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Resolving cellular systems
by ultra-sensitive and economical
single-cell transcriptome filtering

Andres F. Vallejo,1,6,* James Davies,1 Amit Grover,2 Ching-Hsuan Tsai,3 Robert Jepras,2 Marta E. Polak,1,4,6,7,*

and Jonathan West4,5,6,*
SUMMARY

Single-cell transcriptomics suffer from sensitivity limits that restrict low abun-
dance transcript identification, affects clustering and can hamper downstream
analyses. Here, we describe Constellation sequencing (Constellation-Seq), a mo-
lecular transcriptome filter that delivers two orders of magnitude sensitivity
gains by maximizing read utility while reducing the data sparsity and sequencing
costs. The technique reliably measures changes in gene expression and was
demonstrated by resolving rare dendritic cell populations from a peripheral
blood mononuclear cell sample sample and exploring their biology with extreme
resolution. The simple and powerful method is fully compatible with standard
scRNA-Seq library preparation protocols and can be used for hypothesis testing,
marker validation or investigating pathways.
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INTRODUCTION

The dramatic uptake and expansion of single-cell transcriptome analysis tools has transformed biological

research, enabling reconstruction of population architectures and underlying processes to be revealed.

The tools rely on compartmentalization of single cells with the introduction of unique genetic barcodes

during library preparation (Ziegenhain et al., 2017). Though formidable, not unexpectedly these methods

have sensitivity limits, with associated transcript absence events (dropouts) that restrict the faithful delin-

eation of cell subtypes and especially overlook low abundant transcripts such as transcription factors, re-

ceptors, and signaling molecules that are often pivotal for accurately describing cell processes and fate

(Bacher and Kendziorski, 2016; Vallejos et al., 2017). This is a consequence of high abundance transcripts

occupying the available NGS read space and is exacerbated by exponential PCR-directed library prep-

aration routines.

Targeted approaches forgo global transcriptome screens, preferring to select transcripts of known utility

and are especially favored for mechanistic studies. Diverse targeted strategies have emerged; physical

recovery of transcriptome subsets (Riemondy et al., 2019), coupling custom primers to poly (dT) capture

beads (DART-seq) (Saikia et al., 2019) and panel selection by PCR as with the Rhapsody workflow (BD)

(Salomon et al., 2019). These methods are technically challenging and introduce substantial costs. In or-

der to overcome these limitations, we developed a fast, easy to use, accurate, and highly flexible method

for targeted single cell transcriptomics, while imparting extreme sensitivity to overcome data sparsity

problems. We call the method Constellation-Seq and demonstrate its power by application to investiga-

tions of a specific, rare population of immune cells: dendritic cells (DCs). DCs play a central role in path-

ogen sensing, phagocytosis, and antigen presentation (Steinman, 2003). Historically DCs have been

defined by a combination of morphology, localization, functions, and expression of a restricted set of

surface markers (Fromm et al., 2016; Muzaki et al., 2016; Haniffa et al., 2012; Polak et al., 2008). Single

cell RNA sequencing technologies have opened the opportunity for in depth investigation and re-

defining the classification of these elusive, yet critically important cells. Villani and colleagues redefined

the complexity of blood DC populations, describing 6 transcriptomically unique subsets (Villani et al.,

2017). However, investigations of their identities and respective roles they play in immune response regu-

lation are limited by their low abundance in tissues and blood. Constellation-Seq enables tracking of the

rare DC population without disruptive processing of the PBMCs, expands our knowledge about the
iScience 24, 102147, March 19, 2021 ª 2021 The Author(s).
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prevalence and activation status of sub-populations of blood DCs in health and disease, and presents an

attractive diagnostic means linking to future therapeutic strategies.

The limitation of current scRNA-sequencing techniques relates to the difficulty differentiating biologically

inactive genes from technical drop-outs, which impact interpretation of the results, can confound normal-

ization, marker selection andmore importantly, cell type labeling and the discovery of new cell types. Here,

we describe Constellation-Seq, a remarkably simple, inexpensive and scalable (e.g. >200 targets)

approach. The method introduces a linear amplification stage in advance of conventional library prepara-

tion. Superior performance is demonstrated with two orders of magnitude sensitivity gains for describing

system architectures and processes with unprecedented resolution.

The capture beads each support 1010 probes (Saikia et al., 2019) indicating that sensitivity losses arise

from the restricted NGS read space (~104�6/cell) and also from exponential PCR amplification during li-

brary preparation, where abundant and more efficiently replicated transcripts dominate the available

reads. In contrast, linear (single primer) amplification provides an unbiased route to enrichment across

transcripts (Hashimshony et al., 2012; Tang et al., 2011). Therefore, in our approach we have used linear

amplification following cDNA synthesis for the targeted enrichment of transcripts of interest. The method

involves replacing the template switching oligo (TSO) with hybrid primers containing a transcript-specific

region adjacent to a universal handle to select and barcode desired transcripts in a single linear ampli-

fication. The method is illustrated in Figure 1A and compared with Drop-Seq and other targeted

methods in Figure S1). We introduced this linear targeted amplification step to the scRNA-Seq pipeline

to provide a direct comparison that is amenable to cost-effective, large-scale cell screening campaigns

albeit with recognised sparsity limitations (Ziegenhain et al., 2017; Lähnemann et al., 2020). The panel of

primers can be selected based on previous knowledge of the system, from the literature or hypothesis

driven. In addition, an aliquot of the cDNA can be used for standard, bulk sequencing from which a

group of target genes can be identified and then used for interrogating the same sample at high

resolution.
RESULTS

Constellation-Seq dramatically reduces the sparsity in scRNA-Seq data

Constellation-Seq was first establish for the DropSeq method and further extended to 10X chromium Sin-

gle Cell 30 V3. To exclude biological variation we first used the DropSeq protocol for producing standard

beads bearing bulk RNA (Macosko et al., 2015; Svensson, 2019). Using a panel of 20 target genes, sensi-

tivity was compared between single primer linear amplification and dual primer exponential amplification

(PCR, requiring an SMART-Seq reverse primer) akin to state of the art methods (e.g. Rhapsody, BD) (Sal-

omon et al., 2019). The primer panel contained high, medium and low expression level transcripts spe-

cific for peripheral blood mononuclear cells (PBMCs), including markers of newly described blood DC

populations (Villani et al., 2017) and activation traits (Table S1). Constellation-Seq is amplification cycle

and primer concentration dependent (Figure S2), with straightforward optimisation enabling the

selective capture of desired transcripts which produce a characteristically spiny tapestation plot

(Figure 1A).

Critically, at 12K reads/bead, linear amplification has a low, 7.6 duplication rate, producing 1,818 UMIs

per bead to enable the detection of 17/20 transcripts using a 50% dropout cut-off. In contrast, exponen-

tial amplification, at matched depth, has a 33.7 duplication rate, reducing the UMI number to 467 and

resulting in only 13/20 transcripts attaining the 50% dropout cut-off. In addition, when the captured

UMI were compared, 15/17 genes showed increased sensitivity obtained by linear amplification

(Figure S3B).

Next, Constellation-Seq was scaled to 52 targets including 3 negative controls and compared with stan-

dard DropSeq (Table S2). Using 15k reads/bead, we demonstrated efficient use of the read space (93.5%

reads from target genes) while increasing the average counts/cell 2.7-fold (Figure S3). Constellation-Seq

dramatically reduced the degree of sparsity in the data which allows expressed transcripts to be accu-

rately ranked (Figures 1B, 1C, and S4). Individual target transcript counts from Constellation-Seq were

on average 83-fold higher. In addition, standard sequencing only detected 41 of the targets, while

Constellation-Seq detected all 49 targets and none of the control genes (Figure 1D). The 8 transcripts

exclusively detected by Constellation-Seq had average expression levels ranging from 0.03 to 2.60
2 iScience 24, 102147, March 19, 2021
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Figure 1. Constellation-Seq methodology and performance

(A) Schematic representation of the method: Constellation-Seq can be applied to any Smart-Seq-like library following the

standard cDNA synthesis protocol. With a defined primer panel, Constellation-Seq can be applied directly to the cDNA

library (black arrows). Otherwise, an aliquot of the cDNA can be used for bulk sequencing and after data analysis the panel

of primers can be selected for hypothesis testing or to reduce the technical zeros (Blue arrows). Constellation-Seq

includes a hybrid primer (14–18 bp specific sequence, black, adjacent to a common 14 bp handle 2, red) that binds to a

specific target sequence in the cDNA library. Linear amplification of 500–1000 bp stretches of target transcripts allows

selective enrichment of targets of interest, and the inclusion of the cell barcode and UMI sequences, leads to generation

of the Constellation library, ready to use in next-generation sequencing. (B-E) Constellation-Seq was compared against

standard sequencing using a panel of 52 targets on control beads.

(B) UMAP representation of control beads with standard sequencing compared with Constellation-Seq.

(C) A track plot showing the reduction in the data sparsity in a head to head comparison. Each bar represents a gene

expression signal from a single cell. A full track plot is included as Figure S4.

(D) Individual target raw counts show ~100-fold sensitivity gains for Constellation-Seq, error bars represent SD.
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Figure 1. Continued

(E) Dramatic reduction in technical zeros achieved by Constellation-Seq compared with DropSeq. At 2K UMI counts per

bead 32/49 genes were detected in half of the beads (3 negative controls were not detected) using Constellation-Seq,

whereas only 1 was detected with the same threshold using DropSeq.
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counts, without length correlation. In practical terms, when using a 50% dropout cut-off, 32/49 are de-

tected by Constellation-Seq and only 1/49 by standard DropSeq at a sequencing depth of 8k reads/

bead (Figure 1E). Of merit, the sensitivity of Constellation-Seq cascades directly into significantly lower

read requirements; the 32/49 transcripts above 50% cut-off are detected when reducing the depth to 4k

reads/bead, with losses (28/49) only evident at 2k (Figure S5). This striking feature of Constellation-Seq

presents the option to reduce the sequencing depth and associated experimental cost or increase the

scale of the experiment.

Constellation-Seq reliably measures changes in gene expression

To explore the ability of Constellation-Seq to measure gene expression changes in response to perturba-

tion of a cellular system, we challenged human PBMCs with the super antigen Staphylococcal enterotoxin B

(SEB, 100 ng/mL, 16 hr). To compare methods 1,000 cells per treatment were sequenced (200K reads/cell

for DropSeq and: 20K reads/cell for Constellation-Seq), Figure 2A). In this context, Constellation-Seq

consistently detected low copy transcripts such as GZMB, IRF4 and SOCS1 with reduced drop-out and

increased UMI counts at 10-fold lower sequencing depth. Differential gene expression was compared be-

tween control and stimuli for both standard DropSeq and Constellation-Seq. The fold change measure-

ments correlated well between methods (r = 0.62, p value = 8 3 10�5, Figures 2B and 2C). Importantly,

Constellation-Seq was 1.6 times more sensitive (assessed by the slope of the correlation between Constel-

lation-Seq and DropSeq) to gene expression changes (Figure 2B), improving the resolution of typical

activation features such asNFKB1/NFKBIA while maintaining comparable expression levels for stable tran-

scripts unperturbed by stimulation (e.g. CD74). In summary, the linear amplification step in Constellation-

Seq retains the authentic biological response, while measuring responses with greater sensitivity and

resolving greater detail in the underlying process.

Constellation-Seq is compatible with the standard 10x Chromium Single Cell 30 V3 protocol

Next the Constellation approach was reconfigured for use with the popular Chromium 10x Genomics tech-

nology using 6,000 CD14 enrichedmonocytes and amplified cDNA produced using the standard 10X Chro-

mium protocol as the starting material. Following the linear amplification, the library tapestation plot is

spiny, typical of targeted transcriptomics (Figure 3A). The targeted library was processed using the Nextera

XT protocol. Constellation-Seq greatly improved the detection of transcripts of interest (Figure 3B).

Constellation-Seq applied to the 10X library showed 22-fold greater sensitivity allowing reduction of the

sequencing depth from 70k to 1.5K reads/cell, while distinguishing 5 clusters, including an activated mono-

cyte sub-population (CXCL8). In comparison standard 10X at 1.5K reads/cell failed to resolve these sub-

populations and activation states (Figures 3C and S6). Indeed, standard 10X requires 70k reads/cell to

obtain the same results, inflating the experimental costs 46-fold (Figure S6) demonstrating both the sensi-

tivity and financial gains achieved using the Constellation-Seq method.

Constellation- DropSeq can resolve rare DC populations

To demonstrate the applicability of Constellation-Seq for the analysis of specific cell subtypes within com-

plex cellular systems, we designed a primer panel targeting 127 transcripts (Table S3) using a recent mo-

lecular classification (Villani et al., 2017) for the identification of DC subpopulations and their activation

states. 4,000 human PBMCs were processed following the standard 10X Chromium 30 protocol. While stan-

dard sequencing was able to segregate the blood cell types, including DCs andmonocytes (Figure 4A), the

technique was not sufficiently sensitive to reliably detect all the markers used for identifying DC sub-pop-

ulations (Figure 4B), limiting the annotations to DC1 and DC6 subtypes. In contrast, the sensitivity of

Constellation-Seq allowed the classification of expression markers for four DC subpopulations (DC1:

IDO1,CCR7, DC2: PTAFR, DC4: FCGR3A,AIF1, and DC6: TCF4, JCHAIN (Villani et al., 2017) Figures 4C

and 4D). Furthermore, Constellation-Seq provided greater marker detection sensitivity, increasing the

average counts by almost 2 orders of magnitude (i.e IDO1 detection 10X: 0–4 counts per ten thousand

(CPTT), C10X: 01–120 CPTTs). The number of DCs detected using Constellation-Seq was substantially

higher, 127 vs 51, due to more cells passing the QC filtering and increased clustering achieved by the in-

crease in sequencing depth.
4 iScience 24, 102147, March 19, 2021
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Figure 2. Constellation-Seq reliably measures gene expression changes with higher sensitivity

(A) Experimental design; PBMCs from healthy subjects (n = 3) were stimulated with Staphylococcal enterotoxin B (SEB) or

media control for 16hr and analyzed using DropSeq and Constellation-Seq.

(B) Correlation of normalized gene expression fold changes induced by SEB as detected by DropSeq and Constellation-

Seq. Pseudo-bulk counts for each gene used for the comparison.

(C) Comparative analysis of selected markers induced by SEB in cultured PBMCs. Violin plots in each row show the

distribution and levels of each expressed gene in different culture conditions (CTR –media control, SEB – stimulated cells)

and assessed by DropSeq (gray) and Constellation-Seq (orange). y axis represents normalized UMI counts.
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DISCUSSION

The current sensitivity limits of single cell sequencing methods restrict the scope of biological investiga-

tions and impart substantial costs. The simplicity of Constellation-Seq allows inclusion in almost any sin-

gle cell transcriptome library preparation pipelines involving SMART-Seq primers (DropSeq, Seq-Well,

10X and potentially InDrop). The multiplex scaling capacity is governed by available volume; a 300-

plex assay is feasible for a 50 mL reaction volume (without affecting the normal library preparation pipe-

line; Figure S7). The highly multiplexed selection of transcripts of interest is at the expense of global tran-

scriptome coverage, yet benefits from maximizing the efficient use of the NGS space to enable ultra-sen-

sitive investigations. In this manner, the architecture of cellular systems can be understood with

unprecedented resolution and biological processes can be mapped in exquisite detail. Central to

Constellation-Seq is prior knowledge of the cellular system, where specific target selection lends

strength to mechanistic studies or allows the prioritization of targets for perturbation studies. Addition-

ally, Constellation-Seq can be implemented in drug discovery, delivering preliminary toxicity and efficacy

screens for pharmacological compounds of interest. To gain entry to new biological scenarios and to

define the targeted primer library for Constellation-Seq, various standard scRNA-seq approaches or

bulk transcriptome analyses can first be applied to provide a global screen of the defining molecules

and pathways of interest.

Increasing the sequencing depth on informative genes allows specific clusters in the UMAP space to be

clearly resolved. In addition, the reduction in technical dropouts allows better cluster labeling, supported

on well established surface markers, even at low mRNA expression levels. In addition, it opens the
iScience 24, 102147, March 19, 2021 5
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(A) DropSeq assay of humanmonocytes (A) The spikes in the plot are characteristic for the Constellation-Seq method due

to the selection of targets with distinct molecular weights.

(B) Direct comparison of gene expression in monocytes using Constellation-Seq vs 10X.

(C) Left: Constellation-Seq (orange) vs 10X (gray), gene expression measured in normalized UMI counts (C). UMAP plot of

6,000 monocyte transcriptomes assessed using 10X and C-10X. At 1.5K UMI counts per cell, C-10X showsmore granularity

than normal 10X at the same resolution. The enhanced sensitivity of C-10X is demonstrated using monocyte markers.
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possibility to group the cells based on transcription factors, which may lead to a functional based cell clas-

sification. Our experiments exemplify how Constellation-Seq increases the cluster resolution of a popula-

tion of interest (DCs) in the context of a mixed cell sample (PBMC), where DCs constitute less that 0.5% of

the PBMC population (Ueda et al., 2003). We have not only confirmed the expression of markers proposed

by Villani et al., falling into the dropout zone in the standard 10X experiment but were able to identify local-

ization of IDO1 transcript expression specifically to DC1. Importantly, Constellation-Seq resolved the tran-

scriptomic signal of DCs, identifying 127 cells in contrast with 51 detected by standard 10X. This discrim-

ination power is important for validation assays, where the sparsity of marker expression can be misleading

for assigning a cell label, and the signal from more abundant cells dominates the population of interest.

Application of Constellation-Seq in laboratory settings and in clinical practice will allow tracking of specific

cell populations and their activation in health and disease without incurring significant cost.

Constellation-Seq builds on standard scRNA-Seq pipelines, to provide a cost-effective single cell tran-

scriptomics approach for large-scale experiments, while addressing the issues of sensitivity and sparsity.

With Constellation-Seq further savings emerge from shrinking the required sequencing depth to allow

substantially larger experiments or simply more experiments. Other methods such as Hybridization of

Probes to RNA for sequencing (HyPR-seq) and Seq-FISH can be used for targeted RNA detection

method. However HyPR-seq requires multiple rounds of washes for probe hybridization and ligation

which reduces cell recovery and may affect other genes (Marshall et al., 2020). Seq-FISH, which

requires a spatial targeted method, provides an alternative for laboratories with the required infrastruc-

ture (Shah et al., 2016). To inform method selection by end users, the experimental economies, including

time-finance trade-offs, of Constellation-Seq are compared with standard DropSeq and 10X approaches
6 iScience 24, 102147, March 19, 2021
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Figure 4. Constellation-Seq can resolve rare cell populations

10X Chromium Single Cell 30 assay of human PBMC.

(A) UMAP projection of 4,182 PBMCs (Leiden r = 0.5, n_pcs = 20, n_neighbours = 20). Cells were grouped into eight clusters. Classification of PBMCs was

inferred from the annotation of cluster-specific genes and based on expression of well-known markers of immune cell types using all detected genes.

(B) Sub-clustering of dendritic cells (n = 51), from the standard 10X protocol showingmarker genes for DC cell populations as in the Villani paper (Villani et al.,

2017).

(C) Constellation-Seq run of the sample with a panel of 127 genes related to DC biology (n = 1,697 cells).

(D) UMAP plot of the dendritic cell subsets (n = 127).
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in Table S4. Beyond this, Constellation-Seq is accessible to resource limited laboratories, overall repre-

senting a step toward the democratization of single-cell transcriptomics and the broad-scale expansion

of our understanding of biological systems.
Limitations of the study

A potential limitation of Constellation-Seq is that this approach requires previous knowledge for target

gene selection. However, because the method can be used in the same cDNA sample used for standard

sequencing, primer selection can be done with the standard pipeline and then Constellation-Seq applied

to the same sample. Regarding the multiplex capability, up to now, we have multiplexed primers to detect

a total of 127 different genes per single cell. Although this will be adequate for exploring a specific

pathway, or cell type, complex samples and hypothesis may require a more extensive gene panels. Based

on the concentrations, and current primer design capabilities, the method can be straightforwardly

expanded to 300 targets in a single reaction. If more targets are needed, it will be possible to set up

more reactions in parallel, with cDNA availability being the limiting factor.
Resource availability

Lead contact

Requests for further information and reagents should be directed to and will be fulfilled by the lead contact

Marta E. Polak (m.e.polak@soton.ac.uk).
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Materials availability

This study did not generate materials than can be shared.

Data and code availability

Raw data is available through ENA ENA:PRJEB41830). All notebooks used for bioinformatic analyses are

available through GitHub, https://github.com/afvallejo/Constellation-DropSeq.

METHODS

All methods can be found in the accompanying Transparent methods supplemental file.

ETHICS DECLARATIONS

The PBMCs used in this study were obtained with ethical approval 17/EM/0349.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102147.

ACKNOWLEDGMENTS

We are grateful to the subjects who participated in this study and Elena Vataga (Computational Modeling

Group, University of Southampton) for assistance with the High-Performance Computing | HPC Platform.

This study was initially funded by an MRC Discovery grant (MC_PC_15078), M.E.P. is funded by Sir Henry

Dale Fellowship, Wellcome Trust. (Grant no 109377/Z/15/Z), and A.F.V. is funded by GSK (project

ARCP006668).

AUTHOR CONTRIBUTIONS

A.F.V. designed, performed, and analyzed experiments, performed bioinformatic analyses and wrote the

manuscript. M.E.P. and J.W. conceived the idea, planned the experiments, and contributed to writing. J.D.

and A.G. performed the experiments. A.G., C.H.T. and R.J. contributed to the experimental plan and re-

viewed the manuscript.

DECLARATION OF INTERESTS

The authors declare no conflict of interest.

Received: June 16, 2020

Revised: December 9, 2020

Accepted: January 31, 2021

Published: March 19, 2021
REFERENCES

Bacher, R., and Kendziorski, C. (2016). Design and
computational analysis of single-cell RNA-
sequencing experiments. Genome Biol. 17, 63.

Fromm, P.D., Kupresanin, F., Brooks, A.E.,
Dunbar, P.R., Haniffa, M., Hart, D.N., and Clark,
G.J. (2016). A multi-laboratory comparison of
blood dendritic cell populations. Clin. Transl.
Immunol. 5, e68.

Haniffa, M., Shin, A., Bigley, V., Mcgovern, N.,
Teo, P., See, P., Wasan, P.S., Wang, X.N.,
Malinarich, F., Malleret, B., et al. (2012). Human
tissues contain CD141hi cross-presenting
dendritic cells with functional homology to
mouse CD103+ nonlymphoid dendritic cells.
Immunity 37, 60–73.

Hashimshony, T., Wagner, F., Sher, N., and Yanai,
I. (2012). CEL-Seq: single-cell RNA-Seq by
multiplexed linear amplification. Cell Rep. 2,
666–673.
8 iScience 24, 102147, March 19, 2021
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Figure S1. Comparison of Constellation-Seq with DropSeq and other targeted methods,  
Related to figure 1.
The methods use the same poly T capture probes, with the exception of the DART-Seq method that
have probes extended with target-speci�c capture sequences. For targeted PCR and Constellation-
Seq, the library construction will not require the TSO, which can improve the library complexity25.
Following mRNA capture DropSeq and DART-Seq methods progress directly to PCR library
preparation, whereas targeted PCR and Constellation-Seq methods �rst involve PCR and linear
ampli�cation cycles, respectively.



Figure S2 Expression analysis of a Constellation-Seq library containing CLF1 and UBB primers,
Related to figure 1.
The library generated from control beads using linear ampli�cation, at a primer concentration of 10
nMol and 65°C annealing temperature was tested with qPCR for expression of CLF1 and UBB as
targeted genes and CD74 as a negative control. Data was processed using a semi quantitative
approach26. Error bars represent standard deviation (SD).
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Figure S3 Head to head comparison of detection of 20 targets using linear vs targeted approach,
Related to figure 1. 
A) Duplication rate analysis at matched sequencing depth. UMI and counts were compared between
Constellation-Seq and PCR. The slope was 7.6 and 33.5 for linear ampli�cation and PCR respectively,
showing that linear ampli�cation was 4.4 times more sensitive. B) Comparative sensitivity analysis
between Constellation-Seq and targeted PCR. Correlation of the UMI captured in both techniques at
matched sequencing depth. 15/17 genes above the x=y diagonal demonstrates the increased
sensitivity of linear ampli�cation. C) Constellation-Seq counts per bead are 2.7-fold higher than with
DropSeq. D-E) Drop-out rate vs mean expression levels in targeted PCR and Constellation-Seq. Red
dots represent genes included in the library. F) Comparison of the UMIs captured in DropSeq vs
Constellation-Seq.



 DropSeq Constellation DropSeq

Figure S4. DropSeq and Constellation-Seq comparison for the detection of a panel of 52 genes,
Related to figure 1.
A tracksplot of gene expression for high, medium and low expressed genes detected using Drop-Seq
(grey) and Constellation-Seq (orange) with control beads. A total of 41/52 genes were detected in
both methods. Each bar shows the UMI counts signal from a single cell.
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Figure S5 DropSeq and Constellation-Seq sensitivity comparison with varying sequencing depth,
Related to figure 1.
The total number of counts for each target was calculated and compared between DropSeq (top) and
Constellation-Seq (bottom). The fraction of beads with detected target expression vs mean level of
target expression are shown for each gene. The horizontal line indicates the 50% of beads detection
threshold. Red: genes from the panel. Grey: genes not included in the panel. Numbers are the
predicted e�ective cost for 1,000 cells.



UMAP1

U
M

AP
2

CD14 FCGR3A CXCL8 FCER1A

C
-1

0X
10

X

1.5K 

15K 

70K 

1.5K 

£7.0/1K cells

£70/1K cells

£325/1K cells

£7.0/1K cells

Sequencing cost
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savings,Related to figure 3.
UMAP plots showing comparison of single cell sequencing of 6,000 monocytes using C-10X at 1,500
reads per cell sequencing depth with standard 10X at varying sequencing depths. Column 1: clustering
results, Leiden r=0.5, n_neighbours = 20, columns 2-5: examples of monocyte activation expression
markers. Colour denotes gene expression level, as indicated by the legend (normalised UMI counts).
Right: the e�ective cost of sequencing 1,000 cells.
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Figure S7 C-10X library optimization,Related to figure 3.
Typical plot from the bioanalyser (Agilent) showing the library input and primer concentration e�ect 
on library preparation with C-10X. Top: library input – 34 pg/mL, bottom – library input 340 pg/mL. 
Left: Primer concentration c= 0.4 µMol, right: Primer concentration c= 10 µMol. Y axis shows
�uorescence units (FU) indicating signal intensity and product concentration. The spikes in the plot 
are characteristic for Constellation-Seq the targeted transcriptomics approach due to the selection of 
targets with distinct molecular weights.



Transparent	Methods	

Primer	Design	
Primers targeting genes of interest were designed using Beacon Designer primer design software 

(PREMIER Biosoft, California US). The last 14 bases from the SMART primer sequence 

(TATCAACGCAGAGT) were added to the 5’ end of the designed primers. Desired features of primers 

included: a length between 28-32 base pairs, 40-60% GC content, a primer melting temperature 

between 52-58°C, and with minimal chance of secondary structures being produced.  

Negative	control	beads	
RNA from fresh PBMCs was extracted using RNeasy Plus Mini Kit (Qiagen). Control beads were 

generated by adding a solution of PBMC RNA at 10 pg/bead, making the RNA content in each droplet 

equivalent. 200 μL of reverse transcriptase mix (75 μL water, 40 μL Maxima 5x RT buffer, 40 μL 20% 

Ficoll PM-400, 20 μL 10 mM dNTPs, 5 μL RNase inhibitor and 10 μL Maxima H- RTase) was added to 

each bead sample. 10 μL of 50 μM TSO was added to the DropSeq controls, whereas for 

Constellation-Seq no TSO was used. Samples were incubated with rotation at room temperature for 

30 minutes followed by 90 minutes at 42°C with continuous rotation. Beads were washed with 1 mL 

TE-SDS (10 mM Tris, pH 8.0, 1 mM EDTA, 5% SDS) and twice with 1 mL TE-TW (10 mM Tris, pH 8.0, 1 

mM EDTA, 0.01% Tween-20). Finally, beads were washed with 1 mL 10 mM Tris pH 8.0, and stored at 

4°C.  

Cell	preparation	
Human blood was collected from donors with written consent and ethical approval (study number: 

17/EM/0349). PBMCs were extracted immediately using Lymphoprep™ (STEMCELL Technologies) and 

incubated at 37°C with 5% CO2. For SEB stimulation experiments cells were cultured in 24 well plates 

at 2x106 cells/mL for 16h with or without SEB, using a final SEB concentration of 100 ng/mL. For LPS 

stimulation experiments cells were cultured in 24 well plates at 2x106 cells/mL for 4h with or without 



LPS, using a final LPS concentration of 1 µg/mL. Following the incubation period cells were harvested, 

washed in PBS and counted. 180,000 cells were taken for encapsulation. CD14+ monocytes for the 

10X experiment were purchased from Tissue solutions (Glasgow, UK). 

DropSeq	
DropSeq library preparation and sequencing was performed as described previously(Macosko et al., 

2015). Briefly, single cells were co-encapsulated with beads in droplets using the microfluidic design 

provided by Macosko et al (Macosko et al., 2015). After cell lysis, cDNA synthesis was carried out 

(Maxima Reverse Transcriptase, Thermo Fisher), followed by PCR (Kapa Hotstart Ready mix, 15 cycles: 

4 at 67°C, 11 at 65°C). cDNA libraries were tagmented and PCR-amplified (Nextera tagmentation kit, 

Illumina). Finally, libraries were pooled and sequenced on an Illumina Nextseq500, (paired end 

20x50 bp reads). 

Constellation-Seq	of	DropSeq	libraries		
For Constellation DropSeq, experiments were processed as normal from encapsulation through to 

extraction and purification of beads from the droplet emulsion. During reverse transcription however, 

the template switching oligo (TSO) was absent from the reaction*. This resulted in cDNA fragments 

without SMART primer binding sites at the 3’ end of the Macosko bead primers. Hybrid primers were 

pooled at 10 µM. A 50 μL amplification mix was added (25 μL 2X Kapa HiFi Hotstart Readymix, 10 μM 

primer pool, 24.6 μL water) to aliquots of 2,000 beads (~100 STAMPs). 20 rounds of linear 

amplification (at 60°C) were first performed before continuing the standard Drop-Seq protocol for 

library preparation with PCR amplification and tagmentation. cDNA libraries were purified twice using 

AMPure XP magnetic beads (Beckman Coulter) (1:0.6) and libraries assessed using the Agilent 

Bioanalyser (KIT) before tagmentation and Next-seq sequencing.  

*Standard reagents including the TSO can be used with the caveat of transcript noise generated by 

the reverse SMART primer. 

10x	Chromium	Single	Cell	libraries	



Single cell libraries were generated using the Chromium Single Cell 3ʹ library and gel bead kit v3.1 

from 10x Genomics. Briefly, 10,000 cells were loaded onto a channel of the 10x chip to produce Gel 

Bead-in-Emulsions (GEMs). This underwent reverse transcription to barcode RNA before clean-up and 

cDNA amplification followed by enzymatic fragmentation and 5ʹ adaptor and sample index 

attachment using the Nextera XT Library preparation kit (Illumina). Libraries were sequenced on the 

MiSeq500 (Illumina) with 28x60 bp paired-end sequencing. 

Constellation-Seq	of	10X	Chromium	libraries			
For Constellation-Seq of 10X libraries, 395 pg of cDNA were used for linear amplification comprising 

20 rounds of linear amplification (60°C) using a pool of primers at 40 nM and 0.4 µM of a P5 

3’blocked primer.  A 40 μL amplification mix was added (20 μL 2X Kapa HiFi Hotstart Readymix, primer 

pool and P5 blocked primer) to 10 μL of cDNA library.  cDNA libraries were purified twice using 

AMPure XP (Beckman Coulter) magnetic beads (1:0.6) and libraries assessed using a Bioanalyser 

before tagmentation and Next-seq sequencing on an Illumina Nextseq500, (paired end 28x60 bp 

reads). 

Real	Time	PCR	
Control beads were used to assess the specificity of Constellation-Seq . 400 control beads per well 

were used as starting material. Constellation-Seq libraries were produced by linear amplification using 

two control primers (CFL1 and UBB from IDT) for 5, 10 or 20 cycles. Libraries were purified twice using 

0.6X AMPure XP magnetic beads (Beckman Coulter) and eluted with 20 µL 1xTE, pH 8.0. 

Constellation-Seq libraries were tested using specific primers designed within the amplicon region 

including a negative control, CD74. 2 µL of the Constellation-Seq library was amplified in iTaq™ 

Universal SYBR (Bio-Rad) containing 200 nM of CFL1, UBB or CD74 primers. Amplification was 

undertaken in technical triplicates on a HT7900 Fast Real-Time PCR System (Applied Biosystems). 

Quantification was achieved against a serial dilution calibration curve of the pool of samples in each 

plate. Ct values were thresholded at 0.1 relative fluorescence units (RFU).  



Bioinformatic	pipelines	
Alignment, read filtering, barcode and UMI counting were performed using kallisto-bustools(Melsted 

et al., 2019). High quality barcodes were selected based on the overall UMI distribution using 

emptyDrops(Lun et al., 2019). All further analyses were run using the Python-based Scanpy(Wolf et 

al., 2018). To remove low quality cells, we filtered cells with a high fraction of counts from 

mitochondrial genes (20% or more) indicating stressed or dying cells(Macosko et al., 2015). In 

addition, genes expressed in less than 20 cells were excluded. 

Cell by gene count matrices of all samples were concatenated to a single matrix and values log 

transformed. To account for differences in sequencing depth or cell size UMI counts were normalized 

using quantile normalization. The top variable genes were selected based on normalized dispersion. 

This output matrix was input to all further analyses except for differential expression testing where all 

genes were used.  

Visualization	and	clustering	
A single-cell neighbourhood graph was computed on the 50 first principal components that 

sufficiently explain the variation in the data using 20 nearest neighbours. Uniform Manifold 

Approximation and Projection (UMAP) was run for visualization. For clustering and cell type 

identification Leiden-based clustering (Traag et al., 2019) at 0.5 resolution was used. Cell types were 

annotated based on the expression of known marker genes.  
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