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Despite significant advancements in breast cancer (BC) research, clinicians

lack robust serological protein markers for accurate diagnostics and tumor

stratification. Tumor interstitial fluid (TIF) accumulates aberrantly exter-

nalized proteins within the local tumor space, which can potentially gain

access to the circulatory system. As such, TIF may represent a valuable

starting point for identifying relevant tumor-specific serological biomarkers.

The aim of the study was to perform comprehensive proteomic profiling of

TIF to identify proteins associated with BC tumor status and subtype. A

liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis

of 35 TIFs of three main subtypes: luminal (19), Her2 (4), and triple-nega-

tive (TNBC) (12) resulted in the identification of > 8800 proteins. Unsuper-

vised hierarchical clustering segregated the TIF proteome into two major

clusters, luminal and TNBC/Her2 subgroups. High-grade tumors enriched

with tumor infiltrating lymphocytes (TILs) were also stratified from low-

grade tumors. A consensus analysis approach, including differential abun-

dance analysis, selection operator regression, and random forest returned a

minimal set of 24 proteins associated with BC subtypes, receptor status,

and TIL scoring. Among them, a panel of 10 proteins, AGR3, BCAM,

CELSR1, MIEN1, NAT1, PIP4K2B, SEC23B, THTPA, TMEM51, and

ULBP2, was found to stratify the tumor subtype-specific TIFs. In particu-

lar, upregulation of BCAM and CELSR1 differentiates luminal subtypes,

while upregulation of MIEN1 differentiates Her2 subtypes. Immunohisto-

chemistry analysis showed a direct correlation between protein abundance

in TIFs and intratumor expression levels for all 10 proteins. Sensitivity and

specificity were estimated for this protein panel by using an independent,

comprehensive breast tumor proteome dataset. The results of this analysis
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doi:10.1002/1878-0261.12850 strongly support our data, with eight of the proteins potentially represent-

ing biomarkers for stratification of BC subtypes. Five of the most represen-

tative proteomics databases currently available were also used to estimate

the potential for these selected proteins to serve as putative serological

markers.

1. Introduction

Breast cancer (BC) is the most prevalent form of can-

cer among women worldwide, with 2.1 million new

cases registered in 2018 [1]. The three main BC sub-

types, namely luminal, Her2, and triple negative

(TNBC), have been defined based on the expression of

estrogen receptor (ER), progesterone receptor (PgR),

and epidermal growth factor receptor, ErbB2/Her2

[2,3]. BC is a remarkably heterogeneous disease and

molecular profiling has revealed a high level of diver-

sity even within the same tumor subtype. However,

this diversity represents a major challenge for tumor

stratification, accurate patient diagnosis, and targeted

treatment [4,5]. While studies of the transcriptome and

genome of BC have been conducted, the differential

protein composition of breast tumors, in particular the

secreted/extracellular protein complement [6,7], has

not been thoroughly investigated.

A large body of research has established that tumors

represent complex systems in which numerous cell

types, including inflammatory, immune, smooth mus-

cle, and adipocyte cells, mediate varied interactions to

ensure tumor survival and development [5,8]. These

signaling-mediated, multidirectional interactions inside

the tumor-stroma milieu are facilitated via the tumor

interstitial fluid (TIF). As part of the tumor microenvi-

ronment, the TIF permeates the interstitial tumor

space and forms an interface between circulating bod-

ily and intracellular fluids. TIF also serves as a trans-

port medium for nutrients, discarded cellular waste,

and as a storage space for signaling substances which

are synthesized locally or which are brought to organs

through the circulation [9,10]. Molecular complements

of tumor-proximal fluids accumulate within the inter-

stitial tumor space via classical endoplasmic reticulum/

Golgi pathways [11], via noncanonical protein secre-

tion [12], or through the shedding of membrane vesi-

cles (i.e., exosomes) from intracellular compartments

[13,14]. Genesis, turnover, and drainage of TIF depend

on many different factors, including tumor type, grade,

and stage, as well as the composition of the tumor

microenvironment. All of these factors are implicated

in the regulation of tumor ecosystems and, therefore,

are predicted to have a profound influence on the neo-

plastic progression of lesions. In recent years, increas-

ing attention has been directed toward analyses of

cancer secretomes. Accordingly, proximal lesion sam-

pling, in combination with -omics profiling of TIF is

currently considered a promising approach for gaining

a greater understanding of the signaling events which

underlie BC biology. Furthermore, it is hypothesized

that deep proteomic analyses of TIF can lead to the

identification of novel protein markers for breast

tumor stratification and could form the basis for the

development of new blood-based disease diagnostics.

Blood is the most commonly analyzed clinical

biospecimen, and it is considered a promising resource

for the screening and diagnosis of various pathologies,

including cancer. Obtaining a blood sample can also

be minimally invasive for a patient [15]. However,

despite tremendous efforts, no robust BC-associated

protein biomarkers in blood have been implemented

into clinical practice, mainly due to difficulties in mon-

itoring tumor heterogeneity and the very high dilution

factor of a potential biomarker in blood [15]. Over the

past decade, several research labs, including our own,

have explored the hypothesis that biomolecules which

are aberrantly externalized by breast tumor cells and

stromal cells into the tumor interstitium are present at

higher, detectable levels within the local tumor space

[7,9]. It has also been predicted that cancer-related

alterations specific to tumor development can be more

prominent in TIFs than in nonmalignant interstitial

fluids harvested from the same patient. Therefore, we

hypothesize that biomarker signatures, which can be

identified from the breast tumor secretome, can be

used to establish a tumor-specific, noninvasive blood-

based test for monitoring breast malignancy [7,9].

In recent years, we have conducted a number of

extensive studies to establish standard operative proce-

dures for the collection and analysis of biomolecular

complements in proximal fluids recovered from

tumorigenic and normal breast tissues [9,16]. We have

also performed several types of quantitative -omics

profiling studies with the aim of characterizing levels

of cytokines, micro-RNAs, and N-glycans in breast

TIF and corresponding serum [17–20]. In addition, we
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have explored the proteome of proximal breast fluids

with gel-based proteomics coupled with mass spec-

trometry and immunohistochemistry (IHC). In the

course of these studies, we have generated several rep-

resentative proteome datasets, which contain comple-

mentary information regarding the secretome of breast

tumor lesions, normal mammary glands, and a number

of benign breast lesions [6]. We have identified a set of

26 proteins, which are upregulated in breast tumors as

compared to normal and benign counterparts, and the

expression levels of nine of these proteins were vali-

dated in an independent set of 70 malignant breast

carcinomas of various grades of atypia [6]. Two-di-

mensional gel/MALDI-TOF-based proteomics has also

been applied by our group to mammary adipose tis-

sues and corresponding interstitial fluids with the aim

of investigating the role of adipocytes and related

molecular circuitry in the breast tumor microenviron-

ment [21]. However, since gel-based proteomics mainly

detect proteins present at moderate to high abundance

[22], a more extensive characterization of the breast

tumor secretome requires more sensitive tools. The lat-

est developments in quantitative LC-MS/MS, in com-

bination with advanced computational algorithms and

bioinformatics, can provide much better proteome cov-

erage, as well as more robust protein identification.

Therefore, multiple high-throughput BC proteomics

studies have emerged over the last decade [23–25].
However, most studies conducted so far have focused

on profiling tumor tissues [26–28] or serum samples

[29,30]. To the best of our knowledge, only one pilot

study conducted by Raso et al. [31] applied tandem

mass tags (TMT) quantitative mass spectrometry com-

bined with the MudPIT technique to breast TIF sam-

ples, which were isolated from three patients (two

patients with infiltrating ductal carcinomas and one

patient with a phyllodes tumor) [31]. In the latter

study, the authors identified ~ 1700 proteins and

demonstrated that this approach could be used to dis-

criminate between normal and tumoral interstitial fluid

samples. However, the number of proteins identified

was rather limited. Moreover, important tumor char-

acteristics such as subtype, grade, stage, and impact of

the tumor microenvironment were not taken into

account in this analysis.

In this study, we carried out a detailed quantitative

high-throughput LC-MS/MS profiling of the protein

complement of interstitial fluid samples, recovered

from breast tumors of three main subtypes: luminal,

Her2, and TNBC as well as from nonmalignant coun-

terparts obtained from women with untreated BC,

who underwent mastectomy at the Copenhagen

University Hospital. The aim of this study was to

identify a panel of proteins that are externalized from

breast tumor components into the local interstitial site

and to identify TIF proteins associated with BC tumor

status and subtype. Up-to-date bioinformatics methods

were applied to a database containing over 8800 pro-

teins to conduct a comprehensive, system-wide, and

quantitative characterization of breast tumor secre-

tomes. It is anticipated that this work will lead to the

discovery of novel putative serological protein markers

to improve our ability to detect and stratify breast

malignancies.

2. Methods

2.1. Collection and handling of clinical samples

Fresh tissue samples were collected from patients

defined as high-risk according to the guidelines of the

Danish Breast Cooperative Group (DBCG, www.dbc

g.dk accessed 22.10.2009). Patients had undergone a

mastectomy between 2003 and 2012, and samples were

collected as part of the Danish Center for Transla-

tional Breast Cancer Research program at Copen-

hagen University Hospital, Denmark. More details on

the criteria used to define high-risk cancer patients are

reported in our previous publications [17]. Normal

samples were collected from nonmalignant areas

located at least 5 cm from the tumors. All of the

patients presented a unifocal tumor, and none of the

patients had a history of breast surgery or had

received preoperative treatment (naive samples). Regis-

tered clinicopathological data for the patients were

retrieved from the Department of Pathology, Rigshos-

pitalet, Copenhagen University Hospital. This study

was conducted in compliance with the Helsinki II Dec-

laration and written informed consent was obtained

from all participants. The procedures of this study

were approved by the Copenhagen and Frederiksberg

regional division of the Danish National Committee

on Biomedical Research Ethics (KF 01-069/03).

At the time of collection, tissue specimens were

divided into two pieces. One piece was stored at

�80 °C and subsequently prepared as a formalin-fixed

paraffin-embedded (FFPE) sample to undergo histo-

logical characterization, tumor subtyping, tumor infil-

trating lymphocyte (TIL) scoring, and IHC analysis

(see below). The second biopsy piece was placed in

PBS at 4 °C within 30–45 min of surgical excision and

then was subjected to interstitial fluid recovery (see

below).
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2.2. IHC of tissue biopsies: histological

assessment and tumor subtyping

FFPE blocks prepared from two or three different

parts of a tissue specimen were subjected to IHC

analysis as previously described [6]. Then, tissue mor-

phology, tumor cell composition, and tumor-stroma

percentages were evaluated as previously described

[17,32]. The BC subtype of each tissue sample was

determined based on ER, PgR, Her2, and Ki67 sta-

tus, in accordance with St. Gallen International

Breast Cancer Guidelines [33]. Three major BC sub-

types were identified: luminal, Her2, and TNBC. Due

to the small number of samples available, the luminal

type tissues analyzed in the present study included

both luminal A and B subtypes as a merged category.

The cutoffs used for ER, PgR, Her2, and Ki67 for

tumor stratification were previously described [19].

The antibodies used in this study (including vendor,

origin, dilution, and scoring criteria) are summarized

in Table S1. Two researchers (IIG, PSG) blindly

reviewed all IHC staining. For each staining, a posi-

tive control slide was included in accordance with the

manufacturer’s instructions. For a negative control,

slides were incubated with PBS instead of primary

antibody.

Information regarding all of the patients included in

this study [i.e., patient age, tumor size, grade, receptor

status, stratification of tumor subtype, and proportion

of immuno-infiltrate within corresponding biopsies (see

below)] is summarized in Table S2. A commercially

available tissue microarray (TMA) containing normal

tissues from 33 human organs was used (Pantomics,

Inc., San Francisco, CA, USA).

2.3. Evaluating and scoring TILs within tumor

samples

We examined the most prominent components of the

immune microenvironment (i.e., TILs) in the corre-

sponding tumor biopsies used for breast TIF recov-

ery. The number of lymphoid cells present was

evaluated with hematoxylin and eosin staining as pre-

viously described [17], and with IHC staining with

antibodies raised against CD45 (clone 2B11+PD7/26,

DAKO) (Table S1). The proportion of TILs in the

tissue sections were evaluated in accordance with rec-

ommendations of the International TILs Working

Group 2014 [32]. Total leukocytes were scored as: 1+
(> 10%), 2+ (10–50%), or 3+ (> 50%). For immune

cell population, the expression results were classified

as low (neg and 1+) or high (2+ and 3+) (see details

in Ref. [17]).

2.4. Interstitial fluid recovery

Tumor interstitial fluid was extracted from fresh breast

tumor specimens as previously described [9]. Briefly,

0.1–0.3 g clean tissue was cut into small pieces

(~ 1 mm3 each). After the tissue pieces were washed

twice in cold PBS to remove blood and cell debris,

they were incubated in PBS at 37 °C in a humidified

CO2 incubator. After 1 h, the samples were centrifuged

at 200 g and 4000 g for 2 min and 20 min, respec-

tively, both at 4 °C. The supernatants were aspirated,

and total protein concentrations were determined with

the Bradford assay [34]. The same procedure was used

to recover interstitial fluids from lesions enriched with

both nonmalignant epithelial and adipose cells, which

were dissected approximately 5 cm from a tumor mar-

gin. Corresponding normal interstitial fluid (NIF) and

fat interstitial fluid (FIF) samples were prepared from

20 and 12 corresponding dissected tissue specimens

and pooled for further analysis. To ensure minimum

contamination by structural proteins that may origi-

nate from cell or tissue lysis, TIF, NIF, and FIF sam-

ples and corresponding tissue biopsies were originally

subjected to comparative 2D-gel electrophoresis in

combination with MS analysis, as previously described

[9,16]. The protein component of breast TIF was

found to be greatly depleted of structural and nuclear

proteins. Quantitation of the ratios of several proteins

known to be externalized from tumor tissue to three

cytokeratins (CK14, 18, and 19) in both TIF samples

and in corresponding whole tumor lysates yielded val-

ues that differed by a factor of 10 or more confirming

that the release of nonspecific proteins due to cell

death is not a significant contributor to TIF.

2.5. LC-MS/MS proteomic experiments

2.5.1. Sample preparation and TMT labeling

Samples were applied to 5 kD cutoff filters (Agilent

Technologies, Santa Clara, CA, USA) to perform buf-

fer exchange. Then, 59 the sample volume of 50 mM

Hepes buffer (pH 7.6) was added to each sample. The

filters were then centrifuged for 20 min at 2000 g and

the flow through was discarded. This step was repeated

three times to ensure that a complete exchange was

achieved. Protein concentrations of the collected sam-

ples were subsequently determined with a DC Protein

assay (Bio-Rad, Hercules, CA, USA). The volume of

each sample containing 30 lg protein was adjusted to

120 lL with the addition of 50 mM HEPES (pH 7.6).

The samples were subsequently denatured at 99 °C for
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5 min. Reduction and alkylation were performed by

adding 13 lL of 100 mM dithiothreitol and 20 lL of

100 mM iodoacetamide to each sample. Tryptic diges-

tion was performed overnight at 37 °C (trypsin:sample

ratio, 1 : 60), followed by TMT labeling, according to

the manufacturer’s instructions (Thermo Scientific,

Waltham, MA, USA). After digestion, 5 lL of each

sample (TIF, pooled NIF and FIF) was taken off and

run on a short gradient LC-MS/MS for quality con-

trol. Pooled NIF and FIF samples were then dissolved

in 15 µL of mobile phase A (95% water, 0.1% formic

acid) and 1 lL and subjected to LC-MS/MS analysis

by using a hybrid Q-Exactive mass spectrometer

(Thermo Scientific) as described in 2.5.3. To create an

internal standard to link the four TMT sets, a pooled

internal standard from TIFs was prepared by taking

4 lg from each sample. TIF samples for in-depth anal-

ysis were subjected to TMT labeling according to the

manufacturer’s instructions (Thermo Scientific). The

four TMT-labeled sets were then desalted and cleaned

up by applying them to Strata SCX cartridges, accord-

ing to the manufacturer’s instructions (Phenomenex,

Torrance, CA, USA), followed by lyophilization. The

samples were stored at �20 °C until further analyzed.

2.5.2. Peptide isoelectric focusing and extraction

(HiRIEF)

After clean up, the TMT-labeled samples underwent

isoelectric focusing (IEF) on four 24-cm, 3.7–4.9
immobilized pH gradient (IPG) strips (GE Healthcare,

Uppsala, Sweden). Briefly, samples were rehydrated in

8 M urea with bromophenol blue and 1% Pharmalyte

(GE Healthcare), loaded onto IPG strips, and sepa-

rated, according to previously published protocols [35].

The IPG strips were subsequently subjected to passive

elution with MilliQ water into 72 fractions by using an

in-house robot. The obtained fractions were dried with

a SpeedVac and stored at �20 °C.

2.5.3. LC-MS/MS

For each LC-MS analysis of a HiRIEF fraction, the auto

sampler (Ultimate 3000 RSLC System; Thermo Scientific

Dionex) dispensed 15 µL of mobile phase A (95% water,

5% dimethyl sulfoxide, 0.1% formic acid) into the corre-

sponding well of a 96-well V-bottom polystyrene microti-

ter plate (Corning, New York, USA). After mixing the

samples added to the plate by aspirating/dispensing a 10-

µL volume 10 times, a 7-µL aliquot was injected onto a

C18 guard desalting column (Acclaim Pepmap 100,

75 µm 9 2 cm, NanoViper, Thermo Scientific). After

5 min with the loading pump at a flow rate of

5 µL�min�1, the 10-port valve switched to analysis mode

with the NC pump providing a flow rate of 250 nL�min�1

through the guard column. The curved gradient (curve 6

in CHROMELEON software, ThermoFisher Scientific, Wal-

tham, MA, USA) was subsequently applied with 3%

mobile phase B (95% acetonitrile, 5% water, 0.1% for-

mic acid) increased to 45% mobile phase B over 50 min,

followed by a wash with 99% mobile phase B and re-

equilibration. The total LC-MS run time was 74 min. A

nano EASY-Spray column (Pepmap RSLC, C18, 2 µm
bead size, 100 �A, 75 µm internal diameter, 50 cm length;

ThermoFisher Scientific) was used on the nano electro-

spray ionization (NSI) EASY-Spray source (Thermo-

Fisher Scientific) at 60 °C. Online LC-MS was performed

by using a hybrid Q-Exactive mass spectrometer (Thermo

Scientific). FTMS master scans with 70 000 resolution

and a mass range of 300–1700 m/z were followed by

data-dependent MS/MS at 35 000 resolution for the top

five ions by using higher energy collision dissociation

(HCD) at 30% normalized collision energy. Precursors

were isolated with a 2 m/z window. Automatic gain con-

trol targets were 1e6 for MS1 and 1e5 for MS2. Maxi-

mum injection times were 100 ms for MS1 and 450 ms

for MS2. The entire duty cycle lasted ~ 2.5 s. Dynamic

exclusion was used with 60 s duration. Precursors with

an unassigned charge state or a charge state of 1 were

excluded. An underfill ratio of 1% was used. MS/MS

data were searched by using Sequest HT of the PROTEOME

DISCOVERER 1.4 software platform (Thermo Scientific)

against the UniProt protein sequence database (140407)

with a 1% peptide false discovery rate (FDR) cutoff. A

precursor mass tolerance of 10 p.p.m. and product mass

tolerances of 0.02 Da were used. Additional settings were

as follows: trypsin with 1 missed cleavage; IAA on cys-

teine, TMT on lysine, N-terminal as fixed modification,

oxidation of methionine, and phosphorylation of serine,

threonine, or tyrosine as variable modifications. Quanti-

tation of TMT 10-plex reporter ions was performed by

Proteome Discoverer (Thermo Scientific) on HCD-

FTMS tandem mass spectra by using an integration win-

dow tolerance of 20 p.p.m. FDR rate was estimated by

using percolator (part of PD 1.4). The mass spectrometry

proteomics data obtained have been deposited into the

ProteomeXchange Consortium2 via the PRIDE partner

repository with the dataset identifier, PXD001686.

2.6. Normalization of samples, data filtering, and

batch corrections

We quantified peptides with samples by using a pooled

internal standard. Sample ratios were corrected based

on mean protein abundance. Normalization was per-

formed in Sequest (Proteome Discoverer User Guide,
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Software Version 2.2, XCALI-97808, June 2017;

Thermo Fisher), after which the data were log2 trans-

formed for bioinformatics analyses. The proteomics

data were filtered to remove proteins for which more

than 12 samples had missing values (which is the size of

the TNBC group) in order to improve the statistical

power of the analyses. Missing value imputation with

least local squares was performed to infer the remaining

missing values before analysis [36]. Since the LC-MS/

MS experiments were performed with samples split into

four different pools, we explored potential batch effects

with a multidimensional scaling (MDS) analysis using

Euclidean distance. For visualization purposes, we per-

formed batch correction by using the Combat function

[37] implemented in the R-package, SVA, to remove

technical pool variation. For differential abundance

analysis (DAA), LC-MS/MS pools were used as covari-

ates within the design matrix. We carried out Least

Absolute Shrinkage and Selection Operator (LASSO)

and random forest (RF) analyses using both batch-cor-

rected and non-batch-corrected data, see Fig. S1 for a

comparison of group-wise variances and clustering of

samples before and after correction for batch.

2.7. Hierarchical clustering

Hierarchical clustering was applied to batch-corrected

data according to Ward’s clustering method [38] and

algorithm ward.D2. This initial analysis was performed

to identify covariates which might contribute to

patient stratification and guide the design of DAA (see

Results for additional details).

2.8. Evaluation of relevant hits

To evaluate the validity of protein candidates identi-

fied as potential serological biomarkers, we investi-

gated their presence or absence in the following

relevant publicly available databases and datasets:

-Human Plasma PeptideAtlas [39] https://www.hupo.

org/plasma-proteome-project. We downloaded a total

of 3529 plasma proteins from https://db.systemsbiol

ogy.net/sbeams/cgi/PeptideAtlas/buildInfo?_subtab=2.

-ExoCarta database [40] http://www.exocarta.org. At

the time of our download, this database included

entries for 9769 proteins secreted via the exosomal

pathway (derived from 286 studies).

-Microparticles from human plasma [41]. This dataset

includes 2357 proteins derived from twelve samples.

-A comprehensive dataset of proteins secreted from

eleven breast cancer cell lines. This dataset includes

3386 entries and was downloaded from [42].

-MS/MS-based dataset of breast TIF proteins derived

from six samples from three patients. Approximately

1000 proteins are available [31,43].

2.9. SignalP and Phobius

FASTA sequences of 6763 proteins (see above) were

queried based on UniProt ID, with the R-package,

protr [44]. Sequences of 6582 of these entries could be

retrieved and were included in our analyses. The

remaining proteins (n = 181) were not included due to

redundancy or discontinuation of their UniProt ID.

Signal peptides were predicted from fasta by using Sig-

nalP V. 4.1 [45] (http://www.cbs.dtu.dk/services/Signa

lP/) and Phobius [46] (http://phobius.sbc.su.se/). For

Signal P analysis, the default cutoff of the mean signal

peptide score (Smean) was > 0.3 to define a signal.

2.10. Differential abundance analysis

The statistical software, LIMMA (linear models for

microarray data) implemented in R, is powerful for

small sample sizes due to shrinkage of feature-specific

variances [47]. A number of studies have demonstrated

the versatility of this software for the analysis of dif-

ferent -omics data, including proteomics data [48,49].

Here, DAA used a corrected P-value (FDR ≤ 0.05) as

the cutoff for significance, as well as log-fold change

(logFC) ≥ 1 (�5%) or ≤ �1 (�5%) for up- or down-

regulated proteins, respectively. In our DAA, the fol-

lowing groups were used for comparisons: (a) all

pairwise subtype combinations, (b) hormone receptor

status (ER, PgR, Her2), (c) high TIL status (2+ and

3+) versus low TIL status (neg and 1+), and (d) high-

grade tumors (3) versus low-grade tumors (1 and 2).

Based on the hierarchical clustering, we also included

information on LC-MS/MS pools as contrasts in the

design matrices for DAA.

2.11. LASSO regression

We performed LASSO regression with tenfold cross-

validation, as implemented in the R-package, GLMNET

[50]. We used contrasts from the differential expression

analysis which yielded significant hits, including (a) BC

subtype, (b) TIL status, and (c) hormone receptor sta-

tus of ER and PgR as a response. The full set of pro-

teins retained after filtering were used as input for the

LASSO regression. We ran each LASSO model 10

times with 10 different random seeds and extracted the

overlap of selected proteins across runs to a consensus

set. For the models with BC subtype, estrogen receptor
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status, and progesterone status, we split the dataset

into a training set and test set, which was used to esti-

mate the model accuracy—See Table S3. We did not

split the dataset for LASSO regression with Her2

receptor, degree of TILs and tumor grade, as this

resulted in large cross-validation errors. The higher

error rates observed for these models were in part

related to a highly unbalanced number of samples

within each clinicopathological group, especially for

the Her2 receptor, in combination with large variances

within these homogeneous groups. As such, we can

only provide cross-validation errors for these models,

see Table S3. N.B we are aware that not splitting the

datasets is bias and will produce over-fitted models;

however, here it is important to note that we do not

use the results of LASSO regression as a stand-alone

method for selecting proteins, but as a way of filtering

results from differential abundance analysis.

2.12. Random forest

We performed RF with the contrasts from the DAA,

which yielded significant hits, including (a) breast can-

cer subtype; (b) TIL status, and (c) hormone receptor

status of ER and PgR as a response. All proteins

retained after filtering were used as input for the RF

models. For the datasets which converged, defined by

a class error ≤ 25%, variable selection was performed

by re-running the RF 10 times with different random

seeds. The results of each run were overlapped to

obtain a consensus of protein classifiers. The R-pack-

ages, random Forest and varSelRF [51,52], were used

to conduct RF classification. Similarly to the LASSO

regression, we split the datasets into training and test

sets for models with BC subtype, estrogen receptor sta-

tus, and progesterone receptor status. However, for

the models with Her2, TILs, and tumor grade, we used

all data for training due to the large out-of-bag (OOB)

errors associated with these. Table S3 contains OBB

errors and accuracies for the six RF models.

2.13. Protein-protein interaction networks

All human protein-protein interaction pairs from the

STRING database V11.0 [53] (https://string-db.org/

cgi/download.pl?sessionId=sm2jwqiNPyyz) were

downloaded and used for analysis. In order to get the

most comprehensive networks all protein-protein inter-

actions (PPIs) with a score (support/confidence of

interaction) above the lower 25th quantile of all scores

were kept for analysis. Networks were created for sets

of differentially abundant proteins from contrasts with

BC subtypes (luminal, Her2, and TNBC). PPIs were

retained in a given network if both proteins in the pair

were significantly differentially abundant in the same

contrast. Networks were visualized using CYTOSCAPE

V3.8.0 [54], nodes were colored according to logFC,

edges according to the directionality of node pair, and

edge width in accordance with score (confidence) of

interaction.

2.14. Comparison of quantitative proteomics

with IHC scoring

Adjacent heatmaps of protein abundances from high-

throughput MS/MS were generated, along with IHC

scores obtained from paired tumor tissues (see IHC of

tissue biopsies: histological assessment and tumor sub-

typing). While the latter values were discrete (i.e., 0–3),
protein abundances from MS/MS data were continu-

ous. The level and expression pattern for the set of

selected proteins that revealed subtype-specific differ-

ential TIF abundancy quantified by LC-MS/MS were

blindly inspected and compared across the two plots

(i.e., IHC vs. LC-MS/MS). IHC scores of the proteins

from luminal versus TNBC sample comparisons were

evaluated with Fisher’s exact test. Her2 subtypes were

not included in the test due to the low number of

available samples. Significance was defined as a P-

value < 0.05, and no correction for multiple testing

was needed since only 10 tests were performed.

2.15. Protein biomarker sensitivity and

specificity

Validation of subtype-specific expression of the TIF

proteins identified in this study was performed using

the area under the curve (AUC) of receiver operating

characteristic (ROC) curves on the independent dataset

published [26]. The data from the Tyanova et al. [26]

publication were generated using the super-SILAC

mass spectrometry technique, and the dataset acquired

for ROC analysis, contained normalized H/L ratios

between the standard and the tissue. Normalization of

data had been performed using the MAXQUANT soft-

ware, see [26] for specifics. Any missing values were

imputed by using the llsImpute function of the R-

package, pcaMethods [36], with k neighbors values of

4–7 yielding consistent results. Data were log2 trans-

formed to push the protein abundance toward a nor-

mal distribution. After imputation of the missing

values, and transformation, pROC [55] and nnet [56]

were used to generated AUCs with 95% confidence

intervals for: (a) each protein individually for relevant

pairwise comparisons, (b) proteins combined for the

relevant pairwise comparisons, and (c) proteins
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combined for all three groups together (multinomial

model). For the latter setup, we split the data into a

training set (which included 2/3 of the data) and a test

set (which included 1/3 of the data). A few different

seeds were selected as the starting point for splitting in

order to evaluate variability among the samples within

the dataset and AUC stability. The advantage of this

score is that it is independent of threshold selection.

Note that AUC varies between 0 and 1 and that an

AUC score of 1 means perfect biomarker classification

of a subtype.

2.16. Data and script availability

All the scripts, code, and documentation to reproduce

our bioinformatic and biostatistical analyses are

reported in the GitHub repository https://github.com/

ELELAB/Proteomics-TIF. The repository also con-

tains the data and the outputs of the analyses. More-

over, we have published the Cancer BioMarker

Prediction Pipeline (CAMPP) [19], a pipeline which

may be used to perform most of the analyses.

3. Results and Discussion

3.1. An overview of the TIF proteome

To obtain an initial, yet comprehensive, characteriza-

tion of the TIF proteome, we performed high-through-

put LC-MS/MS quantitative proteome profiling of

TIF samples recovered from 35 tumor specimens origi-

nating from BC patients. Our aims were to elucidate

whether the composition of these TIF proteins: (I) can

be used for patient subgroup stratification, (II) is

dependent on the composition of the tumor microenvi-

ronment,which is known to play an essential role in

tumor development, and (III) can prove useful for a

putative noninvasive BC test. The experimental and

computational workflow for this study is summarized

in Fig. 1.

A total of 8855 proteins were identified. At a 1%

peptide FDR, this coverage represents approximately

six orders of magnitude of dynamic range. After nor-

malization, filtering, and batch correction, 6763 pro-

teins were retained, and these were included in our

downstream analysis (see Fig. 1). To the best of our

knowledge, this is the most comprehensive dataset of

proteins externalized from breast tumors. It is worth

noting that the number of proteins comprising the

breast TIF dataset is less than the number reported in

the largest breast tumor proteomic dataset available to

date, which includes 10 135 proteins identified by

high-throughput LC-MS/MS screening of whole breast

tumor tissue samples [26].

In parallel with the quantitative profiling of proteins

externalized from tumor masses, we examined the pro-

tein composition of interstitial fluids recovered from

far-distant tumor lesions containing a high proportion

of nonmalignant mammary epithelium or adipose tis-

sue (i.e., NIF and FIF samples, respectively) (see

Methods). Protein spectra from NIF/FIF samples were

analyzed with lower analytical depth and proteome

coverage, thereby yielding the most abundant proteins

externalized. We considered this to represent a baseline

of normalcy. Within the pooled NIF and FIF samples,

318 proteins and 391 proteins were detected, respec-

tively (Fig. 2A). A total of 155 proteins were common

to all of the TIF, NIF, and FIF samples, and this sub-

set represents approximately 50% of all the NIF and

FIF proteins identified. In addition, 53 proteins are

shared between the TIF and FIF samples, while 25

proteins are shared between the TIF and NIF samples.

Meanwhile, 260 proteins in the FIF and/or NIF sam-

ples were not identified in any tumor fluids (Fig. 2A,

Table S4).

To gain further insight into the secretion potential

of proteins identified in our TIF samples, we com-

pared our dataset to secreted protein entries in the five

most representative and relevant protein datasets and

databases currently available:

-The Human Plasma PeptideAtlas database [39] is the

most comprehensive resource of proteins present in

human blood, independent of origin and type of

secretion. A comparative analysis between TIF and

plasma protein complements has the potential to iden-

tify secreted proteins that enter the blood circulation,

and thus, may assist in prioritizing candidates for fur-

ther studies. In total, the concatenation of datasets

from this database yielded 3529 proteins for analysis.

-The ExoCarta database [40] is the largest database of

exosomal proteins, containing more than 40 000 pro-

tein entries (9769 proteins). Exosomes are small mem-

branous vesicles (30–150 nm in diameter), which are

released by a variety of cells into the extracellular

environment. Exosomes represent a nonclassical, vesi-

cle-mediated secretory pathway for the transport and

exchange of a variety of biomolecules between cells as

a means of communication. Thus, a comparison of

TIF with ExoCarta enabled us to identify proteins

which are most likely externalized into breast TIF

through exosome-associated secretion pathways.

-A dataset of proteins associated with circulating

human plasma microparticles (MPs) [41]. Plasma and

other bodily fluids contain membranous MPs, which
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are thought to be derived from various cell types,

including BC cells [57]. MPs differ from cellular exo-

somes in size and cellular origin, with the latter origi-

nating from intracellular multi-vesicular bodies. The

importance of MPs as mediators of cellular signaling

is supported by recent data which demonstrate that

MPs serve as vectors in the intercellular transfer of

functional proteins and nucleic acids, and also in drug

sequestration [58]. Moreover, an important role for

MPs in facilitating evasion of cancer cell immune

surveillance has been demonstrated [59]. In total, 2357

proteins associated with MPs are currently available

for analysis.

-A comprehensive dataset of secreted proteins from 11

BC cell lines with different origins that are representa-

tive of different stages of BC development [42]. This

is the most comprehensive dataset of proteins detected

in conditioned media of BC cells, and it represents

the major BC subtypes. This dataset encompasses

3386 proteins.

-The only high-throughput LC-MS/MS-based pilot

study of breast TIF protein composition published to

date [31]. This dataset contains approximately 1000

proteins and derived from an analysis of breast TIF

samples from three healthy individuals and three

patients with tumors.

The results from comparing these datasets are pre-

sented in Fig. 2B. Overlaps (i.e., intersections)

between the proteins found in the different datasets

are indicated with vertical bars. In total, 4830 out

of the 6763 proteins (71.4%) detected in the TIF

samples were included in at least one of the datasets

used for comparison. The main overlap observed

involved exosomal proteins present in the ExoCarta

database, with 3203 proteins found to be present in

TIF and in exosomes. This result indicates that

many of the TIF proteins (~ 50%) are likely exter-

nalized through exosomal signaling pathways. In

addition, 2567 proteins were present in TIF and

secreted from BC cell lines, while 2230 proteins and

1599 proteins were found to be shared between TIF

and plasma or plasma MPs, respectively. Taken

together, these results highlight the secretory nature

of the TIF proteome complement. Compared with

the TIF dataset published previously by Raso et al.

[31], 775 proteins are common to the present breast

cancer TIF dataset. This overlap represents approxi-

mately 84% of the 924 proteins identified by this

group. These results emphasize the validity of our

experimental framework and they also indicate that

high compliance exists between the data obtained in

both of these studies on TIF.

Fig. 1. A flow chart of the experimental and computational workflow for this study. Number of tumor interstitial samples used for analysis,

sample curation, and data filtering are summarized. Methodological steps in the bioinformatic/biostatistical analyses performed, along with

validation (both experimental and in relation to available literature) of candidate proteins, are also presented.

437Molecular Oncology 15 (2021) 429–461 ª 2020 The Authors. Molecular Oncology published by John Wiley & Sons Ltd

on behalf of Federation of European Biochemical Societies

T. Terkelsen et al. Proteomics of breast tumor interstitial fluid



Additionally, an important observation is that our

TIF protein complement contains 1933 unique enti-

ties which do not overlap with any of the five data-

sets used for comparison (Fig. 2B). These proteins

were potentially identified due to the depth of our

analysis. A subset of these proteins may be specific

to breast TIF and may originate from malignant

cells and/or cells present in the tumor microenviron-

ment. However, we cannot exclude the possibility

that some of these proteins are presented in TIF as

a result of partial cellular or tissue lysis during sam-

ple preparation.

A C

B

Fig. 2. Overall characterization of the TIF dataset. Both a comparison of secretome-related datasets and an evaluation of the secretion

pathway were performed. (A) Venn diagram of the overlap between proteins identified within TIF samples and within pooled NIF and FIF

samples. (B) An Upset plot illustrates the overlap of the final set of 6763 TIF proteins, 6066 unique gene symbols, included in further

analyses with: (a) human plasma—PeptideAtlas database proteins [39]; (b) human exosomal proteins from the ExoCarta database (http://

www.exocarta.org; [40] (c) a dataset of proteins associated with circulating human plasma microparticles [41]; (d) a secretome of 11 BC cell

lines of different origins [42]; and (e) an interstitial fluid BC protein complement published by Raso et al. [31]. Colors denote the individual

protein datasets. Horizontal bars indicate the size of each dataset; vertical bars indicate the number of proteins shared between all

combinations of the six sets. (C) Venn diagram showing how many TIF proteins are predicted by SignalP [45,103] and/or Phobius [46] to

encompass a signal peptide.
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After comparing our dataset to these relevant data-

bases and datasets, we used the prediction tools, Sig-

nalP [45] and Phobius [46], to segregate classically

secreted proteins within the TIF proteome from pro-

teins externalized via nonclassical pathway(s). With the

use of these two tools, the presence of signal peptides

within TIF proteins was predicted. While these signal

peptides may indicate which proteins are targeted for

the secretory pathway, they may not necessarily drive

secretion. Among the TIF proteins, 6582 out of 6763

had FASTA sequences available for analysis. Accord-

ing to SignalP analysis, a total of 899 TIF proteins are

predicted to contain a signaling peptide. In compar-

ison, Phobius predicted that 1451 proteins contain a

signaling peptide. The overlap between the two predic-

tors was quite high, with 856 commonly predicted

secreted proteins present in the TIF proteome

(Fig. 2C). However, this set of proteins only accounted

for 10% of the TIF proteome (Fig. 2C), suggesting

that a significant proportion of TIF proteins undergo

nonclassical secretion (i.e., though membrane pore for-

mations or via specialized secretory autophagosomes

[60]).

3.2. TIF proteins distinguish low-grade versus

high-grade tumors and are associated with

different levels of TILs

To evaluate the potential for TIF proteome profiles

to be segregated according to BC subtype, we strati-

fied available tumor samples into three major sub-

type-specific groups: luminal, Her2, and TNBC.

Corresponding plots with multidimensional scaling

(MDS) revealed considerable segregation of TIF pro-

teomes across all three tumor subtypes (Fig. 3). A

slight overlap of two samples, a Her2- and a TBNC-

subtype with the TBNC and luminal groups, respec-

tively, was observed (Fig. 3). However, one Her2

sample appeared to be a very clear outlier (Fig. 3,

indicated with an arrow). A morphological analysis

of the corresponding tumor biopsy revealed the pres-

ence of apocrine dysplasia(s) with multiple cyst struc-

tures scattered within the tumor mass. Apocrine

dysplasia tumors have a high secretion potential

[6,61], and this characteristic is consistent with the

unique TIF profile of this particular Her2 tumor sam-

ple. Therefore, we removed this sample from subse-

quent analyses.

To gain insight into which clinical and morphologi-

cal covariates may have an impact on the externalized

protein patterns within the interstitial space, unsuper-

vised hierarchical clustering was performed (see Hier-

archical clustering). As shown in the dendrogram in

Fig. 4, both hormone receptor status and level of TILs

within the corresponding biopsies were able to stratify

the TIF proteomes of the BC patients examined. Hier-

archical clustering revealed two main clusters of TIF

samples, Cluster 1 and Cluster 2. Cluster 1 almost

exclusively encompassed ER+ luminal samples (93%

of samples within the cluster), the majority of which

were positive for PgR, and from lower grade tumors

approximately, 71% of samples. Cluster 1 samples

were more often characterized by a low level of

immune cell infiltration (65% within-cluster and 69%

across clusters), although this pattern was more subtle.

In contrast, Cluster 2 mainly consisted of ER�/PgR�

samples, 70%, and 75%, respectively, originating from

the TNBC subtype (55% of samples and 92% of all

TNBCs across clusters) and Her2 specimens—15%

within-cluster and 100% of Her2 samples. Most of the

samples within Cluster 2 were enriched in TILs and

originated from high-grade tumors, 80% and 75%,

respectively (Fig. 4). These findings are in agreement

with the results of our recent publications on cytokine

and N-glycan profiling of breast tumor interstitial flu-

ids, which demonstrate that high-grade Her2, and

especially TNBC, tumors exhibit a high level of TILs

[17,19]. Meanwhile, neither the percentage of malig-

nant cells in the tumor samples, nor patient age, strati-

fied the TIF proteomes. It should be noted that while

Fig. 3. Multidimensional scaling plot of 35 BC TIF samples

according to subtype based on protein abundances. The x-axis and

y-axis denote multidimensional scaling components 1 (M1) and 2

(M2), respectively, which best retain the distance relationship

(squared Euclidian) between the samples in two-dimensional

space. The single gray dot indicated with an arrow represents a

Her2 outlier sample (apocrine dysplasia(s) with multiple cyst

structures), which was excluded from further analysis.
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there was a propensity toward the clustering of sam-

ples with similar clinicopathological characteristics.

Figure 4 also highlighted sample heterogeneity, a well-

established issue within the field of breast cancer

research. The distribution of different clinicopathologi-

cal groups within clusters and across clusters may be

found in Table S5.

3.3. Identification of differentially abundant (DA)

proteins associated with BC subtypes, hormone

receptor status, and degree of TILs

Next, we performed differential abundant analysis

(DAA) to identify which secreted proteins are able to

discriminate between TIFs originating from the three

major BC subtypes, tumors of different grades, and

tumors with varying degrees of infiltrating lymphocytes

(Fig. 4). Specifically, DAA was applied to the follow-

ing group comparisons: (a) all pairwise subtype combi-

nations (i.e., luminal vs. Her2, luminal vs. TNBC, and

Her2 vs. TNBC); (b) ER+ versus ER�, (c) PgR+ versus

PgR�, (d) high Her2 (3+/2+) versus low Her2 (1+/0),
(e) high (3+/2+) versus low (1+/0) TIL status, and (f)

high-grade tumors (i.e., GR3) versus low-grade tumors

(GR2/1).

From these six comparisons, a total of 174 DA pro-

teins (FDR < 0.05 and logFC > 1 or < �1) were iden-

tified. Among these, 151 proteins were associated with

BC subtypes, 64 proteins were associated with ER/

PgR/Her2 status, and 15 proteins were associated with

TIL scoring. Four of these proteins, ADIRF, S100A9

(both in luminal vs. TNBC), HSPB1, and POSTN

(TIL associated), were found in the NIF/FIF back-

ground datasets. Despite the observed partitioning of

samples based on tumor grade in Fig. 4, we did not

identify any DA proteins when we compared TIF sam-

ples from high- versus low-grade tumors. This result

may be due to the almost total confounding of tumor

grade with TIL status. Thus, when we corrected for

TILs as a confounder in the statistical analysis, we lost

Fig. 4. Dendrogram clustering of 34 BC samples based on TIF protein abundances. Coloring of bars as gray (positive) or white (negative)

labels ER/PgR/Her2 status of the samples. Subtype, TIL grade, ER/PgR, and Her2 status are colored as indicated. TIL samples were

stratified according to recommendations of the International TILs Working Group 2014 [32] and as described in Methods.
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most of the biological variance between tumor grades.

The complete list of DA genes used for each compar-

ison, as well as the directionality in the comparison

(i.e., up- vs. downregulation), are reported in

Table S6. Individual set-wise list of DAA results,

including test-statistics, P-values and logFCs, may be

found in Table S7. Additionally, set-wise heatmaps of

differentially abundant proteins from each comparison

are presented in Fig. S2.

Among the 151 proteins which exhibited differential

abundance in the TIF samples from three BC sub-

types, we identified 60 unique DA proteins when we

compared Her2 and luminal samples, 66 unique DA

proteins when we compared luminal and TNBC sam-

ples, and only eight DA proteins when we compared

Her2 and TNBC samples. The majority of DA pro-

teins were unique to one subtype, although a few over-

lapped across pairs of subtypes (Fig. 5, black vertical

bars across subtype-wise comparison). Five of the pro-

teins (BCAM, COPS9, DNJC12, TCEAL3, and

ZSCAN18) revealed higher abundances in the TIF

samples with luminal origin, compared to both the

Her2-enriched and TNBC TIF samples. Meanwhile,

there were 11 proteins (BCAS1, CDK12, CRYM,

ERBB2, FDFT1, GRB7, HMGCS1, IDI1, MIEN1,

SRCIN1, and VPS13B), which were enriched in the

Her2 TIF samples compared to the luminal and

TNBC TIF samples. Conversely, two proteins

(LRMDA/C10orf11, TMEM51) exhibited depleted

abundances in the Her2 TIF samples compared to the

luminal and TNBC TIF samples, while one protein

(PADI2) exhibited low abundance in the luminal TIF

samples compared to both the Her2 and TNBC TIF

samples. Finally, the 9 + 4 proteins identified as DA

in the comparisons of high versus low Her2 and PgR+

versus PgR� TIF samples, respectively, were redun-

dant, with those identified in the subtype contrasts.

Similarly, the majority of the 51 proteins found to be

DA between the ER+ versus ER� TIF samples were

also DA between the luminal versus Her2 and/or

TNBC TIF samples.

3.4. Identifying a minimal subset of disease-

related proteins: A consensus approach (DA

analysis, LASSO regression, and random forest)

Our DAA returned a relatively large number of pro-

teins. Therefore, we further employed two independent

approaches to pinpoint the most prominent set of pro-

tein candidates, which would have the potential to dis-

criminate different subgroups of breast tumors. These

analyses included random forest (RF) classification

and least absolute shrinkage and selection operator

regression (LASSO) with leave-one-out k-fold cross-

validation (see Methods).

For LASSO regression with BC subtypes (without

Her2), estrogen, and progesterone receptors, we split

the sets into training and test sets; however, for regres-

sion analysis with Her2 status, degree of TILs and

tumor grade we kept all samples for training, as these

models returned large cross-validation (CV) errors

even when all samples were included in the model. The

larger CV errors observed for these regression models

(~ 25%) were somewhat attributed to an unequal dis-

tribution of classes (subgroups), especially for Her2

status, a high degree of sample heterogeneity within

these clinicopathological groups, in addition to our

small sample size. Table S3 contains the variables

returned from each LASSO, ordered according to the

variables weight in the model, in addition to cross-vali-

dation errors and accuracies with confidence intervals

for regressions where data could be split into training

and test sets. Average cross-validation errors for mod-

els with subtype, ER, and PgR ranged from 7% to

10%, while accuracies estimated from the test sets

were ~ 0.89 (CI: 0.5–0.99) for all three.
Similarly to regression analysis, random forest

returned large class errors (> 25%) and poor conver-

gence for models with Her2 receptor status, degree of

TILs, and tumor grade. In contrast, convergence for

RFs with BC subtype (without Her2), ER, and PgR

status was okay (~ 15% misclassified), with accuracies

of 94%, 89%, and 78%, respectively. See Table S3 for

out-of-bag errors, class errors, and accuracies. Gener-

ally, RF and LASSO with Her2, TILs, and grade as

outcome, had poor overlap of selected variables, and

those which were identified by both approaches were

weighted quite differently. This observation is sup-

ported by the large OOB and CV errors associated

with these models.

We derived a list of candidates for each comparison

(i.e., BC subtypes, ER/PgR/Her2 status, and TIL level)

where proteins were identified by at least two out of

the three methods applied (Fig. 6 and Table S8). Both

RF classification and LASSO regression returned five

of the original 15 DA proteins detected in the TIF

samples with high versus low TILs, here among:

COL5A3, HSPB1, GPC1, MAPT, and SPATA18

(Table S8). HSPB1 was excluded from the final list of

proteins because it was detected in NIF/FIF samples

(Table S4). RF and LASSO regression also returned

protein GPC1, which had significant adjusted P-values

in the differential expression analysis but fell short of

the logFC cutoff (logFCs �0.86 and 0.44, respec-

tively). Accordingly, GPC1 was also excluded from the

minimal consensus subset of proteins. Interestingly, all
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three TIL-associated proteins exhibited an inverse

directionality of correlation between their protein

abundance in TIF samples and the number of TILs

observed in matched tumors. Decreased abundances of

COL5A3, MAPT, and SPATA18 were detected in TIF

samples derived from tumor specimens with a high

level of leukocyte infiltrate (+3/+2). These results imply

that metabolites produced by white blood cells that

penetrate tumors may suppress the production and/or

secretion of these proteins by neoplastic cells. Interest-

ingly, recent evidence suggests that one of these identi-

fied proteins, SPATA18, plays an important role in

suppressing the progression of breast and colorectal

cancers in a hypoxic tumor microenvironment [62–64].
Meanwhile, lower expression of MAPT in TNBC

tumors (which are often enriched with TILs), and not

in other BC subtypes, has been observed [65]. Darlix

et al. [66] (and references within) have also recently

demonstrated a prognostic value for the serum level of

MAPT in metastatic BC patients, as well as its correla-

tion with brain metastases).

When hormone receptor status was compared with

the results of LASSO regression and RF classification,

10 proteins were identified. Six proteins were associ-

ated with estrogen status (CELSR1, SEC23B, THTPA,

TCEAL3, ZNF703, ZSCAN18), two proteins were

related to progesterone status (BCAM, COMP), and

three proteins were related to Her2 status (ERBB2,

SP3, ZNF24) (Table S8).

Out of the 24 proteins identified as a minimal sub-

set of disease-related proteins (Table S8), we selected

10 proteins, namely AGR3, BCAM, CELSR1,

MIEN1, NAT1, PIP4K2B, SEC23B, THTPA,

TMEM51, and ULBP2, which represent potential

candidates for segregating TIFs from different BC

subtypes. The selection was based on the commercial

availability of antibodies that met the criterion for

their sensitivity and specificity (Methods: IHC of tis-

sue biopsies: histological assessment and tumor sub-

Fig. 5. Upset plot showing the overlap of TIF proteins which exhibited DA according to BC subtype. Horizontal bars denote the size of each

dataset; vertical bars indicate the number of proteins shared between all combinations of the six sets. Colors are used to indicate

comparisons made with TNBC (red), Her2 (orange), or luminal (yellow) subtype samples.

Fig. 6. Consensus analysis of DA proteins according to BC subtype. Circle plots represent the consensus observed across DAA (green),

LASSO (light gray), and RF (dark gray) analyses. Genes identified with each approach are noted on the left-hand side of each plot. The black

boxes indicate genes identified with more than one method.
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typing, Table S1) required for further confirmatory

studies by IHC (see TIF subtype-specific protein sig-

natures: Expression origin and externalization pattern

below).

Two of these proteins were identified in contrast

with estrogen status (CELSR1, THTPA), while one

was associated with progesterone status (BCAM).

Based on available datasets and literature, we evalu-

ated whether these proteins are present in human

plasma, in exosomes, and/or among proteins secreted

by breast cancer cell lines of different origins. In addi-

tion, we checked whether these proteins may be exter-

nalized through classical pathways based on the

predicted presence of secretory signal peptides (SignalP

or Phobious). Finally, to ensure that these candidate

proteins originate from malignant cells and not from

the normal epithelium and/or adipose cells, we investi-

gated their presence within pooled NIF and FIF sam-

ples. None of the NIF/FIF proteins were included in

the consensus set, thereby confirming the potential of

this subset to serve as BC-specific biomarkers

(Table S8).

To estimate the potential significance of DA TIF

proteins associated with BC subtypes, we compared

them to the gene-set of the well-established BC classi-

fier, PAM50. The PAM50 signature is one of the most

powerful predictive and prognostic classifiers [67,68]

currently implemented in the clinic [approved by the

US FDA in September 2013]. The PAM50 signature is

characterized by expression levels of 50 transcripts,

including mostly hormone receptors, proliferation-re-

lated genes, and genes exhibiting myoepithelial and

basal features. When we compared the DA proteins

associated with BC subtypes (a total of 151 proteins,

see TIF proteins distinguish low-grade versus high-

grade tumors and are associated with different levels

of TILs) to the PAM50 classifier set of genes, eight

proteins (MLPH, ANLN, ERBB2, GRB7, NAT1,

SFRP1, NUF2/CDCA1, and NDC80/KNTC2) were

identified (Table S9). We subsequently compared the

abundance directionality (up or down) of these eight

TIF proteins with intratumor mRNA levels for pair-

wise subtype contrasts [69] and observed full concor-

dance between mRNA expression levels and levels of

the corresponding proteins (Table S9). Furthermore,

only NAT1 from a minimal subset of TIF candidates

(n = 14) identified by using a consensus approach (i.e.,

DAA, elastic-net regression, and machine learning)

matched the corresponding transcripts in PAM50.

Tyanova et al. [26] previously reported a higher num-

ber of proteins (41) from BC tumor subtypes that

matched the 50 transcripts of PAM50; yet only 21 had

quantitative data available from more than 70 samples

for which PAM50 genes enabled partial segregation of

classical subtypes at the protein level. In particular,

the authors highlighted four well-described proteins

for differentiating breast cancer subtypes, namely

Her2, Grb7, FOXA1, and MLPH, which were clearly

selected in the PAM50 and proteomic signatures. It

should be noted that two of these proteins, Grb7 and

MLPH, are present in our 8-protein set, which over-

laps with PAM50.

3.5. Protein-protein interaction networks

To assess whether the interplay between differentially

abundant proteins from contrasts with BC subtype, we

constructed protein-protein interaction (PPI) networks

using the STRING database [53] and visualized with

CYTOSCAPE [54] (see Methods and Table S10). The

results of network analysis with DA proteins from

comparisons with BC subtypes are shown in Fig. 7.

Specifically, we were interested in whether protein can-

didates selected using the consensus approach (DAA,

LASSO, and RF) were highly interconnected within

the PPIs, indicating a regulatory role or potentially a

driver role, or if they were leaf nodes.

The network of DA TIF proteins from the Her2 vs

TNBC comparison was small and almost completely

redundant with the Her2 vs luminal network—all

nodes in the Her2 vs TNBC network were upregulated

in Her2, see Fig. 7. All hub nodes are marked in

Fig. 7 with a star. Hub nodes from the Her2 vs lumi-

nal network included ERBB2, ATAD2B both upregu-

lated, and NCOR2, SETD1A, downregulated. ERBB2

and ATAD2B, were not hub proteins in the same sub-

network but in each their own, connecting 30 and 16

proteins, respectively. High levels of ATAD2(B) are

known to be associated with increased cell survival,

tumor cell migration, and a poor prognosis in patients

with breast cancer, supported by multiple studies

[70,71], and in accordance with this, TIFs from Her2

samples had a greater abundance of this protein as

compared to luminal samples.

The hub protein SETD1A, which was upregulated

in luminal compared to Her2 samples, is a component

of the histone methyltransferase (HMT) complex.

SETD1A has been shown to be involved in the regula-

tion of mitotic gene expression, and the knockdown of

this gene leads to cellular senescence [72]. SETD1A is

amplified in 7–24% of breast cancers and was found

to promote survival and migration of ER-positive

breast cancers, specifically [73].

Inversely to SETD1A, a high level of the hub pro-

tein NCOR2 (also up in luminal vs Her2), may be

associated with increased metastasis-free-survival in
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BC patients with ER-positive tumors [74]. NCOR2 is

an established tumor suppressor gene in prostate can-

cer and a hallmark of this cancer type (COSMIC data-

base) [75].

Hub proteins from the luminal vs TNBC network

included GATA3 and KRT18 (upregulated), both of

which are well-known markers of luminal breast can-

cer [76], as well as MMP7, MMP9, and MPO (down-

regulated). Matrix metalloproteinases MMP7 and

MMP9 are thought to be drivers of tumor cell inva-

sion and metastasis in patients with TNBC, and have

therefore been proposed as therapeutic targets for drug

treatment of this more aggressive type of BC [77,78].

In accordance, the abundance of hub proteins MMP7

and MMP9 were low in luminal samples compared to

TNBC.

Three proteins ZSCAN18, PADI2, and DNAJC12

connected the Her2 vs luminal network with the lumi-

nal vs TNBC network. ZSCAN18, which had a high

abundance in Luminal vs Her2 and TNBC samples,

was identified by the consensus method as one of the

best candidates for ER+ vs ER� classification

(Table S8). The role of ZSCAN18 in breast cancer is

not well-studied; however, this gene is proposed to be

a strong methylation marker for colorectal, gastric,

and pancreatic cancers [79]. TIFs from patients with

Luminal ER+ breast tumors had a high abundance of

both ZSCAN18 as well as DNAJC12. In agreement

with this observation, the expression level of the

DNAJC12 gene is known to be significantly positively

correlated with estrogen receptor-positive status, and

may be regulated by estrogen itself via response ele-

ments in the genes promoter [80]. Inversely to

ZSCAN18 and DNAJC12, the protein PADI2 was

depleted in TIFs from luminal samples in comparison

to Her2 tumors. Expression of the PADI2 gene, a

member of the peptidyl arginine deiminase family, has

been strongly linked to the amplification of Her2

(ERBB2). The inhibition of PADI2 gene expression

results in a decrease in the level of cell cycle genes p21

and Ki67 [81], as well as other genes associated with

aggressive breast cancer phenotypes, here among

ACSL4 and BIRC3 [82]. PAD12 has been proposed as

a biomarker for Her2 tumors and a potential thera-

peutic target for BC treatment.

Out of the 10 proteins selected as secreted candidate

biomarkers for separation of BC subtypes, eight were

retained in the PPI networks, while two proteins,

THPTA and SEC23B, did not have any interactions

annotated in STRING. Three proteins, BCAM,

Fig. 7. Protein-protein interaction networks based on DA proteins from the comparison of BC subtypes (luminal, Her2, and TNBC). The plot

contains three networks; (I) Her2 vs luminal, (II) Her2 vs TNBC and (III) luminal vs TNBC. Nodes (proteins) are colored according to logFC:

green < �1 and orange > 1. Edges are colored based on directionality of node pair: green = both nodes down, orange = both nodes up,

purple = inverse directionality of nodes. The width of edges denote the node pair interaction score (support) from STRING, and ranges from

0.25 to 1.0. Purple nodes are a part of more than one network and have opposite directionality in the networks.
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TMEM51, and ULBP2 were leaf nodes in their respec-

tive networks. The single interaction partner of BCAM

(Her2 vs Luminal network) was ERBB2, although evi-

dence for this interaction (score) was low, while

TMEM51 was a part of a small subnetwork including

PLEC, PTGFRN, and ECM2 within the larger net-

work with hub proteins NCOR2 and SETD1A.

ULBP2, included in the Luminal vs TNBC network,

interacted with CAMP, which was tightly connected to

the hub nodes, matrix metalloproteinases MMP7 and

MMP9.

CELSR1 and NAT1, both from the Luminal vs

TNBC network, had three interaction partners each

(average number of interactions per node), CELRS1

was connected to SFRP1 and SHROOM3 in addition

to hub node GATA3, while NAT1 interacted with

GSTM3, SULT2B1, and hub node MPO.

The most interconnected of the 10 protein candi-

dates, with 6–7 edges each, were MIEN1, PIP4K2B,

and ARG3. The latter of these, ARG3 was a part of

the subnetwork with hub nodes GATA3 and KRT18,

along with its homolog ARG2. MIEN1 and PIP4K2B

were included in the highly interconnected subnetwork

with ERBB2 as the hub and interacted with each other

as well a hand full of proteins, all of which were

upregulated in TIFs from Her2 tumors.

3.6. TIF subtype-specific protein signatures:

Expression origin and externalization pattern

To elucidate whether selected protein candidates with

subtype-specific patterns originate from malignant

cells, normal cells, or TILs, we performed an extensive

IHC analysis of 10 proteins, including anterior gradi-

ent protein 3 (AGR3), lutheran/basal cell-adhesion

molecule (BCAM), Cadherin EGF LAG seven-pass G-

type receptor 1 (CELSR1), membrane-anchored pro-

tein C35 (MIEN1), N-acetyltransferase 1 (NAT1),

phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinase

(PIP4K2B), Sec23 Homolog A (SEC23B), Thiamine

triphosphatase (THTPA), Transmembrane protein

(TMEM51), and UL16-binding protein 2 (ULBP2)

(Table 1). These proteins were selected for analysis

based on the availability of highly specific antibodies

and their quality and specificity exhibited in a series of

control experiments (Table S1). Protein expression was

analyzed for both proximal and distant samples, which

were collected with TIF recovery and from paired nor-

mal lesions (Fig. 8) based on stratification criteria

described in Methods (see IHC of tissue biopsies: his-

tological assessment and tumor subtyping and

Table S1). Representative examples of high (3+) versus
low (0–1+) expression levels within tumor samples, as

well as within nonmalignant areas, are shown in Fig. 8

(panel A).

A key advantage of IHC analysis is that it provides

visualization of spatial tissue architecture, including

inter- and intracellular expression context. Upon the

first examination of the IHC images obtained, we

observed that most of the proteins exhibited expression

patterns in both the cytoplasm and membrane, which

is consistent with available literature. PIP4K2B exhib-

ited strong nucleic positivity in several samples in addi-

tion to classical cytoplasmic and apical membrane

staining, and this result is also consistent with previ-

ously published data [83]. It has been hypothesized

that differential intracellular localization of PIP4K2B

may be associated with the cellular functions of partic-

ular PI5P4K isoforms in different tumor subtypes [84].

With the exception of PI5P4K, all of the proteins

exhibited significantly higher expression levels in

malignant cells compared with normal cells (see the

inset panels within the corresponding IHC panels of

Fig. 8 and data presented in Table 1). The expression

of PIP4K3B in normal mammary epithelium is consis-

tent with data published by Keune et al. [85]. Interest-

ingly, we also observed that the expression levels of all

10 proteins were significantly lower in the TILs located

inside corresponding tumor lesions, regardless of sub-

type. In addition, positivity was not detected for any

of the 10 proteins in adipose cells, nor in infiltrated or

distant lesions (results not shown). Thus, collectively,

our IHC data are in agreement with our comparative

MS-based analysis [see Identifying a minimal subset of

disease-related proteins: A consensus approach (DA

analysis, LASSO regression, and random forest)],

which did not detect any of these proteins in the NIF

or FIF pooled samples. Taken together, these results

clearly indicate that the abundance of our selected 10-

protein panel in the tumor interstitium is predomi-

nantly due to externalization of these proteins from

neoplastic cells rather than from nonmalignant ductal

epithelium, adipose cells, or the immuno-complement

of the tumor microenvironment.

Next, we compared the abundance of these 10 pro-

teins across tumor tissues from different BC subtypes

in order to validate a presumed correlation between

intratumor expression levels and abundance within

TIF. Due to the small sample size of the Her2 group,

we were only able to apply Fisher’s exact test of IHC

score distribution to the luminal versus TNBC sam-

ples. Significant P-values were obtained for all of the

proteins except MIEN1 and TMEM51. This is in full

accordance with the differential abundance/expression

of MIEN1 and TMEM51 associated with the Her2

subtype, and these samples were not included in the
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test (Table 1 and Table S11). These results also sup-

port the TIF-MS data in terms of differential expres-

sion/abundance levels of particular proteins detected

with the paired tumor comparison of BC subtypes. To

visualize the correlation between TIF and intratumor

protein abundance, we generated tile plots of (a)

batch-corrected, MS-based protein abundances of the

top 10 candidates for discriminating BC subtypes and

(b) IHC scores of the same 10 proteins (Table S11).

The patterns of protein abundance/expression for the

two plots (Fig. 8, panel B) were highly comparable,

and importantly, a strong association was observed for

Her2 samples, which were not subjected to Fisher’s

exact test. To better assess the correlation observed

between the two tile plots, we performed logistic

regression using the discrete IHC scores from solid tis-

sues as the response and the normalized TIF protein

abundances from LC-MS/MS as the predictor. Results

are visualized in Fig. 8 (panel C). The plot shows the

probability of a given IHC score in response to the

normalized protein abundance in TIF. All logistic

regression models (one for each of the 10 proteins of

interest) had an overall significant P-value, indicating

that TIF protein level was indeed predictive of IHC

score, see Table S12. However, as was evident from

the group-specific P-values in Table S12, TIF protein

abundances were not found to have a significant effect

on all levels of IHC for all proteins. In the case of

ARG3, NAT1, and THTPA, there was a good correla-

tion between the level of protein in TIF and all IHC

scores, supported by the distinct probability peaks in

Fig. 8 (panel C). In contrast, proteins BCAM and

CELSR1 displayed less clear-cut patterns, specifically

with respect to the intermediate IHC score of 1–2, in
accordance with accompanying P-values.

For a molecule to be considered a serological can-

cer-specific biomarker, it should be secreted

predominantly from malignant tissues, not normal tis-

sues. Therefore, we also analyzed expression levels of

the selected candidate proteins in normal human tis-

sues, using a TMA of normal human tissues deriving

from 33 different organs (Pantomics, Inc., San Fran-

cisco, CA, USA), which is recommended by the FDA

in its guidelines for testing cross-reactivity. The results

obtained are summarized in Table S13. We supple-

mented these data with publicly available information

regarding the expression patterns of our candidates in

normal tissues from: (a) the Protein Atlas (https://

www.proteinatlas.org/), (b) the Integrated Proteomics

Database (https://www.proteomicsdb.org/proteomic

sdb/#overview), and (c) the Tissues Expression Data-

base (https://tissues.jensenlab.org/Search). The latter is

often used as a reference for protein expression in liter-

ature. We observed good consensus between the data

available in these databases and our IHC results. For

example, CELSR1, MIEN1, NAT1, PIP4K2B,

SEC23B, THPPA, and ULBP1 were only detected at

background levels in almost all of the normal tissues

analyzed. Meanwhile, AGR3, BCAM, and TMEM51

exhibited noticeable expression levels in a number of

normal tissues.

It is interesting to note that the minimal TIF protein

set proposed in our study does not overlap with the

protein signature of breast cancer subtypes described

in the comprehensive proteome dataset of BC tissue

biopsies published by Tyanova et al. [26]. This discrep-

ancy may be due to significant differences in the meth-

ods used to obtain protein lysates for subsequent MS/

MS analysis in these two studies. In contrast to our

work in which fresh tissue was used, Tyanova et al.

extracted proteins from FFPE tissue blocks with

deparaffinization in xylene and ethanol. It cannot be

ruled out that such differences in procedure may have

affected the protein profiles of the samples examined.

Fig. 8. Differential intratumor and TIF abundance of 10 proteins which discriminate between BC subtypes. Intracellular expression levels of

selected proteins were estimated by IHC across tumor biopsies used for TIF recovery, panel A. The expression level of each protein was

considered positive if at least 10% of the tumor cells have intensities of expression scored as (0–1+), medium (2+), or high (3+), in

accordance with previously described criteria (Keune et al. [85]). Representative examples of high (3+) versus low (0–1+) expression levels

for AGR3, BCAM, CELSR1, MIEN1, NAT1, PIP4K2B, SEC23B, THTPA, TMEM51, and ULBP2 proteins are presented. BC subtypes are

specified within each panel. Far-normal areas of each tumor biopsy used for TIF recovery were analyzed in parallel and representative

staining is shown (insertions within corresponding IHC panels). Black arrows within representative IHC images of the tumor biopsies

indicate either positive (left panels) or negative (right panels) malignant cells. Transparent arrows indicate normal-like mammary ducts

located in close proximity of tumor cells. Magnification of images shown is 409. Correlation between TIF and intracellular abundancy is

summarized in panel B with tile plots containing: (a) batch-corrected MS/MS-based protein abundances of the top 10 candidates for

discriminating breast cancer subtypes and (b) IHC scores of the same 10 proteins. Protein names are indicated on the x-axis. Sample ID,

along with assigned BC subtype, are denoted on the y-axis. Coloring indicates low abundance/low IHC score (yellow), ranging to high

abundance/high IHC score (blue). Black squares highlight which of the three subtypes the samples belonging to. Panel C contains logistic

regression plots, one for each of the 10 proteins of interest, showing the probability of a given IHC score (y-axis) in relation to normalized

TIF protein abundance (x-axis). Colors denote IHC scores of 0 (0–0.5), 1 (1–1.5), 2 (2–2.5), and 3.
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In addition, different statistical algorithms used in the

two studies may have resulted in differences in the cor-

responding hits.

Therefore, to further validate the breast cancer sub-

type-specific expression pattern of the 10 TIF proteins

and to evaluate their potential clinical applicability as

candidates for classification of BC subtype, we

examined their sensitivity and specificity on Tyanova’s

proteome dataset. An AUC analysis was performed

for eight of the 10 proteins (i.e., AGR3, BCAM,

CELSR1, MIEN1, NAT1, PIP4K2B, SEC23B, and

THTPA) because TMEM51 and ULBP2 had almost

exclusively missing values, and thus, could not be

included in the analysis. In light of more recent

A B

C
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demonstrations that use of multiple markers can sig-

nificantly increase the specificity and sensitivity of dis-

ease classification compared to the use of single

biomarkers [86,87], we estimated AUCs for both indi-

vidual proteins and various protein combinations.

Briefly, AUCs were estimated for: (a) individual AUCs

for proteins DA within pairwise subtype contrasts, (b)

combined AUC for multiple proteins associated with

pairwise subtype contrasts, and (c) combined AUC for

all proteins with all three BC subtypes included. The

results obtained are summarized in Table 2.

The AUCs of the individual proteins ranged from

0.74 to 0.91, with SEC23B and PIPI4K2B having the

lowest and highest specificity/sensitivity values, respec-

tively, for classification of Her2 versus TNBC sub-

types. Strikingly, MIEN1 had AUC = 1.0, which we

partly attribute to the abundance of this protein being

completely distinct between Her2 samples and TNBC

samples. However, since MIEN1 was also one of the

proteins which had the largest number of missing val-

ues (~ 35%), it was difficult to determine an exact

AUC for this protein. Moreover, although the speci-

ficity/sensitivity of MIEN1 is likely to be high, it is

doubtful that it would reach 1.0 in a larger dataset.

For pairwise subtype classification by using a combi-

nation of markers, the AUCs were good, with values

> 0.9 obtained for all three models (Table 2). In the

combined model with luminal versus TNBC and Her2

versus TNBC, we observed a redundancy of markers.

Additionally, we observed that use of more than two

markers did not increase AUC in any noticeable man-

ner. This is shown in Table 2 where a dual-protein

combination which maximized AUC is shown first,

and AUCs associated with the remaining proteins

which are specific for various subtype comparisons

(denoted in parentheses) are below. Lastly, the com-

bined AUC estimate for classification in the multino-

mial set-up with all three subtypes in one model

ranged from 0.85 to 0.91 (Table 2). The difference in

AUC depended on how the dataset was split into test

and training sets (see Methods) and essentially

reflected how a small dataset with a large variance is

highly sensitive to division. Overall, the AUC scores

strongly support our observation that eight of the pro-

teins selected (AGR3, BCAM, CELSR1, MIEN1,

NAT1, PIP4K2B, SEC23B, and THTPA) exhibit

potential as biomarkers for stratification of BC sub-

types. However, their possible validity as serological

markers for breast malignancy should be investigated,

using an independent serum proteome dataset from

BC patients.

Unfortunately, we were not able to verify the pres-

ence of the identified protein panel directly in matched

blood samples since the latter samples had been con-

sumed in previous studies [17,18]. We also could not

find any publicly available database of plasma proteins

classified by BC subtype and containing information

about potential serological BC subtype-related

biomarkers. Therefore, we indirectly evaluated the

validity of our 10-protein set as a potential serological

signature by curating relevant databases (Fig. 2). The

information used included: (a) a breast TIF MS-data-

set acquired from a pilot experiment [31], (b) the most

updated versions of plasma and exosome databases

[39,40], (c) a secretome dataset derived from BC cell

lines [42], and (d) the presence of these proteins in

human serum according to available literature. The

results of these curations, in combination with relevant

protein characteristics (i.e., differential abundance in

TIF and correlation with expression levels in matched

tumors), are summarized in Table 1. A PubMed search

revealed that six out of the 10 subtype-specific proteins

identified in our study have previously been character-

ized as differentially expressed in breast tumors at the

protein and/or mRNA levels, compared to nonmalig-

nant counterparts. These include AGR3 [88,89],

BCAM [90,91], NAT1 [92], MIEN1 [93–95], PIP4K2B

[85], and ULBP2 [96]. It should be noted, however,

that with a few exceptions, most of these studies ana-

lyzed protein/mRNA levels in tumors without regard

to subtyping, intratumor context, or secretion status.

It has been reported that AGR3 is associated with less

aggressive breast tumors and better BC patient out-

come [89]. However, a PubMed search of thiamine

triphosphatase (THTPA), transmembrane protein 51

(TMEM51), and cadherin EGF LAG seven-pass G-

type receptor 1 (CELSR1), did not return any relevant

literature about their expression in breast tumors.

Thus, to the best of our knowledge, the present results

appear to provide a first indication of the value of

these three proteins for tumor subtype stratification.

The expression profile of all 10 protein candidates,

along with relative abundances in relation to the three

main tumor subtypes, are schematically presented in

Fig. 9. Six of the ten proteins (AGR3, BCAM,

CELSR1, NAT1, THTPA, and TMEM51) were found

to be significantly upregulated in the tumor/TIF of the

luminal subtype samples. In particular, BCAM and

CELSR1 are significantly elevated in the luminal sub-

type compared to the TNBC and Her2 subtypes

(Fig. 9). Thus, these two proteins may represent a

specific biomarker signature which can discriminate

luminal subtype breast tumors.

BCAM, also known as CD239, is a plasma mem-

brane glycoprotein and a receptor for the extracellular

matrix protein, laminin [97]. Expression of CD239/
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BCAM is increased in invasive ductal carcinomas [91],

and has also been found to be elevated level in a sub-

set of BC tissues, particularly Her2-negative tumors

[91]. The present results are in agreement with these

results. Furthermore, it has been hypothesized that

BCAM represents a promising antigen for antibody-

drug conjugate-based BC therapy [91]. BCAM is a

secreted protein, and the significantly higher serum

level of BCAM, determined by ELISA, has been

reported in BC patients compared to normal individu-

als [90]. However, in the latter study, the tumors ana-

lyzed were not stratified, according to subtype.

Another member of our luminal-specific signature is

CELSR1, a protein shown to have a key role in

epithelial planar cell polarity [98]. In general, very little

is known about the potential role of this protein in

carcinogenesis, and particularly in BC progression. A

recently published study [99] demonstrated that

CELSR1 is commonly amplified in pure, yet not

mixed, ductal carcinoma in situ (DCIS) and is associ-

ated with invasion. Amplification of the 22q arm of

chromosome 13, the position of CELSR1, is also

frequently observed in DCIS [99]. In our IHC analysis,

CELSR1 positivity was mainly associated with the

cytoplasmic compartment, as expected for primary

breast carcinomas. Moreover, CELSR1 positivity

strongly correlated with less aggressive luminal type

tumors. In contrast, TNBC tumors and normal ducts

distant from the tumor site were almost exclusively

negative for CELSR1 (Fig. 8, panel A).

Three proteins, MIEN1, PIP412B, SEC23B, were

upregulated in tumor/TIF samples of the Her2-en-

riched subtype compared to the levels detected in the

luminal (MIEN1) and TNBC (MIEN1, PIP412B, and

SEC23B) subtypes (Fig. 9). However, only the expres-

sion of MIEN1 was found to be specific to Her2

tumors (Fig. 9). MIEN1, migration and invasion

enhancer 1, is a membrane-anchored protein, which is

highly expressed in various types of cancer. It was

recently reported that expression of MIEN1 in human

BC tissue is higher than in adjacent noncancerous

breast tissue [93], which is consistent with our data.

Notably, a direct correlation between upregulation of

MIEN1 and upregulation of neighboring genes,

Table 2. Validation of BC subtype-specific expression profiles of selected protein biomarkers. AUC was estimated by using protein

abundances quantified from 40 BC specimens (subtypes: luminal, Her2, and TNBC) by Tyanova et al. [26]. AUCs were estimated from: (a)

models with individual markers used as classifiers of BC subtypes (pairwise), (b) a generalized linear model with additive combinations of

markers in BC subtypes (pairwise), and (c) a multinomial log-linear model fit via a neural network (Venables and Ripley [56]) by using a train/

test set-up with additive combinations of markers in BC subtypes (all). Parentheses around a protein name indicate that the corresponding

AUC only increased minimally, or not at all when this protein was included in the model. A period indicates that the marker was not

relevant for a given pairwise comparison. CI = 95% confidence interval was relevant/possible.

(a) Individual AUC scores with 95% confidence intervals for each protein associated with a pairwise subtype contrast

AGR3 BCAM CELSR1 MIEN1 NAT1 PIP4K2B SEC23B THTPA

Luminal vs TNBC 0.85 (CI:

0.67–1)

0.80 (CI:

0.59–1)

0.77 (CI:

0.56–0.98)

. 0.84 (CI:

0.65–1)

. . 0.77 (CI:

0.56–0.97)

Luminal vs Her2 . 0.87 (CI:

0.72–1.0)

. 0.83 (CI: 0.67

–0.1.0)

. . . .

Her2 vs TNBC . . . 1.0 (CI: NA) . 0.91 (CI: 0.8

–1.0)

0.74 (CI:

0.55–0.93).

(b) AUC score with 95% confidence interval for combined proteins associated with a pairwise subtype contrast

Luminal vs TNBC ARG3 + BCAM (+ CELSR1 + NAT1 + THTPA)

0.92 (CI: 0.8–1.0)

Luminal vs Her2 BCAM + MIEN1

0.94 (CI: 0.87–1.0)

Her2 vs TNBC PIP4K2B (+ SEC23B) MIEN1 + PIP4K2B (+ SEC23B)

0.91 (CI: 0.8–1.0) 1.0 (CI: NA)

(c) AUC scores (min. observed – max. observed) for the combination of all markers and three subtypes together. AUCs from a train/test

multinomial log-linear model, fit via neural network (cite)

Luminal vs Her2

vs TNBC

ARG3 + BCAM + MIEN1 + PIP4K2B (+ CELSR1 + NAT1 + SEC23B + THTPA)

0.85–0.91 (CI:NA)
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ERBB2 and GRB7, was recently shown in a variety of

cancers, including BC [93,100,101]. Meanwhile,

in vitro, it has been demonstrated that overexpression

of MIEN1 may promote cell dissemination and inva-

sion in breast cancer by regulating cytoskeletal-focal

adhesion dynamics [102]. There is no information cur-

rently available regarding MIEN1 in human plasma.

However, with curation of the Human Plasma Pep-

tideAtlas [39], it has been confirmed that MIEN1 is

present in circulation (Table 1). Thus, MIEN1 is a

component of the breast tumor secretome in Her2-pos-

itive patients, and targeting MIEN1 in the blood-

stream may represent a promising approach to prevent

breast tumor metastasis, especially for Her2-enriched

cancers.

In summary, our studies have led to the identifica-

tion of three proteins, which have the potential to

specifically discriminate between BC subtypes, particu-

larly luminal (BCAM and CELSR1) and Her2

(MIEN1) enriched subtypes. The expression of

TMEM51 was also found to be specific to the Her2

subtype (Fig. 9), although its downregulation in Her2

samples diminishes its value as a potential biomarker.

Six additional proteins which we identified also exhib-

ited expression levels relative to the BC subtypes

examined, which manifested as pairwise differences.

4. Conclusions

Overall, by characterizing breast TIF proteome with

high-throughput LC-MS/MS and bioinformatics analy-

ses, we generated a database containing over 8800 pro-

teins externalized from breast tumors into the tumor

microenvironment,which represents the most compre-

hensive BC secretome dataset published to date. To

maximize the probability of finding protein signature(s)

associated with BC subtypes, ER/PgR/Her2 status and

scoring of TILs we used a consensus bioinformatics

approach including DAA, LASSO, and RF that led to

the identification a minimal panel of 24 proteins, 10 of

which namely, AGR3, BCAM, CELSR1, MIEN1,

NAT1, PIP4K2B, SEC23B, THTPA, TMEM51, and

ULBP2 were analyzed by IHC on matched tumor tissue

samples, confirming their potential to stratify the BC

tumor subtype-specific TIFs. In particular, increased

abundancy of BCAM and CELSR1 in TIF differenti-

ates luminal, while upregulation of MIEN1 differenti-

ates Her2 subtypes. The sensitivity and specificity were

estimated for this 10-protein panel in an independent,

comprehensive breast tumor proteome dataset [26] using

the AUC scores and the results strongly support our evi-

dence that eight of the proteins (AGR3, BCAM,

CELSR1, MIEN1, NAT1, PIP4K2B, SEC23B, and

THTPA) might serve as biomarkers for stratification of

luminal, Her 2 and TNBC tumor subtypes. Curation of

the most relevant and current datasets of secreted and

plasma proteins hypothesized the potential of identified

proteins to serve as tumor-specific biomarkers for

plasma screening. Further studies are warranted to con-

firm the validity of these deregulated proteins as classi-

fiers for particular breast tumor subtypes and to

evaluate their value as potential serological biomarkers.

We believe that the results presented in our study pro-

vide a system-wide, quantitative baseline map and data

resource of the breast interstitial fluid proteome, which

extends the existing human tissue proteome databases.
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