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Purpose: To extract texture features from magnetic resonance imaging (MRI) scans of
patients with brain tumors and use them to train a classification model for supporting an
early diagnosis.

Methods: Two groups of regions (control and tumor) were selected from MRI scans of
40 patients with meningioma or glioma. These regions were analyzed to obtain texture
features. Statistical analysis was conducted using SPSS (version 20.0), including the
Shapiro–Wilk test and Wilcoxon signed-rank test, which were used to test significant
differences in each feature between the tumor and healthy regions. T-distributed
stochastic neighbor embedding (t-SNE) was used to visualize the data distribution so as
to avoid tumor selection bias. The Gini impurity index in random forests (RFs) was used
to select the top five out of all features. Based on the five features, three classification
models were built respectively with three machine learning classifiers: RF, support vector
machine (SVM), and back propagation (BP) neural network.

Results: Sixteen of the 25 features were significantly different between the tumor and
healthy areas. Through the Gini impurity index in RFs, standard deviation, first-order
moment, variance, third-order absolute moment, and third-order central moment were
selected to build the classification model. The classification model trained using the SVM
classifier achieved the best performance, with sensitivity, specificity, and area under the
curve of 94.04%, 92.3%, and 0.932, respectively.

Conclusion: Texture analysis with an SVM classifier can help differentiate between
brain tumor and healthy areas with high speed and accuracy, which would facilitate
its clinical application.
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INTRODUCTION

Brain cancer remains a diagnostic challenge for clinicians and
radiologists because malignant brain tumor cells can invade into
the neighboring cells in the brain and spinal cord with fuzzy
borders and have a high progression rate (Wild, 2014; Vargo,
2017; Tandel et al., 2019). Treatment of advanced brain tumors
is difficult; therefore, early diagnosis is of great importance in
clinical settings. The approaches currently employed for the
diagnosis of brain tumors include both invasive and noninvasive
methods. Although the invasive diagnostic method—biopsy—is
viewed as the golden standard for the diagnosis of brain tumors,
noninvasive diagnostic methods including magnetic resonance
imaging (MRI) are safer and more widely used (Zhao and Jia,
2016). Determination of the accurate location and segmentation
of the brain tumor on MRI scans are essential for treatment
planning (Mahaley et al., 1989). Several studies have found
MRI features capable of differentiating between the tumor and
healthy regions (May et al., 1991; Drape et al., 1992; Mullen and
Huang, 2017). However, in most cases, the diagnostic accuracy
only depends on the proficiency of the medical practitioner
reading the MRI scan (Hayward et al., 2008). Many complex
patterns, also called image textures, remain imperceptible to the
naked eye. Texture analysis is a practical approach for image
pattern recognition by extracting objective information through
the analysis of the spatial distribution of intensity variations
on images (Haralick and Shanmugam, 1973; Haralick, 1979).
Furthermore, several studies have confirmed the efficiency of
texture analysis (Bayanati et al., 2015; Hodgdon et al., 2015;
Skogen et al., 2016).

To increase the diagnostic precision and efficiency, many
computer-assisted methods have been developed and introduced,
including machine learning (ML) and deep learning (DL) (Zhao
and Jia, 2016; Boissoneault et al., 2017; Salvador et al., 2017).
Texture analysis combined with ML methods has been widely
used to evaluate medical images and yielded promising results
(Fetit et al., 2015; Li et al., 2016; Bisdas et al., 2018). However,
to the best of our knowledge, there are a few reports on the use
of t-distributed stochastic neighbor embedding (t-SNE), which
is a new dimensionality reduction and visualization technique
to foresee data for preventing problems such as incorrect
marking of images and that can help increase the accuracy of
the classification.

We hypothesized that some texture features acquired from
MRI scans would serve as classification features and markedly
improve classification efficiency. To test our hypothesis, the Gini
impurity index in the random forests (RFs) was applied to
select features, which were then used to develop classification
models. Finally, the performance of the features and the models
in confirming our hypothesis was assessed.

SUBJECTS AND METHODS

Subjects
The data used were collected from the Affiliated Nanjing
Brain Hospital of Nanjing Medical University. Patients in
whom meningioma or glioma was histopathologically confirmed

between January 2014 and December 2014 were selected. In all, 40
patients (average age: 51.10 years) comprising 22 men (average
age: 52.36 years) and 18 women (average age: 47.33 years) were
included. The exclusion criteria were as follows: (1) presence of
other organic mental disorders and nervous system diseases and
(2) a history of major physical illnesses. All of the patients met
the above criteria. The study was approved by the medical ethics
committee of Nanjing Medical University. All patients provided
signed written informed consent.

MRI Acquisition
All images were acquired using a 3T Siemens MRI system.
The patients were instructed to relax, keep their eyes closed,
stay awake, and remain still. Patient compliance was confirmed
after scanning was completed. The images were recorded axially
for 6 min by using an echo-planar imaging sequence with
the following parameters: TR = 1900 ms, TE = 2.49 ms, slice
thickness = 1 mm, flip angle = 90◦, and matrix size = 256 × 256.
All patients underwent MRI without reporting discomfort during
or after the procedure.

Classification Based on 25 Texture
Features
Preparation Before Classification
For the experimental preparation, the raw sample image format
was changed from DICOM to JPG. In the texture analysis, the
tumor region in the coronal MRI image was selected as the
experimental group, and the symmetrical healthy region on the
other side of the brain was selected as the control group. There
were 40 tumor regions in the experimental group and 40 healthy
regions in the control group. In each group, 25 texture features
(belonging to three categories) were calculated, as shown in
Table 1.

The 25 texture features were recorded as mean ± SD.
Statistical analysis was performed using SPSS (version 20.0),
including the Shapiro–Wilk test and Wilcoxon signed-rank
test, which was used for testing significant differences in each
feature between tumors and healthy areas. Meanwhile, an RF
model was employed to predict whether each sample was a
tumor or a healthy area and for importance rankings of 25
texture features according to the Gini impurity index in the RF
(Menze et al., 2009; Liu et al., 2018). All texture features were
selected as predictors to compare the experimental results from
the Wilcoxon signed-rank test and RF prediction. In addition,

TABLE 1 | The selected texture features in the three categories.

Category (-based
parameters)

Texture features

Histogram (1) First-order moment; (2) second-order moment; (3)
third-order moment; (4) fourth-order moment; (5) the
central moment of the four features; (6) the absolute
moment of the four features

Run-length matrix (1) Long run emphasis; (2) short run emphasis; (3) gray
level nonuniformity; (4) total run-length percentage

Co-occurrence
matrix

(1) Energy; (2) inertia moment; (3) correlation; (4)
entropy; (5) mean; (6) variance; (7) standard deviation;
(8) homogeneity; (9) dissimilarity
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TABLE 2 | Wilcoxon signed-rank test results (histogram).

No. Texture features Tumor region Health region P-value

1 First-order moment 10.661 ± 3.414 3.664 ± 5.111 0.000*

2 First-order central moment 2.327 ± 0.280 1.071 ± 0.934 0.000*

3 First-order absolute moment 2.327 ± 1.280 1. 071 ± 0.934 0.000*

4 Second-order moment 159.912 ± 51.205 54.958 ± 76.657 0.000*

5 Second-order central moment 19,442.302 ± 13,715.926 6,490.148 ± 13,691.211 0.000*

6 Second-order absolute moment 19,442.302 ± 13,715.926 6,490.148 ± 13,691.211 0.000*

7 Third-order moment 2,398.676 ± 768.069 824.368 ± 1,149.855 0.000*

8 Third-order central moment −14,586,918,376.546 ± 12,193,828,145.790 −5,165,830,452.742 ± 11,313,615,571.915 0.000*

9 Third-order absolute moment 14,586,918,376.546 ± 12,193,828,145.790 5,165,830,452.768 ± 11,313,615,571.903 0.000*

10 Fourth-order moment 35,980.138 ± 11,521.031 12,365.514 ± 17,247.826 0.000*

11 Fourth-order central moment 2,201,613,996,782,910,720.000 ±

2,158,254,619,227,325,440.000
827,213,133,922,581,760.000 ±

1,882,686,712,587,172,610.000
0.000*

12 Fourth-order absolute moment 2,201,613,996,782,910,720.000 ±

2,158,254,619,227,325,440.000
827,213,133,922,581,760.000 ±

1,882,686,712,587,172,610.000
0.000*

*means that this data shows significance.

t-SNE, a new dimension reduction and visualization technique
for high-dimensionality data, was performed in the exploratory
analysis (Li et al., 2017). It was applied to all 40 pairs of samples
with 25 features to delete the samples that would apparently have
a negative effect on the latter classification.

Classification
The samples were randomly divided into training (70%) and
test sets (30%). This was iterated five times to provide five

TABLE 3 | Wilcoxon signed-rank test results (run-length matrix).

No. Texture
features

Tumor region Healthy region P-value

1 Long run
emphasis

628.833 ± 512.533 782.519 ± 639.539 0.188

2 Short run
emphasis

0.228 ± 0.076 0.234 ± 0.100 0.582

3 Total run-length
percentage

0.084 ± 0.0385 0.078 ± 0.046 0.476

4 Gray level
nonuniformity

207.211 ± 129.511 154.085 ± 86.213 0.011*

*means that this data shows significance.

TABLE 4 | Wilcoxon signed-rank test results (co-occurrence matrix).

No. Texture features Tumor region Healthy region P-value

1 Energy 0.637 ± 0.198 0.812 ± 0.161 0.000*

2 Entropy 0.663 ± 0.328 0.404 ± 0.288 0.002*

3 Inertia moment 15.809 ± 10.322 13.5043 ± 12.0488 0.313

4 Correlation 0.105 ± 0.276 0.093 ± 0.150 0.026*

5 Homogeneity 0.939 ± 0.040 0.948 ± 0.047 0.313

6 Dissimilarity 0.988 ± 0.645 0.844 ± 0.753 0.313

7 Mean 12.444 ± 3.645 4.876 ± 5.465 0.000*

8 Variance 152.277 ± 47.371 53.902 ± 71.028 0.000*

9 Standard deviation 15.004 ± 2.084 8.575 ± 4.677 0.000*

*means that this data shows significance.

unique training and testing groups. The training set was used
to generate classification models with three different classifiers:
RF, BP, and SVM.

The RF is fast, is flexible, and has become a standard
tool in biomedical informatics. Each classifier in the ensemble
is a decision tree classifier and is generated using random
selection of attributes at each node to determine the split.

TABLE 5 | Gini impurity index in the RF.

No. Texture features Mean decrease Gini Rank

1 First-order moment 1.7897453 7

2 First-order central moment 0.8495841 16

3 First-order absolute moment 0.7873654 19

4 Second-order moment 1.8026458 6

5 Second-order central moment 1.5147000 10

6 Second-order absolute moment 1.3757714 13

7 Third-order moment 1.6430335 9

8 Third-order central moment 1.8037972 5

9 Third-order absolute moment 1.8316361 4

10 Fourth-order moment 2.0892720 2

11 Fourth-order central moment 1.0609800 14

12 Fourth-order absolute moment 1.4124922 12

13 Energy 0.4763909 25

14 Entropy 0.5165798 23

15 Inertia moment 0.7618972 20

16 Correlation 0.7355067 21

17 Homogeneity 0.8385106 17

18 Dissimilarity 0.7343357 22

19 Mean 1.7526929 8

20 Variance 1.9482926 3

21 Standard deviation 3.1126458 1

22 Long-run emphasis 0.8664384 15

23 Short-run emphasis 1.4297721 11

24 Total run-length percentage 0.8314745 18

25 Gray-level nonuniformity 0.4918337 24
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FIGURE 1 | Feature distributions after t-SNE: (A) features based on the Wilcoxon signed-rank test; (B) features based on the RF’s importance rankings (red figures
represent the healthy regions and blue figures represent the tumor regions).

During classification, each tree votes, and the most popular
class is returned.

The BP iteratively processes a set of training tuples and
compares the network’s prediction with the actual known
target value. For each training tuple, the weights are modified
to minimize the mean squared error between the network’s
prediction and the actual target value. Modifications are made in
the backwards direction. The process will reach the terminating
condition when the error is very small.

The SVM is a classification method for both linear and
nonlinear data. It uses nonlinear mapping to transform the
original training data into a higher dimension. With the
new dimension, it searches for the linear optimal separating
hyperplane. With an appropriate nonlinear mapping to a
sufficiently high dimension, data from two classes can always
be separated by a hyperplane. SVM finds this hyperplane using
support vectors and margins.

Four indexes were used to evaluate each model, including the
area under the curve (AUC), error rate, sensitivity, and specificity.

TABLE 6 | Three classifiers evaluation.

Classifiers AUC Error rate (%) Sensitivity (%) Specificity (%)

RF 0.856 14.1 82.8 88.3

SVM 0.932 6.9 94.04 92.3

BP 0.884 11.4 87.2 89.6

Moreover, the receiver operating characteristic (ROC) curve was
constructed for each model.

RESULTS

Texture Feature Analysis
Using the Wilcoxon signed-rank test, 25 texture features could
reveal regions with higher and lower texture values when
comparing the experimental (tumor region) and control groups
(health region), as shown in Tables 2–4. We obtained the
importance rankings of the 25 texture features according to the
Gini impurity index in the RF with a training set (80%). The
top five features were standard deviation, first-order moment,
variance, third-order absolute moment, and third-order central
moment, as shown in Table 5.

The t-SNE test results are shown in Figure 1. In Figure 1A,
the original features were those found in the Wilcoxon signed-
rank test (19 features in total), and in Figure 1B, the original
features were the top five features determined in the RF’s
importance rankings. However, the data distributions after t-SNE
were similar. All samples were evidently divided into two
clusters, except 12 samples (1, 9, 10, 11, 17, 19, 23, 30, 35, 44,
73, and 79), which were seemingly distributed mistakenly. In
addition, t-test was used to examine 40 samples to determine
whether their features were relatively different between the tumor
and healthy regions. We found that the mean P-value was
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FIGURE 2 | Receiver operating characteristic of the three models: (A) RF model, (B) SVM model, and (C) BP model.

0.2390645. The P-values of seven samples—1, 9, 10, 19, 23,
30, and 35—were greater than the mean P-value, and these
samples were also mistakenly distributed in the t-SNE picture and
were deleted.

Classifier Evaluation
On the basis of the results obtained above, we selected the
five features (standard deviation, first-order moment, variance,
third-order absolute moment, and third-order central moment)
identified in the RF to set up classifiers, which helped save

calculation time and resources. Three classification models (RF,
SVM, and BP) were applied, and five features were used to train
each classifier. A detailed summary of the model’s performance is
presented in Table 6.

All three models showed satisfactory AUCs of 0.85–0.95.
The RF and the BP shared a similar performance based on
the AUC, error rate, sensitivity, and specificity. The model
trained by the SVM classifier demonstrated the best performance
among the three models, with markedly better AUC, error
rate, sensitivity, and specificity, indicating that this model
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could correctly classify the tumor and healthy regions. Receiver
operating characteristic (ROC) curves were constructed for the
three models to compare their performance directly, as shown in
Figure 2.

DISCUSSION

Some studies have reported the same methods to select features,
and the validity of this approach has been proven. Wang et al.
(2018) evaluated the importance of spectra lines based on RFs
and then used a support vector machine (SVM) classifier to
classify the laser-induced plasma spectra (LIBS) of bacteria
species. The primary objective of this study was to characterize
tumor regions using MRI-based texture analysis. We used texture
analysis to compute 25 texture features from MRI images. Using
the Wilcoxon signed-rank test, we confirmed that 19 texture
features of the total 25 features were different between the
healthy and tumor regions. Using the t-SNE technique, the
dataset was divided into two clusters, indicating that there is a
high possibility to set up a classification model with these 19
features. However, training a model with high-dimensionality
data requires a lot of time and space. To facilitate faster and more
accurate classification, the importance rankings of the features
in the RF were calculated, and the top five features were found
to show the same classification effectiveness as the 19 features
selected before.

The images for the t-SNE test results showed some seemingly
noisy dots. Considering the possibility that all mistakenly
distributed samples may be deleted incorrectly, the t-test was
applied to generally examine whether the healthy and tumor
regions showed significant differences in the 25 texture features
for each sample. To determine the modified number of samples
that would be deleted, the mean P-value was set as the deletion
standard, and seven samples were excluded on the basis of this
standard. Since the samples were marked manually and these
samples were likely to be marked mistakenly, this was a limitation
that has been mentioned in many previous studies.

On the basis of the five features, three class-action models were
built by training three ML classifiers, namely, RF, SVM, and BP.
The SVM classifier was superior to the RF and BP classifiers,
as shown in Table 6, since it provided better performance in
terms of AUC, error rate, sensitivity, and specificity. These results
were shown to be convincing through fivefold confirmation,
which was consistent with the findings of previous studies
(Zhang et al., 2017). The model in this article was superior to
the previous models since it depended on only five features
while showing the same AUC. Since the software that is needed
to perform texture analysis and build classification models is
readily available, clinicians can easily perform such analyses in
clinical settings.

This study had some limitations. First, the dataset was
modified, since the model was trained with only 80 samples. Its
robustness needs further examination. Second, some degree of
selection bias may exist. Different categories of brain tumors have
different texture features. Some unique features were excluded,
which may have influenced the results of our analysis. Third,

a manual approach was adopted to segment tumors in this
study. Although manual segmentation generally works better
than automatic methods, segmentation errors could still exist.
Some noise dots may have been mistakenly marked manually,
negatively influencing the formation of our model.

CONCLUSION

In conclusion, we hypothesized that a few of the textures acquired
from the MRI images could serve the role of classification
features, thereby significantly improving the classification
efficiency. The Gini impurity index in the RF was applied to
select features. On the basis of the five features, three class-action
models were built by training three ML classifiers, including RF,
SVM, and BP. The classifier model in this article was superior
to the previous models, since it depended on only five features.
On the basis of our initial findings, tumor regions characterized
on the basis of MRI-based texture analysis may have clinical
usefulness in differentiating brain tumors.
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