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ABSTRACT Type 2 diabetes (T2D) is a complex metabolic syndrome characterized
by insulin dysfunction and abnormalities in glucose and lipid metabolism. The gut
microbiome has been recently identified as an important factor for development of
T2D. In this study, a total of 102 subjects were recruited, and we have looked at the
gut microbiota of prediabetics (PreDMs) (n � 17), newly diagnosed diabetics
(NewDMs) (n � 11), and diabetics on antidiabetic treatment (KnownDMs) (n � 39)
and compared them with healthy nondiabetics (ND) (n � 35). Twenty-five different
serum biomarkers were measured to assess the status of diabetes and their associa-
tion with gut microbiota. Our analysis revealed nine different genera as differentially
abundant in four study groups. Among them, Akkermansia, Blautia, and Ruminococ-
cus were found to be significantly (P � 0.05) decreased, while Lactobacillus was in-
creased in NewDMs compared to ND and recovered in KnownDMs. Akkermansia was
inversely correlated with HbA1c and positively correlated with total antioxidants.
Compared to ND, there was increased abundance of Megasphaera, Escherichia, and
Acidaminococcus and decreased abundance of Sutterella in KnownDMs. Among many
taxa known to act as community drivers during disease progression, we observed
genus Sutterella as a common driver taxon among all diabetic groups. On the basis
of the results of random forest analysis, we found that the genera Akkermansia and
Sutterella and that the serum metabolites fasting glucose, HbA1c, methionine, and
total antioxidants were highly discriminative factors among studied groups. Taken
together, our data revealed that gut microbial diversity of NewDMs but not of
PreDMs is significantly different from that of ND. Interestingly, after antidiabetic
treatment, the microbial diversity of KnownDMs tends to recover toward that of ND.

IMPORTANCE Gut microbiota is considered to play a role in disease progression,
and previous studies have reported an association of microbiome dysbiosis with
T2D. In this study, we have attempted to investigate gut microbiota of ND, PreDMs,
NewDMs, and KnownDMs. We found that the genera Akkermansia and Blautia de-
creased significantly (P � 0.05) in treatment-naive diabetics and were restored in
KnownDMs on antidiabetic treatment. To the best of our knowledge, comparative
studies on shifts in the microbial community in individuals of different diabetic
states are lacking. Understanding the transition of microbiota and its association
with serum biomarkers in diabetics with different disease states may pave the way
for new therapeutic approaches for T2D.
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Type 2 diabetes (T2D) is a global epidemic; it has been estimated that 450 million
people will be affected by this metabolic disorder by 2025 (1). In addition to host

genetics, environmental factors, and sedentary lifestyle (2), gut microbiota has turned
out to be an important contributor for development of T2D (3–6). T2D is characterized
by hyperglycemia, insulin resistance, and insufficient insulin secretion and is associated
with disturbed glucose, lipid, and amino acid metabolism (7–9). In particular, high levels
of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) have been
associated with a high risk of developing insulin resistance (10). Oxidative stress is also
known to be involved in the development of insulin resistance and, more importantly,
in the development of diabetic complications (11). Over the past decade, significant
efforts are being made to map the structural and functional attributes of human gut
microbial communities to understand the disease progression (12, 13). Throughout life,
the gut microbiota acts as a sensory hub, responding to both intrinsic and extrinsic
stimuli affecting host physiology within and outside the gut (14). Disruption of a
delicate balance among the gut microbes has been linked to the development of
metabolic diseases and particularly T2D (5), obesity (15), and cardiovascular disorders
(16). Most of the earlier studies have reported differences between the gut microbiome
of diabetics, prediabetics, and healthy nondiabetic individuals (6, 17), and very few have
examined gut microbiome of treatment-naive T2D individuals (18, 19).

In this study, we have analyzed the gut microbiome of ND, PreDMs, NewDMs, and
KnownDMs to understand and identify differences in the microbial community asso-
ciated with T2D and prediabetes. In addition, we also looked at the community changes
in microbial association networks and identified driver genera for the transition from
healthy (control) to diabetic state. Further, we analyzed the association of a wide array
of serum biomarkers with genera, which were differentially abundant and were also
found to be driver taxa.

RESULTS
Analysis of serum biomarkers. To understand pathophysiological condition of

diabetic subjects, 25 different serum biomarkers relevant to T2D were assessed in all
groups. Compared to ND, fasting glucose level in PreDMs (P � 0.0006), NewDMs (P �

0.0001), and KnownDMs (P � 0.0001) and HbA1c level in PreDMs (P � 0.0001), NewDMs
(P � 0.0001), and KnownDMs (P � 0.0001) were found to be significantly higher. Sim-
ilarly, in the lipid profile, triglycerides and very low-density lipoprotein (VLDL) choles-
terol increased significantly in NewDMs (P � 0.0065 and P � 0.0056, respectively) and
KnownDMs (P � 0.039 and P � 0.035, respectively), but not in PreDMs compared to ND.
High-density lipoprotein (HDL) cholesterol decreased significantly in NewDMs
(P � 0.029) and KnownDMs (P � 0.022) compared to ND. The level of apolipoprotein A1
(P � 0.0003) was found to be significantly lower in NewDMs compared to ND, while it
remained unchanged in PreDMs and KnownDMs (Table 1). The level of folic acid was
found to be increased significantly only in KnownDMs compared to ND (P � 0.031).
Eight different amino acids were analyzed in the serum of all four groups. Among these
eight amino acids, tyrosine (P � 0.0001), tryptophan (P � 0.0001), valine (P � 0.0009),
leucine (P � 0.0001), and methionine (P � 0.014) were found to be significantly
increased, while histidine (P � 0.02) was found to be decreased in NewDMs compared
to ND. In PreDMs, only methionine was found to be decreased (P � 0.033) compared to
ND. In KnownDMs, only four amino acids, namely, tyrosine (P � 0.0001), tryptophan
(P � 0.0036), isoleucine (P � 0.003) and leucine (P � 0.014) were found to be signifi-
cantly increased compared to ND. Interleukin 6 (IL-6), a marker of inflammation was
significantly higher in all three groups, namely, PreDMs (P � 0.0098), NewDMs
(P � 0.0014), and KnownDMs (P � 0.0001) compared to ND, and lipopolysaccharide
(LPS), a bacterial endotoxin, was found to be significantly increased only in NewDMs
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(P � 0.0041) compared to ND. Adiponectin did not change in any group compared to
ND. Lipid peroxides, a marker for oxidative damage, were found to be significantly
increased in both NewDMs (P � 0.0008) and KnownDMs (P � 0.0014) but not in PreDMs
compared to ND, while total antioxidant capacity was found to be significantly
(P � 0.029) low only in NewDMs compared to ND (Table 1).

Microbial diversity analysis and identification of differentially abundant mi-
crobial signatures. A total of nearly 44 million (43,902,890) high-quality sequences
were retained after removal of low-quality sequences for taxonomic classification with
average sequence reads of 430,420.49 � 239,742.68 per sample (see Table S1 in the
supplemental material). A total of 12,827 operational taxonomic units (OTUs) were
observed from all four study groups after removing singleton OTUs. Taxonomic assign-
ment was performed using a 97% similarity cutoff with Greengenes reference database
v13_8. Good’s coverage of �99% indicated a high degree of sequence coverage. In
alpha diversity analysis, nonparametric indices such as the number of observed OTUs
for richness and Simpson index for evenness were calculated. The observed number of
OTUs showed that alpha diversity decreased significantly in NewDMs compared to ND
(P � 0.0055) and KnownDMs (P � 0.0011), whereas a significant difference was not
observed between KnownDMs and ND (Fig. 1A). Simpson index showed a signifi-
cant increase in alpha diversity only in KnownDMs compared to ND (P � 0.0002)
(Fig. 1A). Overall bacterial community composition was analyzed by using gener-
alized UniFrac distances (20) followed by permutational multivariate analysis of
variance (PERMANOVA) test (R � 0.07, P � 0.001) (Fig. 1B). The distance matrix is
combined with unweighted and weighted UniFrac distances in a common structure
and therefore is able to provide a much wider range of biologically appropriate
changes. Two distinct clusters of KnownDMs and NewDMs were observed, whereas
PreDMs formed an overlapping cluster with ND, indicating that the bacterial diversity
of PreDMs is similar to that of ND. Interestingly, the diversity cluster of KnownDMs was
found to be close to ND compared to NewDMs. Significant differences in bacteria
belonging to five phyla, namely, Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria,
and Verrucomicrobia, were observed in the gut microbiota of diabetic subjects (Fig. 2).
Bacteria belonging to the phyla Firmicutes and Proteobacteria were significantly in-
creased, whereas those from Bacteroidetes were significantly reduced in NewDMs
(P � 0.0009 and log2 fold change [log2 FC] � 1.09, P � 0.001 and log2 FC � 1.51, and
P � 0.007 and log2 FC � �0.62, respectively) and KnownDMs (P � 0.0009 and log2

FC � 0.58, P � 0.006 and log2 FC � 0.99, and P � 0.0009 and log2 FC � �0.37, respec-
tively) compared to ND (Fig. 2 and Table S2). The ratio of Firmicutes to Bacteroidetes was
calculated for all study groups. It was 1:4.94 for ND and 1:4.24 for PreDMs, and it
changed significantly in NewDMs to 1:1.49. In KnownDMs on antidiabetic treatment, it
was found to be changed to 1:1.23 (Table S3). The phylum Verrucomicrobia was found
to be significantly decreased in NewDMs compared to ND (P � 0.0009 and log2 FC �

�14.2). In KnownDMs, the phylum Actinobacteria was found to be significantly in-
creased compared to ND (P � 0.011 and log2 FC � 1.16). A total of 1,127 OTUs were
found to be significantly different in four study groups (P � 0.05). Of these OTUs, 10
OTUs belong to genus Akkermansia, 36 to Prevotella, 74 to Blautia, 24 to Ruminococcus,
45 to Escherichia, 50 to Lactobacillus, 4 to Megasphaera, 3 to Sutterella and 5 to
Acidaminococcus (Table S4). In all the study groups, 519 genera were identified after
merging all the OTUs belonging to the same genus, though they differed in their
abundance. Of these genera, Prevotella, Megasphaera, Akkermansia, Escherichia, Sutter-
ella, Lactobacillus, Acidaminococcus, Blautia, and Ruminococcus were found to have
higher abundance than other genera in all four groups (Fig. 3). In NewDMs, Akkerman-
sia, Blautia, and Ruminococcus showed significantly decreased abundance (P � 0.0009
and log2 FC � �14.2, P � 0.0009 and log2 FC � �2.52, and P � 0.006 and log2 FC �

�0.39, respectively), and a similar trend was observed for Prevotella (P � 0.054 and not
significant), one of the dominant genera found in Indian gut (19, 21, 22), while
Lactobacillus (P � 0.01 and log2 FC � 5.27) showed increased abundance compared to
ND. Significantly increased abundance of Megasphaera (P � 0.005 and log2 FC � 1.42),

Gaike et al.

March/April 2020 Volume 5 Issue 2 e00578-19 msystems.asm.org 4

https://msystems.asm.org


Escherichia (P � 0.003 and log2 FC � 1.96), and Acidaminococcus (P � 0.008 and log2

FC � 2.90) and decreased abundance of Sutterella (P � 0.003 and log2 FC � �0.66), was
observed in KnownDMs compared to ND. In KnownDMs, increased abundance of
Akkermansia was observed compared to NewDMs (P � 0.0009 and log2 FC � 13.48)
(Fig. 3 and Table S2).

Random forest analysis. We used random forest analysis to identify differentially
abundant or most discriminant features of microbiome and serum metabolites associ-
ated with the disease. Analyzing the microbial features, we found that Akkermansia and
Sutterella are highly discriminative genera among four study groups with the highest
mean decrease score (see Fig. S1A in the supplemental material). Among the serum
biomarkers, fasting glucose, HbA1c, methionine, and total antioxidants are found to be
highly discriminative parameters with the highest mean decrease score among four
study groups (Fig. S1B).

Taxonomic distributions of rare bacteria. It is well-known that low-abundance
“rare” members of the bacterial communities in any ecosystem, including the human
gut, are extremely divergent and can play major roles in various metabolic processes
(23). Therefore, we investigated “rare” phylotypes which have an abundance of less

FIG 1 (A) Alpha diversity analysis across all four groups, ND, PreDMs, NewDMs, and KnownDMs. Alpha
diversity measures, including the number of observed OTUs and Simpson indices, revealed statistically
significant differences among diabetic groups compared to ND. Pairwise comparisons were analyzed
using a Mann-Whitney nonparametric test. P � 0.05. Solid black circles indicate the sample outliers. (B)
Beta diversity analysis of the microbiota across four study groups. Principal-coordinate analysis (PCoA)
based on generalized UniFrac distances between the samples, followed by PERMANOVA test (R � 0.07
and P � 0.001).
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than 0.01% in the total population (23). In the community analysis, of the total number
of OTUs identified for ND (8,216 OTUs), 7,723 OTUs of rare phylotypes included
Bacteroidetes (64%), Firmicutes (17.6%), Proteobacteria (6%), and Actinobacteria (2.89%).
In PreDMs, of the total number of OTUs identified (5,577 OTUs), 5,092 rare OTUs found
included Bacteroidetes (61.9%), Firmicutes (22.2%), Proteobacteria (8.1%), and Actinobac-
teria (3.4%), whereas in NewDMs, of the total OTUs identified (3,679 OTUs), 3,220 rare
OTUs were found containing Bacteroidetes (41.31%), Firmicutes (38.4%), Proteobacteria
(16.14%), and Actinobacteria (2.6%). In KnownDMs, of the total OTUs identified (10,134
OTUs), 9,570 OTUs were found to be of rare phylotypes and included Firmicutes (55.1%),
Proteobacteria (20%), Bacteroidetes (13.8%), and Actinobacteria (6.8%) (Table S5). On the
basis of the results of this analysis, we observed that the number of rare OTUs increased
in KnownDMs on antidiabetic treatment compared to all other groups.

Identification of driver genera between four study groups based on NetShift
analysis. We generated microbial association networks for ND, PreDMs, NewDMs, and
KnownDMs followed by mining only statistically significant (P � 0.05) positive associ-

FIG 2 Comparison of differentially abundant significant phyla among all study groups. The mean difference test was performed for statistical
significance with FDR correction by the DS-FDR method. P � 0.05.
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ation networks separately using CCREPE (Compositionality Corrected by REnormaliza-
tion and PErmutation) tool (http://huttenhower.sph.harvard.edu/ccrepe). To identify
the driver genera between the case and control, NetShift workflow was performed (24).
Driver genera can be identified based on the NESH score and node size. NESH is a

FIG 3 Comparison of differentially abundant significant genera among all study groups. The mean difference test was performed
for statistical significance with FDR correction by the DS-FDR method. P � 0.05.
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Neighbor Shift score which represents directional changes in individual node associa-
tions, and a node represents each taxon. The node size is proportional to their
respective NESH score, and a node is colored red if its betweenness increases from
control to case. The nodes that are big and red are important community drivers (24).
Comparison of ND (control) and PreDM (case) network (Fig. 4A) revealed Bifidobacte-
rium, Faecalibacterium, Sutterella, and Phascolarctobacterium as the driver nodes (gen-
era) with higher NESH scores (red color and bigger nodes), followed by Bacteroides,
Blautia, Dorea, and Parabacteroides with low NESH scores (red color and smaller nodes)
(Table S6). Among these driver genera, Blautia was found to be positively associated
with major abundant genera such as Akkermansia, Clostridium, and Ruminococcus,
along with other less abundant genera in ND (control). However, in PreDMs, Blautia
showed positive association with Bacteroides, Butyricicoccus, and Faecalibacterium and
not with Akkermansia, Clostridium, and Ruminococcus similar to ND, suggesting that
Blautia may be a community driver for PreDMs. Another major driver Sutterella, which
was found to be associated only with Bacteroides in ND, was associated with many
other genera such as Bacteroides, Bifidobacterium, Butyricicoccus, Faecalibacterium, and
Roseburia in PreDMs. Comparison of ND (control) with NewDMs (case) revealed that
Prevotella, Parabacteroides, Roseburia, Ruminococcus, and Sutterella were found to have
high NESH scored, indicating that these were the driver nodes (Fig. 4B and Table S6).
Sutterella, one of the main drivers, was found to be associated with Bacteroides in ND
and shifted its association in NewDMs with Dorea and Lachnospira. Another driver,
Prevotella, showed association with Dialister and Oscilospira in ND, which was shifted to
Blautia and Clostridium in NewDMs. Similarly, driver Ruminococcus was associated with
Blautia, Clostridium, Coprococcus, and Dorea in the ND group and shifted its association
with Oscilospira and Roseburia in NewDMs. Comparison of ND (control) with KnownDM
(case) network revealed Dialister, Faecalibacterium, Haemophilus, Lachnospira, Phasco-
larctobacterium, Oscillospira, and Sutterella as top driver nodes (high NESH score),
followed by Blautia, Akkermansia, and Streptococcus with low NESH scores (Fig. 4C and
Table S6). In KnownDMs, Sutterella was found to be associated with Bacteroides,
Bifidobacterium, Megasphaera, and Ruminococcus, but in ND, it showed association only
with Bacteroides. Similarly, the genus Akkermansia in KnownDMs was found to be
associated with Clostridium, Dialister, and [Eubacterium], while in ND, it was found to be
associated with many different genera along with Clostridium and [Eubacterium]. Thus,
from these analyses, Sutterella was found to be a common driver genus across three
disease groups. Besides driver genus analysis, identification of core hub communities
among the four study groups was analyzed using NetShift workflow (detailed descrip-
tion of NetShift workflow used for this analysis is mentioned in Text S1 in the
supplemental material) (Fig. S2A to C). We found significant change in core hub
communities in NewDMs, while the core hub communities were similar in PreDMs and
KnownDMs compared to ND.

Association of key taxa with biochemical parameters. For identifying the asso-
ciation of microbial taxa with significantly altered serum biomarkers (P � 0.05), we
selected nine significant (P � 0.05) differentially abundant bacterial genera, namely,
Prevotella, Akkermansia, Blautia, Megasphaera, Escherichia, Lactobacillus, Ruminococcus,
Sutterella, and Acidaminococcus, that were found in all four groups and that were also
identified as driver genera in NetShift analysis by using the Spearman correlation
method (Fig. 5).

An abundance of Prevotella showed positive correlation with histidine (P � 0.025).
Prevotella is one of the most dominant genera found in the Indian gut (19, 21, 22) and
is inversely correlated with glucose, HbA1c, triglycerides, VLDL cholesterol, HDL cho-
lesterol, leucine, tyrosine, methionine, IL-6, and lipid peroxides and positively correlated
with total antioxidants; however, these associations were not found to be significant
(P � 0.05). An abundance of genus Akkermansia showed strong inverse correlation with
fasting glucose (P � 0.04), HbA1c (P � 0.008), leucine (P � 0.04), and tryptophan
(P � 0.002) and a strong positive correlation with histidine (P � 0.006) and total anti-
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FIG 4 Identification of driver genera based on NetShift analysis. Comparison between ND (control) and
PreDMs (case) (A), NewDMs (case) (B), and KnownDMs (case) (C). Driver genera are represented by red

(Continued on next page)
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oxidants (P � 0.007), whereas abundance of Blautia showed strong positive correlation
with histidine (P � 0.041) and total antioxidant (P � 0.012). An abundance of Rumino-
coccus showed positive association with histidine (P � 0.038), and an abundance of
Megasphaera was positively associated with fasting glucose (P � 0.007) and HbA1c
(P � 0.005). An abundance of the genus Escherichia was found to be positively corre-
lated with fasting glucose (P � 0.004), tyrosine (P � 0.01), and lipid peroxides
(P � 0.026), while abundance of Lactobacillus showed positive correlation with fasting
glucose (P � 0.03), HbA1c (P � 0.019), and isoleucine (P � 0.04). An abundance of
genus Sutterella was inversely associated with fasting glucose (P � 0.02) and histidine
(P � 0.008) and positively associated with HDL cholesterol (P � 0.002), while Acidami-
nococcus showed positive association with fasting glucose (P � 0.02), VLDL cholesterol
(P � 0.04), leucine (P � 0.01), isoleucine (P � 0.03), tyrosine (P � 0.0014), and lipid
peroxides (P � 0.00001) (Fig. 5).

DISCUSSION

T2D is a widespread metabolic disorder that leads to various chronic health com-
plications. Recently, the gut microbiome has been recognized as a major driver in the
establishment of T2D. There are reports indicating a dysbiosis of gut microbiota in T2D
subjects in Caucasian and Indian populations (4, 19). Vrieze et al. have reported that
transfer of intestinal microbiota from lean donors to individuals with metabolic syn-
drome decreases insulin resistance (25).

Our earlier study has reported dysbiosis of gut microbiota in Indian diabetic subjects
(19). In this study, we have analyzed the gut microbiome of PreDMs, NewDMs,
KnownDMs on antidiabetic treatment, and ND individuals. Twenty-five different serum
biomarkers were checked and compared with the gut microbiota to assess the different
states of diabetes. Targeted 16S rRNA amplicon sequencing was used to assess the
microbial diversity, community shuffling, and identification of driver taxa for the disease
state. We have investigated relationships between a wide array of serum biomarkers
responsible for progression of T2D with significantly diverged and differentially abun-
dant taxa in each study group. Significantly different patterns were observed in the gut

FIG 4 Legend (Continued)
color nodes (circles) with a higher NESH score resulting in a bigger node. Edge (line) is assigned between
the nodes; green represents microbial association only in the control, red represents association only in
the case, and blue represents common microbial association of a node in the case and control.

FIG 5 Spearman correlation analysis based on differentially abundant significant genera and signifi-
cantly altered serum biomarkers. Spearman correlation values are shown in the vertical heatmap panel
to the right. P values of �0.05 are indicated by the plus symbols.
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microbiota of PreDMs, NewDMs, and KnownDMs compared to ND. In KnownDMs,
abundance of some microbial taxa was found to be similar to that of ND group.

Increased levels of BCAA and AA are found to be associated with insulin resistance,
obesity, and T2D (26). Adams reported that BCAA and its metabolites are elevated in
the blood of diabetic subjects (27), and their increased levels are associated with
inflammation and insulin resistance, characteristics of T2D (10, 28). In our data, we
found that BCAA and AAA remained elevated in both NewDMs and KnownDMs but not
in PreDMs. We also found significantly low levels of histidine in NewDMs but not in
PreDMs and KnownDMs. It has been reported that histidine supplementation in obese
women with metabolic syndrome (29) and obese rats fed a high-fat diet (30) reduced
insulin resistance, obesity, and metabolic syndrome by lowering inflammation and
oxidative stress. Diabetic individuals are known to have a low-grade inflammation, and
inflammatory markers are found to be elevated in their blood. We also found elevated
levels of IL-6, an inflammatory cytokine (31), in NewDMs and KnownDMs but not in
PreDMs, while LPS, a marker of low-grade inflammation, which induces metabolic
endotoxemia (32) was found to be increased only in NewDMs. Since oxidative stress is
known to be involved in the establishment of insulin resistance and diabetic compli-
cations (33), we measured total antioxidant capacity and lipid peroxides, a marker of
oxidative damage to lipids in the blood. We found a significant decrease in total
antioxidant capacity and increase in lipid peroxidation in treatment-naive NewDMs but
not in PreDMs. In KnownDMs on treatment with metformin, an increase in total
antioxidant capacity and decrease in lipid peroxidation were observed.

Earlier reports have demonstrated association of lower bacterial diversity with the
disease condition (34, 35). In our study, a significantly lower number of observed OTUs
was found in NewDMs compared to ND, which increased in KnownDMs on antidiabetic
treatment (Fig. 1A). A lower alpha diversity in NewDMs and higher alpha diversity in
KnownDMs suggests that there is loss of bacterial diversity in the disease condition, and
interestingly, antidiabetic treatment helps in regaining bacterial diversity. Additionally,
we have analyzed diversity of rare taxa to understand its community structure along
with abundant taxa in different study groups. Interestingly, a higher number of rare
taxa in KnownDMs were observed compared to ND and NewDMs. These results suggest
that altered diversity of rare taxa may play an important role in structural as well as
functional attributes of gut microbiota after antidiabetic treatment. On the basis of the
results of beta diversity analysis, we found that the microbial diversity of prediabetics
(PreDMs) is similar to that of nondiabetics (ND). However, the bacterial diversity of
treatment-naive diabetics (NewDMs) was found to be different from that of nondia-
betics (ND) and diabetics on antidiabetic treatment (KnownDMs). Interestingly, in
KnownDMs, the microbial diversity is observed to be trending toward that of ND,
probably due to antidiabetic treatment. Microbial diversity analysis at the phylum level
revealed higher abundance of Firmicutes and Proteobacteria and decreased abundance
of Bacteroidetes among NewDMs and KnownDMs, similar to earlier reports (19, 21).

At the genus level, microbial diversity analysis indicated that the levels of Prevotella,
Akkermansia, Megasphaera, Blautia, Lactobacillus, Escherichia, Ruminococcus, Sutterella,
and Acidaminococcus varied in the different study groups. Abundance of Akkermansia
decreased significantly in NewDMs compared to ND. Decreased abundance of this
mucin-degrading bacterial species is correlated with the onset of inflammation and
metabolic disorders in mice (36, 37). Protein AMuc_1100 from Akkermansia or pasteur-
ized bacterium has been linked to reduction in fat mass development, insulin resis-
tance, and dyslipidemia in mice (38). Metformin treatment commonly prescribed for
diabetes has also been linked with higher levels of Akkermansia in diabetic patients (39)
due to enhancement of mucin-producing goblet cells (40). We did not find any change
in the abundance of Ruminococcus in PreDMs, in contrast to the report of Ciubotaru
et al. (41). Additionally, we observed decreased abundance of Prevotella, Blautia, and
Ruminococcus and increased abundance of Lactobacillus in NewDMs. Prevotella is one
of the dominant taxa in the Indian population (19, 21) and is known to be associated
with a diet rich in plant-based polysaccharides (42, 43). Prevotella is also known to

Dysbiosis of Gut Microbiota in T2D Population

March/April 2020 Volume 5 Issue 2 e00578-19 msystems.asm.org 11

https://msystems.asm.org


produce propionate, a short-chain fatty acid (SCFA) (44), which promotes reduction of
hepatic lipogenesis and helps in the reduction of lipids in blood (45). Taken together,
these observations may indicate that a high abundance of Prevotella in ND and low
abundance in NewDMs can be a distinct biomarker of diabetes in the Indian popula-
tion. In a recent study, it was reported that host genetics-driven changes in microbiome
composition result in increased levels of SCFAs, such as propionate, which increases the
risk of developing T2D, suggesting a causal relationship between microbiota and type
2 diabetes (46). This warrants conducting genetics-driven microbiome association
studies in the Indian diabetic population to understand the functional impact of SCFAs
on host metabolism at the population level. Among Firmicutes, we observed decreased
abundance of Blautia, a known producer of short-chain fatty acids (47) in NewDMs. In
KnownDMs, recovery of Blautia was probably associated with antidiabetic treatment, as
described in a study on an Asian population (48). Observations of high abundance of
Lactobacillus (3) and decreased abundance of Akkermansia in NewDMs corroborate
previous findings (5). In KnownDMs, we found increased abundance of Megasphaera,
Escherichia, and Acidaminococcus and decreased abundance of Sutterella, which is
similar to earlier findings (6, 49–51). de la Cuesta-Zuluaga et al. reported that metformin
treatment in diabetics is associated with increased abundance of Megasphaera in the
Colombian population (39).

In gut microbiota, microbial community survives through their characteristics of
mutualism and commensalism. During disease progression, the physiology of the host
changes significantly, which affects the gut microbial community and their interaction
pattern. Under these circumstances, some microbes act as key players in the commu-
nity, known as driver microbes (24). Different microbes interacting with each other in
the community constitute core taxa. We analyzed positive associations among highly
abundant genera in each group. NetShift analysis of core hub communities revealed
that ND subjects have the maximum number of core hubs representing common
genera, which changed significantly in NewDMs. In PreDMs, in addition to core hubs
observed in ND, Sutterella was identified as an additional core hub. Earlier reports have
suggested that the genus Sutterella is found to be associated with many diseases such
as type 1 diabetes and inflammatory bowel disease (IBD) (50, 51). In KnownDMs, core
hub communities were found to be similar to ND. Increased abundance of genus
Sutterella has been reported earlier in prediabetic gut microbiota (52). We found that
Sutterella was a major and common driver across all disease groups.

Further, we analyzed correlation of microbiota with biochemical parameters mea-
sured to assess the status of diabetes. We observed significant decrease in total
antioxidant capacity and increase in lipid peroxides in NewDMs compared to ND. The
abundance of Akkermansia was positively correlated with total antioxidant capacity and
inversely correlated with lipid peroxides in all groups. Administration of live or atten-
uated Akkermansia to diabetic rats led to decrease in oxidative stress, lipotoxicity,
GLP-1, LPS, inflammation, and increase in HDL and improvement in liver function (53).
We did not find any significant inverse association of Akkermansia and inflammatory
markers, although Akkermansia is reported to reduce low-grade inflammation (36). We
observed a strong inverse association of Akkermansia with glucose and HbA1c, similar
to those reported by Schneeberger et al. (36). Recently, administration of Akkermansia
has been shown to improve glucose homeostasis in mice fed a HFD (high-fat diet) (40).
A significant association between the genus Prevotella, the most abundant genus in the
Indian gut, and parameters such as glucose, lipids, BCAA, and AAA was not observed.
A study by Pedersen et al. (17) demonstrated a positive association of Prevotella with
BCAA and suggested that increased levels of circulating BCCA are due to the high
prevalence of Prevotella copri, which was not found in our study. We observed a higher
level of Prevotella in ND than in NewDMs. Kovatcheva-Datchary et al. (54) demonstrated
that consumption of a diet rich in plant-derived fibers improved glucose metabolism
through increased abundance of Prevotella in the Caucasian responder group and that
increasing Prevotella by fecal transplantation improved glucose metabolism in germ-
free mice. Previously, an increased abundance of Lactobacillus in Indian type 2 diabetic
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patients (19) and a positive correlation between Lactobacillus-derived metagenomic
clusters with fasting glucose and HbA1c was observed in Caucasian type 2 diabetic
patients (4). In our study, we also find a positive correlation between Lactobacillus
abundance with glucose and HbA1c level. This could be due to the higher genetic
potential of Lactobacillus to utilize carbohydrates (55). However, analysis at lower
taxonomic level such as species or strain is required, since probiotic strains of Lacto-
bacillus are reported to be beneficial for lowering blood glucose (56). In our study, we
found increased abundance of Escherichia in KnownDMs, which was positively corre-
lated with blood metabolites such as glucose, tyrosine, and lipid peroxides. It is known
that metformin, which is commonly used as an antidiabetic agent, leads to disturbance
of the intestinal microbiota and increases in the abundance of opportunistic pathogens
such as Escherichia (6, 57). The increased abundance of genus Escherichia observed in
our KnownDMs was possibly due to metformin. Further investigations are necessary to
understand its positive correlation with blood metabolites in diabetic subjects.

Thus, this study gives us insights into the altered microbial community composition
among different diabetic groups compared to ND and their association with clinical
biomarkers in the Indian population. We are aware that the key limitation of this study
is the sample size for PreDMs and NewDMs compared to both ND and KnownDMs. A
larger study with more samples would help to generalize these findings. We also
propose comparing prospectively gut microbiota changes in the same patient group
before and after therapeutic introduction and to match it with prediabetic and non-
diabetic subjects in future studies.

Conclusions. Our findings show differences in the gut microbiome in PreDMs,
NewDMs, and KnownDMs compared to ND. In PreDMs, the gut microbiome does not
change significantly from that of ND, whereas in NewDMs, both the abundance and
diversity changed significantly, which in KnownDMs on antidiabetic treatment seems to
be restored to some extent.

MATERIALS AND METHODS
Study population and sample collection. This is a retrospective study using a total of 102 subjects

from the western region of India who were selected for this study during 2015 to 2016. All subjects were
30 to 60 years old. Healthy subjects with HbA1c of �5.7% were termed nondiabetic subjects (ND)
(n � 35). Diabetic subjects with antidiabetic treatment for at least the past year with HbA1c of �6.5%
were termed known diabetes mellitus subjects (KnownDMs) (n � 39). Newly diagnosed diabetic subjects
who were not on any antidiabetic medication with HbA1c of �6.5% were termed newly diagnosed
diabetes mellitus subjects (New-DMs) (n � 11, of which n � 5 are obese), and prediabetic subjects with
HbA1c of 5.7% to 6.4% were termed prediabetics (PreDMs) (n � 17). All the study groups were
differentiated based on the HbA1c level by ADA (American Diabetes Association) guidelines (58). The
study and the experimental protocols were approved by the institutional ethical committee of the
National Centre for Cell Science (NCCS) (Pune, India), and informed consent and metadata were obtained
from all participants.

The exclusion criteria for all four groups included antibiotic consumption in the last 3 months, any
major gastrointestinal surgery, and presence of any known chronic or clinical disorder. All participants
were screened before sampling, and an early morning stool sample was collected on the following day
in a sterile stool container. Early morning fasting blood sample was also collected on the same day by
phlebotomists from the clinical laboratory (Golwilkar Metropolis, Pune, India) to assess serum biomarkers.
Fecal samples from all the subjects were collected and stored at �80°C until further processing, whereas
blood samples were processed immediately.

Biochemical analysis. Fasting plasma glucose and glycated hemoglobin (HbA1c) were measured
using hexokinase and high-performance liquid chromatography (HPLC) (Tosoh Bioscience, USA) method,
respectively. Total cholesterol, triglycerides, and HDL cholesterol were measured by the serum enzymatic
method. Apolipoproteins A1 and B were estimated by serum nephelometry (BN ProsPec system,
Siemens, Germany). Vitamin B12, folic acid, and homocysteine were measured using competitive-binding
immunoenzymatic assay. All measurements were done on an autoanalyzer (Architect Integrated CI- 2800;
Abbott, USA) at Golwilkar Metropolis, Pune, India. IL-6 and LPS levels in serum were estimated using a
human IL-6 Quantikine high-sensitivity (HS) enzyme-linked immunosorbent assay (ELISA) kit (catalog no.
HS600B; R&D Systems, MN, USA) and LPS ELISA kit (catalog no. CEB52Ge; Cloud Clone Corp, USA). Serum
samples diluted 1:100 were used to measure adiponectin by ELISA (catalog no. DRP 300; R&D Systems,
MN, USA). Blood plasma samples were deproteinated using sulfosalicylic acid (SSA). Deproteinated
samples were used for the quantification of plasma amino acids by HPLC coupled with solvent delivery
systems, autosampler, and photodiode array detector (all from Agilent 1100 series, Agilent Technology,
Germany). A precolumn derivatization was done for analysis of the amino acids using a derivatizing
agent, o-phthalaldehyde. From serum samples, assessment of total antioxidants was performed and
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measured spectrophotometrically at 450 nm by the protocol of Kambayashi et al. (59). Lipid peroxides
were measured in plasma in nanomoles of malondialdehydes formed by the protocol of Acharya et al.
(60).

DNA extraction and 16S rRNA gene amplicon sequencing. Total community DNA was extracted
from all 102 samples using QIAamp stool DNA minikit (Qiagen, Germany) per the manufacturer’s
instructions. DNA was quantified using NanoDrop (ND-1000; Thermo Fisher Scientific, USA), and the
quality of DNA was checked by gel electrophoresis. The DNA samples were subjected to amplification of
16S rRNA gene using V4 region-specific primers (V4 Forward [5=GTGCCAGCMGCCGCGGTAA3=] and V4
Reverse [5=GGACTACHVGGGTWTCTAAT3=]) (61). PCR was performed using the following conditions:
initial denaturation at 95°C for 3 min; 25 cycles with 1 cycle consisting of 95°C for 30 s, 55°C for 30 s, and
72°C for 30 s; and a final extension step at 72°C for 7 min (61). A 2.5-�l DNA (5-ng/�l concentration)
sample was used as a template in each 25-�l PCR mixture. After amplification, products were cleaned
using AMPure XP beads (catalog no. A63882; Beckman Coulter, Inc., USA) and subjected to library
preparation using NextraXT library preparation kit (Illumina, USA) followed by limited cycle PCR to enrich
the adapter ligated DNA molecules. Final cleanup was performed using AMPure XP beads to obtain
libraries which were assessed for fragment size distribution using TapeStation (catalog no. 5067-5582;
Agilent Technologies, USA) and were quantified using Qubit DNA (catalog no. Q32854; Thermo Fisher
Scientific, USA) before sequencing. The quantified libraries were clonally amplified on cBOT and se-
quenced using Illumina HiSeq 2500 (Illumina Inc., USA) with 2 � 250 bp paired-end chemistry. Sequences
retrieved from Illumina HiSeq sequencing are available at the NIH Sequence Read Archive (SRA) under
the Bioproject identifier (ID) or accession no. PRJNA448494.

Bioinformatic analysis. Paired-end reads were assembled using PEAR v0.9.10 software (62). The
assembled reads were trimmed by using cutadapt version 1.13 (63) to remove adapter sequences from
both ends. The quality filtered sequences were used for further analysis using Quantitative Insights Into
Microbial Ecology (QIIME) v. 1.9 (64). Operational taxonomic units (OTUs) were binned by using closed
reference OTU picking strategy using UCLUST algorithm (64) at 97% sequence similarity using Green-
genes database v13_8 (65). Representative sequences from each OTU were used for taxonomic assign-
ment using the RDP classifier (66). Singletons were removed from the OTU table, and the OTU table was
normalized for the least number of sequences (86,770 sequences per sample) and used for downstream

analysis. To calculate the Firmicutes-to-Bacteroidetes ratio, the formula used was ratio � �A

B
:
B

B� where A

is mean abundance for Bacteroidetes and B is mean abundance for Firmicutes. The ratio for each sample
was calculated, and the average ratio is mentioned for each group.

Random forest analysis. Genera and metabolites important for differentiating disease status were
identified using random forest algorithm. The top 30 most abundant genera present in all samples and
serum metabolites were included for analysis. The ranking of genera and serum metabolites according
to mean decrease in accuracy (mean decrease Gini score) were obtained from the random forest
algorithm using default parameters in the R 3.4.0. environment “randomForest” (with ntree � 1,000), as
mentioned in previous reports (67, 68).

NetShift analysis. CCREPE (version 1.7.0) analysis (http://huttenhower.sph.harvard.edu/ccrepe) was
performed separately for all study groups to identify the significant (P � 0.05) positive correlations
among the highly abundant genera, which resulted in a positive edgelist. This edgelist is further used to
analyze the driver microbes and core hub genera of study groups using the NetShift tool (24) available
at https://web.rniapps.net/netshift/index_file.php.

Statistical analysis. All biochemical parameters were analyzed using a nonparametric Mann-
Whitney test to understand the comparison between two study groups, which were compared one at a
time. The differentially abundant genera were analyzed by mean difference with the false-discovery rate
(FDR) correction using the discrete FDR (DS-FDR) method (69). Kruskal-Wallis test followed by FDR
correction was applied to OTU table to derive differentially abundant diabetes-related biomarkers (OTUs)
using the QIIME command group_significance.py. A generalized UniFrac distance was performed using
GUniFrac Package (20) to identify the differences among four study groups, i.e., ND, PreDMs, NewDMs,
and KnownDMs, and statistical test permutational multivariate analysis of variance (PERMANOVA) was
performed using the vegan package in R (https://cran.r-project.org or https://github.com/vegandevs/
vegan). Spearman correlation was performed to identify associations among biochemical parameters and
microbial genera using R package Hmisc (https://cran.r-project.org/web/packages/Hmisc/index.html),
and visualization was done using ggplot2 package in R (70).

Data availability. The data sets generated and/or analyzed during the current study are available in
the following repositories. Raw data are available on NIH Sequence Read Archive (SRA) under the
Bioproject ID PRJNA448494. To enable future analysis, metadata and OTU table data are available at
https://github.com/aksbiome/Type-2-Diabetes-and-gut-microbiome.
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