles ranged in value from 20 to 130 units in steps of 10. The cost to sample, C,, was
set at its expected value, -7 points. From each state, subjects could choose to engage the current
gamble, which led to the decision stage and the end of the foraging bout, or they could sample
again, in which case they transitioned to a new gamble pair, that was sampled uniformly from
the pairs of possible gambles. Thus, p(s; = i|spa = sample) = 1/15. The expected value of each
gamble pair was not given by the average of the two gambles, or by the max of the average
value of each gamble. Rather, the expected value of a given pair was given by:

0.9 0.9
<r(s =g,8) >= / / max(g,p;, g,p,)dp, dp,- (17)
0.2 0.2 ’

This is because it is assumed that the subjects will select the gamble with the highest expected
value. Therefore the probabilities operate under the max operator.

Gittins indices and bandit tasks. It is also possible to use Gittins indices to select optimal
actions in stationary bandit tasks [47]. Gittins indices (GI), or dynamic allocation indices,
allow one to separate multi-armed bandit problems into a set of single armed bandit problems.
The state value of each bandit is compared to a reference process. Because multi-armed bandits
can be separated into single-armed bandit problems, the state space over which one calculates
values is considerably smaller. However, computing the indices is more complicated for each
single bandit. In addition, the indices can only be calculated over a finite horizon, so infinite
horizon, undiscounted estimates cannot be obtained. Because of the simplified states, however,
relatively long time horizons can be examined. Therefore, we describe here a basic calculation,
based on the restart formulation given by Katehakis and Veinott [48]. We do not give any re-
sults, as they have been tabled previous [24,48]. For the stationary n-armed bandit task, the GI
for state i, of a single bandit can be estimated by finding the fixed point of:

ut(st) = maXaEAS‘ {Q(Sn a)v Q(St =1, a)} (18)

The fixed point can be found with value iteration, as was done above. The strategy is to plug in
a state, 1, solve equation 18 using value iteration, and then use u(s; = i) as the GI for that state.
This must be done for every state for which an index is required. Not that the action set here is
only over the single bandit vs. the reference action, and not the set of bandits. Therefore, the
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indexes are valid for n bandits, once computed for a single bandit. After the GIs are calculated
for all the states, one chooses the bandit whose GI is the largest, given its state in each trial. The
GlIs are not, however, value estimates.
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