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Abstract

Introduction

Analysis of blood for the evaluation of clinically relevant biomarkers requires precise collec-

tion and sample handling by phlebotomists and laboratory staff. An important consideration

for the clinical application of metabolomics are the different anticoagulants utilized for sam-

ple collection. Most studies that have characterized differences in metabolite levels in vari-

ous blood collection tubes have focused on single analytes. We define analyte levels on a

global metabolomics platform following blood sampling using five different, but commonly

used, clinical laboratory blood collection tubes (i.e., plasma anticoagulated with either

EDTA, lithium heparin or sodium citrate, along with no additive (serum), and EDTA anticoa-

gulated whole blood).

Methods

Using an untargeted metabolomics platform we analyzed five sample types after all had

been collected and stored at -80˚C. The biochemical composition was determined and dif-

ferences between the samples established using matched-pair t-tests.

Results

We identified 1,117 biochemicals across all samples and detected a mean of 1,036 in the

sample groups. Compared to the levels of metabolites in EDTA plasma, the number of bio-

chemicals present at statistically significant different levels (p<0.05) ranged from 452

(serum) to 917 (whole blood). Several metabolites linked to screening assays for rare dis-

eases including acylcarnitines, bilirubin and heme metabolites, nucleosides, and redox bal-

ance metabolites varied significantly across the sample collection types.

Conclusions

Our study highlights the widespread effects and importance of using consistent additives for

assessing small molecule levels in clinical metabolomics. The biochemistry that occurs
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during the blood collection process creates a reproducible signal that can identify specimens

collected with different anticoagulants in metabolomic studies.

Impact statement

In this manuscript, normal/healthy donors had peripheral blood collected using multiple anti-

coagulants as well as serum during a fasted blood draw. Global metabolomics is a new tech-

nology being utilized to draw clinical conclusions and we interrogated the effects of different

anticoagulants on the levels of biochemicals from each of the donors. Characterizing the

effects of the anticoagulants on biochemical levels will help researchers leverage the infor-

mation using global metabolomics in order to make conclusions regarding important disease

biomarkers.

Introduction

The analysis of large cohorts of samples has become an increasingly common approach to ana-

lyze disease signatures as well as identify new biomarkers of disease [1–4]. The ability to ana-

lyze large numbers of samples is no longer rate limiting, rather the limiting aspect of

metabolomic studies is ensuring a strong study design that allows for the interrogation of

thousands of samples and requires that the study samples are collected using the same blood

collection device. Metabolomics has been a leading technology in small molecule biomarker

discovery and complements other technologies such as genomics [5–8]. Many biobanks exist

that house disease-specific sample cohorts for metabolomic discovery. Inasmuch as blood

metabolite levels in cohort samples are influenced by the method of collection, it is important

to consider all aspects of sample collection, especially selection of the appropriate collection

tube. Therefore, collecting samples in a consistent manner and choosing the correct sample

type are paramount to maximize data acquisition to ensure accurate conclusions made from

large population cohort studies [9–13]. The analysis of these studies, when performed opti-

mally, can result in the identification of new and more informative biomarkers of disease and

treatment of disease.

For many current diagnostics, biomarkers are well known. These include glucose and

hemoglobin A1c for monitoring glycemic index and cholesterol, triglycerides, and high- and

low-density lipoproteins for monitoring risk of developing cardiovascular disease. Strict ana-

lytical and clinical validation studies reveal that these are strong indicators for these conditions

affected by dysregulated glucose and lipid metabolism, specifically. However, as medical care

has progressed, there is an increasing need to expand biomarker panels in order to identify

early and lead indicators of disease as well as markers that inform on the effectiveness of thera-

peutic interventions [14].

Clinical assays provide diagnostic insight for several disease states, yet opportunities exist to

identify new biomarkers that improve upon current clinical assay performance and expand

diagnostic reach to diseases that are underserved by the routine repertoire of clinical biomark-

ers [15]. The expansion of diagnostic assays using new biomarkers, whether small molecules

or proteins, can give increased resolution to both common diseases as well as rare diseases

[16]. This can be accomplished through targeted panels of compounds or through clinical

metabolomics, the analysis of the comprehensive metabolome of a sample. Recently, validation

of a metabolomics platform has shown that precise analysis of hundreds of molecules can be
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accomplished simultaneously in order to screen for clinical signatures in human plasma [17].

This validation focused on the accuracy, intra-day and inter-day precision assessment of over

250 molecules detected on this platform. The median precision for these molecules was <6%.

This same validated platform was utilized for this study. For example, glomerular filtration

rate (GFR) is routinely measured using serum creatinine levels to calculate estimated GFR

(eGFR). This measurement can have as much as 30% error compared to measured GFR. New

diagnostic biomarkers have been identified that can assess kidney function much more accu-

rately but knowing in which matrix to measure these markers is crucial [18, 19]. As diagnostic

panels are expanded, rapid assays are needed in order assess a patient’s condition and allow cli-

nicians to make rapid diagnostic conclusions. For example, identifying biomarkers of disease

for rare disorders and inborn errors of metabolism requires the analysis of molecules outside

of typical panels run in newborn screening [20–22]. The analysis of novel biomarker signa-

tures has increased the utility of EDTA plasma, urine and cerebrospinal fluid through the iden-

tification of new compounds that can be added to screening assays [23–32]. In addition to

identifying biomarkers of disease, researchers and clinicians need to identify and track bio-

markers showing that treatment of a disease is effective as well as markers that could indicate if

a toxicological response is occurring in a patient while taking a therapeutic intervention.

In this study, we sought to characterize the complete metabolome of five clinically relevant

blood matrices: plasma anticoagulated with either EDTA, sodium citrate, or lithium heparin,

serum with no preservative, and EDTA anticoagulated whole blood. The information obtained

by the direct comparison of each of the biochemicals in all five of these sample types would

allow for a greater understanding of how these biochemicals behave in samples obtained from

normal/healthy individuals. We examined this dataset to identify the differences in levels of

biochemicals in match-paired samples associated with the use of different anti-coagulants

commonly used in the clinical laboratory. Although differences in the levels of some of these

biochemicals are known, to our knowledge this is the first comprehensive analysis of the meta-

bolome directly comparing these different sample types. Results of these analyses demonstrate

that accurate identification of samples exposed to different anticoagulants will be needed in

order to perform accurate and precise clinical metabolomic assays.

Materials and methods

Sample collection

All procedures were performed in accordance with the ethical standards of the U.S. Depart-

ment of Health and Human Services and were approved by an Institutional Review Board

(IRB), (Aspire IRB, Santee, CA). Specimens used in metabolomic testing were collected from

donors through informed consent at Metabolon’s clinical laboratory (Morrisville, NC).

Whole blood, serum and plasma, collected in containers with different anticoagulants (lith-

ium heparin, potassium EDTA, and sodium citrate for plasma and no anticoagulant for

serum), from twenty-seven (27) subjects, resulted in five sample types and 135 total samples.

Samples used for serum analysis were coagulated for 30 minutes. All samples, except whole

blood samples, were centrifuged to collect the respective specimens. All individuals fasted for 8

hours prior to blood collection. Multiple aliquots were stored and frozen for analysis. All sam-

ples were stored at -80˚C for 1 month prior to metabolomic testing. The average age for the

subjects was 37 years (range from 24 to 68 years of age, median of 34 years of age) and 44%

female (n = 12). None of the subjects in the study were pregnant at the time of their blood

draw. It was a requirement that no subjects were pregnant at the time of their draw. Although

we are aware that menstrual status of subjects can affect the biochemical profile of a donor, the

analyses performed in our statistical analyses were centered around matched-pair t-tests to
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identify differences from sample type to sample type within an individual. The menstrual cycle

status of the subjects in the study is important, but not a central factor in the analysis. The

metabolites that change with menstrual status would contribute to the range of detection in

the study.

Some of the patients were taking prescription medications and any medications that fit the

profile of a small molecule that were detected in the study are listed in S1 Table (Xenobiotics

superfamily). Medications can alter the biochemical profiles of patients but the analyses per-

formed in our statistical analyses were centered around matched-pair t-tests in order to iden-

tify differences from sample type to sample type within an individual.

Metabolomic analysis

Sample preparation. Metabolomics was performed as described previously [33, 34]. One

hundred microliters of sample was used for each analysis. Small molecules were extracted in

an 80% methanol solution containing recovery standards [35]. Proteins were precipitated

from 100 μL of human plasma/serum/whole blood with methanol using an automated liquid

handler (Hamilton LabStar). The methanol contained internal standards specific for each

chromatographic method, which permitted the monitoring of extraction efficiency. The pre-

cipitated extract was split into four aliquots and dried under nitrogen and then in vacuum.

The samples were then reconstituted in the appropriate buffers for each chromatographic

method and then data acquired on the LC/MS instruments. During the data analysis, process

balnks are run throughout the data acquisition to identify molecules that are present in tubes

and solvents. Any compound not present 3× above water blank levels are removed.

LC/MS/MSn analyses. All methods utilized a Waters ACQUITY ultra-performance liquid

chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass

spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Q-Exactive

mass analyzer operated at 35,000 mass resolution [17, 34]. The dried sample extract aliquots

were reconstituted in solvents compatible to each of the four LC-MS/MS methods with a series

of isotopically labeled standards at fixed concentrations to monitor injection and chro-

matographic consistency and to align chromatograms (S1 Fig). Separate aliquots were ana-

lyzed by two reverse phase positive ion methods, one reverse phase negative ion method, and

one hydrophilic interaction liquid chromatographic method [34]. Raw data files were archived,

and data extracted as described below.

Metabolites were identified by matching the ion chromatographic retention index, accurate

mass, and mass spectral fragmentation signatures with a reference library consisting of over

4,000 entries created from authentic standard metabolites under the identical analytical proce-

dure as the experimental samples [33]. Identification of compounds was based on the match of

its retention time, parent ion accurate mass, and MS/MS fragmentation spectrum to an

authentic standard representing Tier 1 identification [36]. Compounds marked by an asterisk

were identified based on parent ion accurate mass and MS/MS fragmentation mass spectral

data without a reference standard (i.e., Tier 2 identification). Molecules not detected in a sam-

ple were below the limit of detection.

This project was run as part of a larger project and all samples were in multiple batches

across each arm of the platform, but samples from a single donor were analyzed in the same

batch for each of the MS/MS instruments. All samples were run as a single batch and random-

ized into four groups of 33 samples each. Samples from a single donor were analyzed across

multiple batches for each of the MS/MS instruments. A single aliquot of each sample from

each donor was run in the study. A pooled sample from >100 donors outside of this study was

run as technical replicates throughout the study to monitor process variability and quality.
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Within each sample batch, 2 process blanks and 6 quality control samples are run and ana-

lyzed. For this analysis, there were four sample batches meaning 8 process blanks and 24 qual-

ity control samples were run in total. The median relative standard deviation (RSD) was

calculated for all standards and endogenous biochemicals using median scaled values. The

median RSDs for the internal standards and endogenous biochemicals were 4% and 11%,

respectively.

Data analysis and statistics

Raw ion area under the curve (AUC) values were batch normalized by dividing each batch by

the median scaled to generate scaled AUCs followed by imputation of any missing values with

a value based on the minimum detected value, and, finally, were natural log-transformed on a

per biochemical basis. The log transformed data were utilized for significance testing. Mean

differences were tested using matched-pair t-tests and multiple comparisons were accounted

for using a false discovery rate (FDR) approach estimated by the q-value method of Tibshirani

and Storey [37, 38]. Correlations were calculated by the Pearson method. Correlations for indi-

vidual metabolites used untransformed values. Hierarchical clustering was performed using

the log-transformed, normalized, imputed data with complete clustering and a Euclidean dis-

tance metric.

Results

Metabolomic profile of blood samples collected using different

anticoagulants

We identified 1,177 biochemicals across 135 samples, representing all donors and all sample

types, that matched biochemical entries in the library (S1 Table). The mean number of bio-

chemicals detected per sample was 1,036 (median 1,039) with a range of 954 to 1,077 biochem-

icals. Serum contained the most biochemicals with an average of 1,071 (range 1,016–1,177)

followed by EDTA plasma (mean 1,049, range 997–1,105), heparinized plasma (mean 1,048,

range 994–1,087), citrate plasma (mean 1,013, range 961–1,078), and whole blood (mean 998,

range 954 to 1,047). Five hundred three (503) out of 1,177 biochemicals (45% of the total) were

detected in every sample, 675 biochemicals (61% of total) were detected in� 90% of the sam-

ples, and 775 biochemicals (70% of total) were detected in� 80% of the samples.

Two unsupervised analyses showed the global relationship between the sample types (Fig 1

and S2 Fig). Principal component analysis revealed a strong separation between the whole

blood and serum/plasma samples (Fig 1). Within the plasma and serum samples, EDTA

plasma and citrate plasma showed a slight segregation from the lithium heparin plasma and

serum. There was a more apparent separation of the EDTA plasma and citrate plasma samples

compared to the lithium heparin and serum samples. The lithium heparin and serum samples

showed very similar profiles and did not show any apparent separation. Hierarchical clustering

showed three major clades (S2 Fig). The first was a strong segregation of the whole blood sam-

ples from all other sample collection methods and the second segregated the citrate and EDTA

plasma samples. The third clade contained the heparin plasma and serum samples which did

not segregate from one another indicating similar biochemical profiles within the samples.

EDTA chelates divalent metal cations; molecules necessary for the activation of several

enzymes expressed in whole blood, including the clotting cascade. Given that EDTA plasma is

used as a central diagnostic sample and that the chelation of these metal cations inhibits nearly

all protein activity, we used the EDTA plasma sample group as the central comparator for the

study. Specifically, matched-pair t-tests comparing each blood collection type to EDTA plasma
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revealed numerous biochemical differences (Table 1). The largest number of differences was

between EDTA plasma and whole blood and citrate plasma with 917 and 807 statistically sig-

nificant differences, respectively. Heparin plasma and serum had 507 and 452 differences

respectively and nearly all of them were of the same magnitude and direction when compared

to EDTA plasma (S1 and S2 Tables). The ranges of fold changes varied among the sample

types and are outlined in S2 Table. The largest differences were attributable to biochemicals

detected in specific sample types (e.g. fibrinogen peptides in serum, glutathione in whole

blood) and may explain why serum and lithium heparin plasma were separated strongly from

EDTA-plasma.

Select biochemical families altered by the sample type

Clinical diagnosis of specific conditions such as jaundice, liver function, disorders associated

with metabolic disease, and assessment of hormones/neurotransmitter metabolites in the

Fig 1. Unsupervised statistical analysis for all samples. Principal component analysis of the five sample types. Dark

Purple indicates the EDTA anticoagulated whole blood samples; light purple—EDTA plasma samples, light blue—citrate

plasma; green—heparinized plasma, and orange—serum samples.

https://doi.org/10.1371/journal.pone.0249797.g001

Table 1. Number of significantly altered biochemicals in blood collected in different tube collection types.

Serum vs. EDTA

plasma

Heparin plasma vs. EDTA

plasma

Citrate plasma vs. EDTA

plasma

Whole blood vs. EDTA

plasma

Biochemical levels increased versus EDTA

Plasma

243 178 72 270

Biochemical levels decreased versus EDTA

plasma

209 329 735 647

Total number of significantly altered

biochemicals

452 507 807 917

https://doi.org/10.1371/journal.pone.0249797.t001
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bloodstream require the collection of specific sample types. Many of these biomarkers are uti-

lized for routine diagnostics in pediatric patients and newborn screening. In the following sec-

tion, we assessed the levels of several biochemicals utilized for the diagnosis of these

conditions.

The neurotransmitter, serotonin, is produced in the central nervous system and can be

measured in the bloodstream, with 90% found in platelets, which lyse during the blood clot-

ting process during serum collection. Consequently, in our evaluation, serotonin was pres-

ent at 17× in serum and 4× in whole blood compared to EDTA plasma (Fig 2A, S1 Table).

Conversely, bilirubin functions as an antioxidant in the blood stream and is the most

abundant antioxidant in the plasma and serum fraction of whole blood. We identified

heme, five bilirubin metabolites/isoforms as well as seven bilirubin degradation products in

this study (Table 2). Heme and biliverdin are erythrocyte-associated compounds that are

catabolized to bilirubin and, as expected, we observed a 121× and 3× increase, respectively,

in these two compounds in whole blood compared to EDTA plasma (Table 2). Bilirubin, on

the other hand, is present in serum and plasma and nearly absent in whole blood samples

(Fig 2B).

The family of molecules categorized as acylcarnitines are monitored in patients diagnosed

with or suspected of having rare diseases associated with lipid metabolism and lipid transport.

Citrate plasma and whole blood showed the most diverse acylcarnitine signature as compared

to EDTA plasma (Table 3). The long-chain acylcarnitines with 14 to 18 carbons showed signif-

icant elevations in whole blood versus EDTA plasma whereas the same molecules showed

~25% lower levels in citrate plasma versus EDTA plasma. Acylcarnitines decreased by an aver-

age of 24% across 27 different molecules in citrate plasma when samples were collected using

EDTA as an anticoagulant.

Nucleotides are ubiquitous metabolic compounds expressed in all tissues and play signifi-

cant roles in cellular signaling [39] in addition to serving as molecular components for DNA

synthesis. Specifically, purine metabolite adenosine plays a significant role in regulating car-

diac function. Adenosine was measured in all sample types but present at 13x higher levels in

serum versus EDTA plasma and 2× higher levels in whole blood versus EDTA plasma (Fig

2C). The nucleosides guanosine and inosine have been linked to neuropathologies and neu-

roprotective roles in studies examining Parkinson’s disease and depression. Both nucleosides

showed significantly elevated levels in EDTA plasma versus serum 167× and 51×, respec-

tively, as well as elevated levels in heparinized plasma 16× and 4×, respectively (Fig 2D and

2E).

Evaluation of biomarkers associated with kidney function and sample types

Small molecules associated with kidney function have been a recent expansion in the under-

standing of kidney function as well as obtaining a more accurate assessment of GFR. The

panel of biomarkers consisting of C-glycosyltryptophan, pseudouridine, N-acetylthreonine,

phenylacetylglutamine and creatinine can be leveraged to assess kidney function (43).

Although the fold-of-change was relatively small between the sample types, several of the com-

parisons revealed statistically significant differences (Fig 3). The standard collection in the

United States for assessing kidney function is through serum collection, but in several coun-

tries throughout Europe, heparinized plasma is the sample of choice. These five metabolites

showed strong correlations when the levels of the biochemicals were compared between serum

and lithium heparinized plasma (Fig 4). Furthermore, correlation between serum and lithium

heparin plasma versus EDTA plasma for these kidney function biomarkers were high (S1

Table).
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Distinctive biochemicals that identify the sample type

The analysis detected six fibrinogen peptides in serum, a result of the clotting process, that

were absent in all other sample types. The levels of citrate in sodium citrate plasma samples

Fig 2. Differences in levels for several clinically relevant biochemicals. (A)Box plot for serotonin. The boxes outline the 2nd and 3rd quartile (middle 50%)

of the data for each sample type. (B) Box plot for bilirubin. (C), (D), and (E) Box plots for Adenosine, Guanosine, and Inosine, respectively. The error bars

on the graph represent 1.5 × IQR (interquartile range for that metabolite within the sample type. The line within the box represents the median of the data

and the “+” symbol represents the mean of the data set.

https://doi.org/10.1371/journal.pone.0249797.g002
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were 34× higher than EDTA plasma samples. Meanwhile, EDTA and iminodiacetate, a degra-

dation product of EDTA, were detected in EDTA plasma and EDTA anticoagulated whole

blood and none of the other sample types (S1 Table).

Discussion

The choice of sample type for metabolomic studies influence the number and levels of com-

pounds detected in a population. This is significant in clinical metabolomic approaches since

the reference range for each compound is dependent on the sample type. The identification of

novel biomarkers of disease and the ability to monitor therapeutic intervention of disease will

be critical elements that need to occur for novel therapeutics currently under development and

for those that will be in development in the future. The biochemical profile of whole blood,

serum and plasma is a complex composition of over one thousand small molecules represent-

ing multiple biochemical families. In this study, we compared the levels of each compound

detected in five different sample types (S1 Table) as well as the relative ranges of these bio-

chemicals (S2 Table). Both aspects are important for the consideration of a biochemical in a

diagnostic assay given that large dynamic ranges may be necessary for identifying healthy

patients versus those with a disease as well as determining if treatment of a disease is effica-

cious. Changes in clinical assay performance caused by blood collection tube additives are an

important but often overlooked variable that contributes to the performance of a compound

or panel of compounds in an assay. For instance, EDTA binds to divalent metal cations (Ca2+

and Mg2+) required for enzyme cofactors used for immunoassay reagents such as alkaline

phosphatase [40], heparin binds with electrolytes and changes the concentrations of bound

and free ions which can influence clinical assays [41], and sodium citrate inhibits aspartate

aminotransferase and alkaline phosphatase by chelation of cations [42]. The full effects of the

different anticoagulants have been reviewed by in several articles as outlined in the following

references [42–47]. Lithium heparin and serum have differences between the two sample types

driven by the catabolism of fibrinogen and the lysis of cellular elements during blood clotting.

Table 2. Heme, bilirubin, and bilirubin degradation products in whole blood, plasma and serum represented as fold-of-change compared to levels in EDTA

plasma.

Heme and bilirubin analytes Serum Heparinized plasma Citrate plasma Whole blood

Heme 0.36 0.27 0.27 121.12

bilirubin (Z,Z) 1.06 1.03 0.83 0.05

bilirubin (E,E)� 1.39 1.35 0.54 0.01

bilirubin (E,Z or Z,E)� 1.08 1.04 0.96 0.27

Biliverdin 0.79 0.7 0.51 3.17

bilirubin degradation product, C16H18N2O5 (1)� 0.73 0.63 0.38 0.74

bilirubin degradation product, C16H18N2O5 (2)� 0.67 0.59 0.35 0.41

bilirubin degradation product, C17H18N2O4 (1)� 1.2 1.07 0.51 1.16

bilirubin degradation product, C17H18N2O4 (2)� 1.14 0.96 0.55 0.87

bilirubin degradation product, C17H18N2O4 (3)� 1.1 0.93 0.54 0.65

bilirubin degradation product, C17H20N2O5 (1)� 0.86 0.62 0.3 0.94

bilirubin degradation product, C17H20N2O5 (2)� 0.92 0.68 0.33 0.86

bilirubin degradation product, C16H18N2O5 (3)� 0.65 0.6 0.41 0.87

bilirubin degradation product, C16H18N2O5 (4)� 0.66 0.6 0.34 0.47

Values in bold font refer to statistically significant differences per matched-pair t-test analysis.

� indicates a compound that has not been officially confirmed based on a standard, but we are confident in its identity.

https://doi.org/10.1371/journal.pone.0249797.t002
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Table 3. Fold-of-change in acylcarnitine levels in the blood specimens versus EDTA plasma.

Lipid Subfamily Acylcarnitine Serum Heparinized

plasma

Citrate

plasma

Whole

blood

Fatty Acid Metabolism (Acyl Carnitine, Short Chain) acetylcarnitine (C2) 0.61 0.63 0.78 2.71

Fatty Acid Metabolism (also BCAA Metabolism) butyrylcarnitine (C4) 0.85 0.83 0.78 0.74

propionylcarnitine (C3) 0.76 0.76 0.8 5.57

Fatty Acid Metabolism (Acyl Carnitine, Medium

Chain)

hexanoylcarnitine (C6) 0.89 0.87 0.8 0.84

octanoylcarnitine (C8) 0.93 0.89 0.78 0.52

cis-3,4-methyleneheptanoylcarnitine 0.88 0.87 0.78 0.61

nonanoylcarnitine (C9) 0.88 0.91 0.78 0.47

decanoylcarnitine (C10) 0.96 0.9 0.77 0.53

laurylcarnitine (C12) 0.96 0.93 0.78 0.59

Fatty Acid Metabolism (Acyl Carnitine, Long Chain

Saturated)

myristoylcarnitine (C14) 0.97 0.93 0.75 3.03

palmitoylcarnitine (C16) 0.96 0.92 0.75 9.7

margaroylcarnitine (C17)� 0.97 0.96 0.77 11.34

stearoylcarnitine (C18) 0.98 0.97 0.76 16.64

arachidoylcarnitine (C20)� 0.89 0.9 0.79 4.47

behenoylcarnitine (C22)� 0.79 0.69 0.66 1.98

lignoceroylcarnitine (C24)� 0.86 0.85 0.76 1.14

cerotoylcarnitine (C26)� 0.86 0.86 0.77 1.14

Fatty Acid Metabolism (Acyl Carnitine,

Monounsaturated)

3-decenoylcarnitine 0.68 0.44 0.75 0.66

cis-4-decenoylcarnitine (C10:1) 0.92 0.92 0.77 0.49

undecenoylcarnitine (C11:1) 0.94 0.9 0.77 0.55

5-dodecenoylcarnitine (C12:1) 0.99 1 0.76 0.52

myristoleoylcarnitine (C14:1)� 0.96 0.9 0.77 0.6

palmitoleoylcarnitine (C16:1)� 0.95 0.91 0.77 2.95

oleoylcarnitine (C18:1) 0.99 0.89 0.61 17.38

eicosenoylcarnitine (C20:1)� 0.83 0.87 0.75 8.46

ximenoylcarnitine (C26:1)� 0.87 0.9 0.76 1.06

Fatty Acid Metabolism (Acyl Carnitine,

Polyunsaturated)

linoleoylcarnitine (C18:2)� 0.98 0.93 0.75 8.37

dihomo-linoleoylcarnitine (C20:2)� 0.91 0.88 0.68 11.15

arachidonoylcarnitine (C20:4) 0.94 0.91 0.69 5.83

dihomo-linolenoylcarnitine (C20:3n3 or 6)� 0.96 0.91 0.71 7.3

Fatty Acid Metabolism (Acyl Carnitine,

Dicarboxylate)

adipoylcarnitine (C6-DC) 0.84 0.85 0.89 0.53

pimeloylcarnitine/3-methyladipoylcarnitine

(C7-DC)

0.93 0.97 0.9 0.41

suberoylcarnitine (C8-DC) 0.96 0.95 3.35 0.58

octadecanedioylcarnitine (C18-DC)� 0.97 0.92 0.74 0.5

octadecenedioylcarnitine (C18:1-DC)� 0.89 0.93 0.8 0.52

Fatty Acid Metabolism (Acyl Carnitine, Hydroxy) (R)-3-hydroxybutyrylcarnitine 0.76 0.76 0.75 3.23

(S)-3-hydroxybutyrylcarnitine 0.57 0.63 1.03 5.63

3-hydroxyoctanoylcarnitine (1) 0.58 0.59 0.77 0.99

3-hydroxyoctanoylcarnitine (2) 0.75 0.76 1.09 0.7

3-hydroxydecanoylcarnitine 0.69 0.65 0.74 0.63

Values in bold font refer to statistically significant differences per matched-pair t-test analysis.

�—molecules whose structures have been elucidated through MSn analysis but no purified standard has been analyzed for confirmation.

https://doi.org/10.1371/journal.pone.0249797.t003
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Fig 3. Box plots for biomarkers of kidney function. Box plots for C-glycosyltryptophan, pseudouridine, N-

acetylthreonine, creatinine, and phenylacetylglutamine are outlined. The boxes outline the 2nd and 3rd quartile (middle

50%) of the data for each sample type. The error bars on the graph represent 1.5 × IQR (interquartile range for that

metabolite within the sample type. The line within the box represents the median of the data and the “+” symbol

represents the mean of the data set. An “�” indicates a p<0.05 for the matched-pair comparison between the indicated

sample types.

https://doi.org/10.1371/journal.pone.0249797.g003
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EDTA can cause physiologic changes to neutrophils in whole blood as well as morphological

changes in platelets. In both cell types, degranulation is inhibited during the anticoagulation

process. Unlike heparin and EDTA, anticoagulation with citrate is preferred for monitoring

routine coagulation testing. As with EDTA, citrate can cause morphological changes in white

Fig 4. Linear correlation plots for biomarkers of kidney function. Scatter plots for C-glycosyltryptophan, pseudouridine, N-acetylthreonine, creatinine,

and phenylacetylglutamine are outlined. The values for each metabolite were plotted for the serum and lithium heparin samples for all 27 donors in the

study. The equation and R2 values for the best fit lines are outlined within each graph. The dotted lines indicate the 95% confidence interval for each linear

fit.

https://doi.org/10.1371/journal.pone.0249797.g004
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cells and platelets. As clinical metabolomics gains more traction in medical diagnostics, identi-

fying the most optimal sample type is particularly relevant since hundreds of metabolites are

measured, and changes in tube additives can have significant effects on test outcome.

Although serum is commonly used in clinical laboratory testing, clinical metabolomics

requires rapid processing times to preserve metabolite levels and therefore EDTA plasma is

the preferred sample type. To fully catalog the effects of different blood collection tubes on

clinical metabolomic applications, we measured the metabolic profile of human blood col-

lected in five different blood collection tubes from 27 subjects. The results demonstrated that

while 90% of the 1,117 analytes measured were found in most of the samples, significant differ-

ences existed in analyte levels across the blood collection tube types (Table 1 and S1 and S2

Tables). PCA and hierarchical clustering of the data shows that sodium heparin plasma and

serum segregated together and were discriminated from EDTA plasma and sodium citrate

plasma (Fig 1 and S2 Fig). Whole blood, as expected, segregated from plasma and serum due

to the contribution of cellular components. Furthermore, we detected significant differences

in distinct metabolic pathways and highlighted three examples: 1) neurological function as

defined by serotonin levels (Fig 2A), 2) redox balance and liver metabolism (Fig 2B) and 3)

molecules linked in inter- and extracellular signaling cascades (Fig 2C–2E). These results

define the contribution of blood collection tube additives to analyte measurements in metabo-

lomic applications and emphasize the need for careful consideration when selecting the correct

blood collection tube for analysis.

In a recent publication [17], we described a relative-quantitation approach to clinical

metabolomics where individual analyte measurements in a patient EDTA plasma sample are

normalized against replicate EDTA plasma samples in the batch and then compared to an

identically normalized reference population to produce analyte z-scores. Since analyte mea-

surements in a patient sample are compared to identically prepared samples of a large refer-

ence population, and since we show here that analyte levels are significantly affected by tube

additives, it is critical that the patient sample is collected in the correct tube (e.g., potassium

EDTA plasma for clinical samples) and processed immediately. To quench effects of ongoing

metabolism following sample collection, we require that plasma is separated from the cell

component within one hour of collection and that the plasma is aliquoted in a separate tube

and immediately frozen at -80˚C [9]. One of the many benefits of measuring hundreds of

analytes in a patient sample via clinical metabolomics is that it allows surveillance of bio-

markers that predict pre-analytical processing errors. Jain et al., [9] used erythrocyte metabo-

lism markers to accurately identify samples with delayed plasma collection with a diagnostic

accuracy of 100%. We add to the repertoire of pre-analytical processing error biomarkers by

demonstrating that fibrinogen peptides are only found in serum samples, EDTA and imino-

diacetate are only found in potassium EDTA plasma and that high levels of citrate can be

used to distinguish samples collected in sodium citrate plasma tubes. Unlike routine clinical

laboratory testing where patient samples are received by the laboratory in colored tube tops

that distinguish tube type, samples that are delivered to our clinical metabolomics laboratory

have been aliquoted and frozen in cryovials and it is therefore not possible to confirm correct

tube type. Nevertheless, we have implemented routine quality control steps to assess pre-ana-

lytical processing error biomarkers in each patient sample to confirm correct sample type

(e.g., presence of EDTA and iminodiacetate) and reject samples that do not meet acceptable

criteria.

Metabolomics is routinely used in discovery studies to identify metabolic biomarkers of dis-

ease. This type of work requires a significant number of diseased and non-diseased subject

samples collected using a specific blood collection tube. The type of blood collection tube used

for biomarker discovery is relevant since analyte levels can be significantly altered by the tube
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additive. Nevertheless, there may be instance when it is necessary to know whether a disease

biomarker, discovered in one tube type, might be transferrable to a different tube type. A rele-

vant example is kidney function biomarkers where serum is the preferred sample in the United

States and lithium heparinized plasma is the preferred sample type in Europe. We used meta-

bolomics to identify 15 serum metabolite biomarkers for estimation of glomerular filtration

rate (GFR) [18]. Four (4) were selected to develop an algorithm for a more accurate estimation

of GFR (i.e., compared to eGFR) [19]. The correlation between the biomarkers in serum versus

lithium heparin plasma were strong suggesting that the biomarkers identified in serum might

be transferrable to lithium heparinized plasma (Figs 3 and 4). When targeted assays for these

four biomarkers, plus creatinine, were developed and tested in serum and lithium heparin

plasma samples from ten subjects, R2 values ranged from 0.94 (tryptophan) to 0.99 (acetyl-

threonine) (S3 Table). We also evaluated the correlation of these five biomarkers in serum and

lithium heparin plasma verses EDTA plasma and found strong correlation (S1 Table; serum

versus EDTA plasma fold change between 0.95 to 1.04 and lithium heparin plasma verses

EDTA plasma fold change between 0.96 to 1.02) suggesting that assessment of kidney function

using these five biomarkers may be transferrable to EDTA plasma.

Limitations of this study should be considered. A myriad of factors such as diet, prandial

state, gender, age, and genetic background can influence plasma levels of small molecule ana-

lytes [7, 8, 48–50]. These factors may have unanticipated effects not fully studied here but we

controlled for fasting status. In a previous study, we showed elevated lactate levels and

decreased arginine levels were strong biomarkers for plasma separation delays [9]. However,

plasma lactate elevations can be precipitated by numerous other factors including intense exer-

cise or mitochondrial disease [51]. Arginine levels can be highly skewed in critically ill individ-

uals or in patients with argininemia- a rare inherited metabolic disease caused by a loss of

arginase activity [52, 53]. In our study design we attempted to mitigate variances in analyte

measurement by analyzing patient sets within the same analytical batch, obtaining samples

within a small window (all samples acquired within one week), and all samples were obtained

from patients at the same location using the same procedures. Nevertheless, all analytical

methods, including metabolomics, have some level of intra-assay variability, as we have shown

elsewhere [17]. Analyzing each sample in triplicate would have further mitigated intra-assay

variability but would have also significantly increased the cost of this study and analyzing a

larger sample set would increase the resolution and specificity of differences between the sam-

ples types.

Conclusions

Our study demonstrates that different additives used in blood collection can affect the levels of

numerous clinically relevant biochemicals; this is a significant challenge to assay and tube

manufacturers and ultimately affects the analysis of biomarkers identified through clinical

metabolomics studies. The optimal sample type needs to be utilized for both research and clin-

ical studies and consistent collection methods ensure that pre-analytical error is minimized

during assay development and clinical data collection. It is particularly relevant to the applica-

tion of clinical metabolomics since pre-analytical errors resulting in the use of an inconsistent

blood collection tube can result in significant alterations to metabolic pathways. Fortunately, it

is possible to control for these pre-analytical errors in clinical metabolomics by actively survey-

ing patient samples for evidence of inconsistent tube type. Jain et al. [9] described quality con-

trol measures for assessing pre-analytical error in sample preparation. Here, we describe the

use of clinical metabolomics to ensure consistent blood collection tube submission. Future
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efforts may include studies to identify instances of patient non-compliance (i.e., fasting status),

extended storage, excessive freeze-thawing and implementation of delta checks to identify

instances of mislabeled samples. Any pre-analytical change to a patient sample can have signif-

icant effects on individual analyte measurement and it is the comprehensive nature of this

technology and its sensitivity to changes in conditions that make it ideal for assessing sample

quality.

Supporting information

S1 Fig. Representative chromatograms for each of the methods utilized on the platform.

A) HILIC Polar method, B) LC-MS/MS Negative, C) LC-MS/MS Positive Late, and D)

LC-MS/MS Positive Early.

(TIF)

S2 Fig. Hierarchical clustering of the five sample types. CP—citrate plasma; HP—heparin-

ized plasma; S—serum; EP—EDTA plasma; EPWB—EDTA anticoagulated whole blood. The

three digit codes indicate the blinded donor number for the study.

(TIF)

S1 Table.

(XLSX)

S2 Table. Summary of statistical differences between sample types.

(DOCX)

S3 Table. Correlation analysis for biochemicals across the 5 sample matrices. Metabolites

considered for analysis required at least 50% fill (50% of samples for that matrix type needed

to have metabolite detected).

(XLSX)

Author Contributions

Conceptualization: Adam D. Kennedy, Anne M. Evans, Douglas R. Toal.

Data curation: Matthew Mitchell.

Formal analysis: Adam D. Kennedy, Bryan Wittmann, Jesse Conner, Jacob Wulff, Matthew

Mitchell.

Investigation: Lisa Ford, Bryan Wittmann, Jesse Conner.

Methodology: Lisa Ford, Jesse Conner, Anne M. Evans.

Supervision: Douglas R. Toal.

Validation: Matthew Mitchell.

Writing – original draft: Adam D. Kennedy.

Writing – review & editing: Adam D. Kennedy, Lisa Ford, Bryan Wittmann, Jesse Conner,

Jacob Wulff, Matthew Mitchell, Anne M. Evans, Douglas R. Toal.

References
1. Kang E, Kim Y, Kim YC, Kim E, Lee N, Kim Y, et al. Biobanking for glomerular diseases: a study design

and protocol for KOrea Renal biobank NEtwoRk System TOward NExt-generation analysis (KORNER-

STONE). BMC Nephrol. 2020; 21(1):367. https://doi.org/10.1186/s12882-020-02016-z PMID:

32842999.

PLOS ONE Anticoagulant additives and preanalytical errors in metabolomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0249797 April 8, 2021 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249797.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249797.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249797.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249797.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249797.s005
https://doi.org/10.1186/s12882-020-02016-z
http://www.ncbi.nlm.nih.gov/pubmed/32842999
https://doi.org/10.1371/journal.pone.0249797


2. Lima R, Gootkind EF, De la Flor D, Yockey LJ, Bordt EA, D’Avino P, et al. Establishment of a pediatric

COVID-19 biorepository: unique considerations and opportunities for studying the impact of the

COVID-19 pandemic on children. BMC Med Res Methodol. 2020; 20(1):228. https://doi.org/10.1186/

s12874-020-01110-y PMID: 32917141.

3. Pan J, Adab P, Cheng KK, Jiang CQ, Zhang WS, Zhu F, et al. Development and validation of a predic-

tion model for airflow obstruction in older Chinese: Guangzhou Biobank Cohort Study. Respir Med.

2020; 173:106158. https://doi.org/10.1016/j.rmed.2020.106158 PMID: 33011445.

4. Tillmann T, Lall K, Dukes O, Veronesi G, Pikhart H, Peasey A, et al. Development and validation of two

SCORE-based cardiovascular risk prediction models for Eastern Europe: a multicohort study. Eur

Heart J. 2020. https://doi.org/10.1093/eurheartj/ehaa571 PMID: 33011775.

5. Krumsiek J, Suhre K, Evans AM, Mitchell MW, Mohney RP, Milburn MV, et al. Mining the unknown: a

systems approach to metabolite identification combining genetic and metabolic information. PLoS

Genet. 2012; 8(10):e1003005. https://doi.org/10.1371/journal.pgen.1003005 PMID: 23093944

unknown identification method has been filed: "Identity Elucidation of Unknown Metabolites," U.S. Pat-

ent Application No. 61503673, unpublished—filing date July 1, 2011 (MVM, applicant).

6. Petersen AK, Zeilinger S, Kastenmuller G, Romisch-Margl W, Brugger M, Peters A, et al. Epigenetics

meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum

Mol Genet. 2014; 23(2):534–45. https://doi.org/10.1093/hmg/ddt430 PMID: 24014485.

7. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences

on human blood metabolites. Nat Genet. 2014; 46(6):543–50. https://doi.org/10.1038/ng.2982 PMID:

24816252.

8. Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wagele B, et al. Human metabolic individual-

ity in biomedical and pharmaceutical research. Nature. 2011; 477(7362):54–60. https://doi.org/10.1038/

nature10354 PMID: 21886157.

9. Jain M, Kennedy AD, Elsea SH, Miller MJ. Analytes related to erythrocyte metabolism are reliable bio-

markers for preanalytical error due to delayed plasma processing in metabolomics studies. Clin Chim

Acta. 2017; 466:105–11. https://doi.org/10.1016/j.cca.2017.01.005 PMID: 28069401.

10. Duarte D, Castro B, Pereira JL, Marques JF, Costa AL, Gil AM. Evaluation of Saliva Stability for NMR

Metabolomics: Collection and Handling Protocols. Metabolites. 2020; 10(12). https://doi.org/10.3390/

metabo10120515 PMID: 33352779.

11. Esteve-Turrillas FA, Armenta S, de la Guardia M. Sample preparation strategies for the determination

of psychoactive substances in biological fluids. J Chromatogr A. 2020; 1633:461615. https://doi.org/10.

1016/j.chroma.2020.461615 PMID: 33099196.

12. Jaggard MKJ, Boulange CL, Graca G, Akhbari P, Vaghela U, Bhattacharya R, et al. The influence of

sample collection, handling and low temperature storage upon NMR metabolic profiling analysis in

human synovial fluid. J Pharm Biomed Anal. 2021; 197:113942. https://doi.org/10.1016/j.jpba.2021.

113942 PMID: 33607503.

13. Piskunov DP, Danilova LA, Pushkin AS, Rukavishnikova SA. Influence of exogenous and endogenous

factors on the quality of the preanalytical stage of laboratory tests (review of literature). Klin Lab Diagn.

2020; 65(12):778–84. https://doi.org/10.18821/0869-2084-2020-65-12-778-784 PMID: 33373510.

14. Singh S, Gupta SK, Seth PK. Biomarkers for detection, prognosis and therapeutic assessment of neu-

rological disorders. Rev Neurosci. 2018; 29(7):771–89. https://doi.org/10.1515/revneuro-2017-0097

PMID: 29466244.

15. M P, F Z. Newborn Screening for inherited metabolic disorders; news and views. J Res Med Sci. 2013;

18(9):801–8.

16. Guerrero RB, Salazar D, Tanpaiboon P. Laboratory diagnostic approaches in metabolic disorders. Ann

Transl Med. 2018; 6(24):470. https://doi.org/10.21037/atm.2018.11.05 PMID: 30740401.

17. Ford L, Kennedy AD, Goodman KD, Pappan KL, Evans AM, Miller LAD, et al. Precision of a Clinical

Metabolomics Profiling Platform for Use in the Identification of Inborn Errors of Metabolism. J Appl Lab

Med. 2020; 5(2):342–56. https://doi.org/10.1093/jalm/jfz026 PMID: 32445384.

18. Coresh J, Inker LA, Sang Y, Chen J, Shafi T, Post WS, et al. Metabolomic profiling to improve glomeru-

lar filtration rate estimation: a proof-of-concept study. Nephrol Dial Transplant. 2019; 34(5):825–33.

https://doi.org/10.1093/ndt/gfy094 PMID: 29718360.

19. Freed TA, Coresh J, Inker LA, Toal DR, Perichon R, Chen J, et al. Validation of a Metabolite Panel for a

More Accurate Estimation of Glomerular Filtration Rate Using Quantitative LC-MS/MS. Clin Chem.

2019; 65(3):406–18. https://doi.org/10.1373/clinchem.2018.288092 PMID: 30647123.

20. Kennedy AD, Miller MJ, Beebe K, Wulff JE, Evans AM, Miller LA, et al. Metabolomic Profiling of Human

Urine as a Screen for Multiple Inborn Errors of Metabolism. Genet Test Mol Biomarkers. 2016;

20(9):485–95. https://doi.org/10.1089/gtmb.2015.0291 PMID: 27448163.

PLOS ONE Anticoagulant additives and preanalytical errors in metabolomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0249797 April 8, 2021 16 / 18

https://doi.org/10.1186/s12874-020-01110-y
https://doi.org/10.1186/s12874-020-01110-y
http://www.ncbi.nlm.nih.gov/pubmed/32917141
https://doi.org/10.1016/j.rmed.2020.106158
http://www.ncbi.nlm.nih.gov/pubmed/33011445
https://doi.org/10.1093/eurheartj/ehaa571
http://www.ncbi.nlm.nih.gov/pubmed/33011775
https://doi.org/10.1371/journal.pgen.1003005
http://www.ncbi.nlm.nih.gov/pubmed/23093944
https://doi.org/10.1093/hmg/ddt430
http://www.ncbi.nlm.nih.gov/pubmed/24014485
https://doi.org/10.1038/ng.2982
http://www.ncbi.nlm.nih.gov/pubmed/24816252
https://doi.org/10.1038/nature10354
https://doi.org/10.1038/nature10354
http://www.ncbi.nlm.nih.gov/pubmed/21886157
https://doi.org/10.1016/j.cca.2017.01.005
http://www.ncbi.nlm.nih.gov/pubmed/28069401
https://doi.org/10.3390/metabo10120515
https://doi.org/10.3390/metabo10120515
http://www.ncbi.nlm.nih.gov/pubmed/33352779
https://doi.org/10.1016/j.chroma.2020.461615
https://doi.org/10.1016/j.chroma.2020.461615
http://www.ncbi.nlm.nih.gov/pubmed/33099196
https://doi.org/10.1016/j.jpba.2021.113942
https://doi.org/10.1016/j.jpba.2021.113942
http://www.ncbi.nlm.nih.gov/pubmed/33607503
https://doi.org/10.18821/0869-2084-2020-65-12-778-784
http://www.ncbi.nlm.nih.gov/pubmed/33373510
https://doi.org/10.1515/revneuro-2017-0097
http://www.ncbi.nlm.nih.gov/pubmed/29466244
https://doi.org/10.21037/atm.2018.11.05
http://www.ncbi.nlm.nih.gov/pubmed/30740401
https://doi.org/10.1093/jalm/jfz026
http://www.ncbi.nlm.nih.gov/pubmed/32445384
https://doi.org/10.1093/ndt/gfy094
http://www.ncbi.nlm.nih.gov/pubmed/29718360
https://doi.org/10.1373/clinchem.2018.288092
http://www.ncbi.nlm.nih.gov/pubmed/30647123
https://doi.org/10.1089/gtmb.2015.0291
http://www.ncbi.nlm.nih.gov/pubmed/27448163
https://doi.org/10.1371/journal.pone.0249797


21. Kennedy AD, Pappan KL, Donti TR, Evans AM, Wulff JE, Miller LAD, et al. Elucidation of the complex

metabolic profile of cerebrospinal fluid using an untargeted biochemical profiling assay. Mol Genet

Metab. 2017; 121(2):83–90. https://doi.org/10.1016/j.ymgme.2017.04.005 PMID: 28412083.

22. Miller MJ, Kennedy AD, Eckhart AD, Burrage LC, Wulff JE, Miller LA, et al. Untargeted metabolomic

analysis for the clinical screening of inborn errors of metabolism. J Inherit Metab Dis. 2015; 38(6):1029–

39. https://doi.org/10.1007/s10545-015-9843-7 PMID: 25875217.

23. Atwal PS, Donti TR, Cardon AL, Bacino CA, Sun Q, Emrick L, et al. Aromatic L-amino acid decarboxyl-

ase deficiency diagnosed by clinical metabolomic profiling of plasma. Mol Genet Metab. 2015; 115(2–

3):91–4. https://doi.org/10.1016/j.ymgme.2015.04.008 PMID: 25956449.

24. Bainbridge MN, Cooney E, Miller M, Kennedy AD, Wulff JE, Donti T, et al. Analyses of SLC13A5-epi-

lepsy patients reveal perturbations of TCA cycle. Mol Genet Metab. 2017; 121(4):314–9. https://doi.org/

10.1016/j.ymgme.2017.06.009 PMID: 28673551.

25. Cappuccio G, Pinelli M, Alagia M, Donti T, Day-Salvatore DL, Veggiotti P, et al. Biochemical phenotyp-

ing unravels novel metabolic abnormalities and potential biomarkers associated with treatment of

GLUT1 deficiency with ketogenic diet. PLoS One. 2017; 12(9):e0184022. https://doi.org/10.1371/

journal.pone.0184022 PMID: 28961260.

26. Donti TR, Cappuccio G, Hubert L, Neira J, Atwal PS, Miller MJ, et al. Diagnosis of adenylosuccinate

lyase deficiency by metabolomic profiling in plasma reveals a phenotypic spectrum. Mol Genet Metab

Rep. 2016; 8:61–6. https://doi.org/10.1016/j.ymgmr.2016.07.007 PMID: 27504266.

27. Glinton KE, Benke PJ, Lines MA, Geraghty MT, Chakraborty P, Al-Dirbashi OY, et al. Disturbed phos-

pholipid metabolism in serine biosynthesis defects revealed by metabolomic profiling. Mol Genet

Metab. 2018; 123(3):309–16. https://doi.org/10.1016/j.ymgme.2017.12.009 PMID: 29269105.

28. Glinton KE, Levy HL, Kennedy AD, Pappan KL, Elsea SH. Untargeted metabolomics identifies unique

though benign biochemical changes in patients with pathogenic variants in UROC1. Mol Genet Metab

Rep. 2019; 18:14–8. https://doi.org/10.1016/j.ymgmr.2018.12.005 PMID: 30619714.

29. Kennedy AD, Pappan KL, Donti T, Delgado MR, Shinawi M, Pearson TS, et al. 2-Pyrrolidinone and Suc-

cinimide as Clinical Screening Biomarkers for GABA-Transaminase Deficiency: Anti-seizure Medica-

tions Impact Accurate Diagnosis. Front Neurosci. 2019; 13:394. https://doi.org/10.3389/fnins.2019.

00394 PMID: 31133775.

30. Miller MJ, Bostwick BL, Kennedy AD, Donti TR, Sun Q, Sutton VR, et al. Chronic Oral L-Carnitine Sup-

plementation Drives Marked Plasma TMAO Elevations in Patients with Organic Acidemias Despite Die-

tary Meat Restrictions. JIMD Rep. 2016; 30:39–44. https://doi.org/10.1007/8904_2016_539 PMID:

26936850.

31. Pappan KL, Kennedy AD, Magoulas PL, Hanchard NA, Sun Q, Elsea SH. Clinical Metabolomics to Seg-

regate Aromatic Amino Acid Decarboxylase Deficiency From Drug-Induced Metabolite Elevations.

Pediatr Neurol. 2017; 75:66–72. https://doi.org/10.1016/j.pediatrneurol.2017.06.014 PMID: 28823629.

32. Wangler MF, Hubert L, Donti TR, Ventura MJ, Miller MJ, Braverman N, et al. A metabolomic map of Zell-

weger spectrum disorders reveals novel disease biomarkers. Genet Med. 2018; 20(10):1274–83.

https://doi.org/10.1038/gim.2017.262 PMID: 29419819.

33. Dehaven CD, Evans AM, Dai H, Lawton KA. Organization of GC/MS and LC/MS metabolomics data

into chemical libraries. J Cheminform. 2010; 2(1):9. https://doi.org/10.1186/1758-2946-2-9 PMID:

20955607.

34. Evans AM B B, Liu Q, Mitchell MW, Robinson RJ, Dai H, Stewart SJ, et al. High resolution mass spec-

trometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in

high-throughput profiling metabolomics. Metabolomics. 2014; 4:132. https://doi.org/10.4172/2153-

0769.1000132

35. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh perfor-

mance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identi-

fication and relative quantification of the small-molecule complement of biological systems. Anal Chem.

2009; 81(16):6656–67. https://doi.org/10.1021/ac901536h PMID: 19624122.

36. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting

standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards

Initiative (MSI). Metabolomics: Official journal of the Metabolomic Society. 2007; 3(3):211–21. Epub

2007/09/01. https://doi.org/10.1007/s11306-007-0082-2 PMID: 24039616.

37. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A.

2003; 100(16):9440–5. https://doi.org/10.1073/pnas.1530509100 PMID: 12883005.

38. Storey JD, Tibshirani R. Statistical methods for identifying differentially expressed genes in DNA micro-

arrays. Methods Mol Biol. 2003; 224:149–57. https://doi.org/10.1385/1-59259-364-X:149 PMID:

12710672.

PLOS ONE Anticoagulant additives and preanalytical errors in metabolomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0249797 April 8, 2021 17 / 18

https://doi.org/10.1016/j.ymgme.2017.04.005
http://www.ncbi.nlm.nih.gov/pubmed/28412083
https://doi.org/10.1007/s10545-015-9843-7
http://www.ncbi.nlm.nih.gov/pubmed/25875217
https://doi.org/10.1016/j.ymgme.2015.04.008
http://www.ncbi.nlm.nih.gov/pubmed/25956449
https://doi.org/10.1016/j.ymgme.2017.06.009
https://doi.org/10.1016/j.ymgme.2017.06.009
http://www.ncbi.nlm.nih.gov/pubmed/28673551
https://doi.org/10.1371/journal.pone.0184022
https://doi.org/10.1371/journal.pone.0184022
http://www.ncbi.nlm.nih.gov/pubmed/28961260
https://doi.org/10.1016/j.ymgmr.2016.07.007
http://www.ncbi.nlm.nih.gov/pubmed/27504266
https://doi.org/10.1016/j.ymgme.2017.12.009
http://www.ncbi.nlm.nih.gov/pubmed/29269105
https://doi.org/10.1016/j.ymgmr.2018.12.005
http://www.ncbi.nlm.nih.gov/pubmed/30619714
https://doi.org/10.3389/fnins.2019.00394
https://doi.org/10.3389/fnins.2019.00394
http://www.ncbi.nlm.nih.gov/pubmed/31133775
https://doi.org/10.1007/8904%5F2016%5F539
http://www.ncbi.nlm.nih.gov/pubmed/26936850
https://doi.org/10.1016/j.pediatrneurol.2017.06.014
http://www.ncbi.nlm.nih.gov/pubmed/28823629
https://doi.org/10.1038/gim.2017.262
http://www.ncbi.nlm.nih.gov/pubmed/29419819
https://doi.org/10.1186/1758-2946-2-9
http://www.ncbi.nlm.nih.gov/pubmed/20955607
https://doi.org/10.4172/2153-0769.1000132
https://doi.org/10.4172/2153-0769.1000132
https://doi.org/10.1021/ac901536h
http://www.ncbi.nlm.nih.gov/pubmed/19624122
https://doi.org/10.1007/s11306-007-0082-2
http://www.ncbi.nlm.nih.gov/pubmed/24039616
https://doi.org/10.1073/pnas.1530509100
http://www.ncbi.nlm.nih.gov/pubmed/12883005
https://doi.org/10.1385/1-59259-364-X%3A149
http://www.ncbi.nlm.nih.gov/pubmed/12710672
https://doi.org/10.1371/journal.pone.0249797


39. Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu

Rev Neurosci. 2001; 24:31–55. https://doi.org/10.1146/annurev.neuro.24.1.31 PMID: 11283304.

40. Tate J, Ward G. Interferences in immunoassay. Clin Biochem Rev. 2004; 25(2):105–20. PMID:

18458713.

41. D W, R J, C S. The Immunoassay Handbook. 4th ed. Oxford, UK: Elsevier; 2013.

42. Narayanan S. The preanalytic phase. An important component of laboratory medicine. Am J Clin

Pathol. 2000; 113(3):429–52. https://doi.org/10.1309/C0NM-Q7R0-LL2E-B3UY PMID: 10705825.

43. Adcock DM, Kressin DC, Marlar RA. Effect of 3.2% vs 3.8% sodium citrate concentration on routine

coagulation testing. Am J Clin Pathol. 1997; 107(1):105–10. https://doi.org/10.1093/ajcp/107.1.105

PMID: 8980376.

44. Berg JD, Romano G, Bayley NF, Buckley BM. Heparin interferes with aspartate aminotransferase activ-

ity determination in the Ektachem 700. Clin Chem. 1988; 34(1):174. PMID: 3338153.

45. Landt M, Hortin GL, Smith CH, McClellan A, Scott MG. Interference in ionized calcium measurements

by heparin salts. Clin Chem. 1994; 40(4):565–70. PMID: 8149611.

46. Reardon DM, Warner B, Trowbridge EA. EDTA, the traditional anticoagulant of haematology: with

increased automation is it time for a review? Med Lab Sci. 1991; 48(1):72–5. PMID: 1905774.

47. Toffaletti J. Use of novel preparations of heparin to eliminate interference in ionized calcium measure-

ments: have all the problems been solved? Clin Chem. 1994; 40(4):508–9. PMID: 8149601.

48. Krug S, Kastenmuller G, Stuckler F, Rist MJ, Skurk T, Sailer M, et al. The dynamic range of the human

metabolome revealed by challenges. FASEB J. 2012; 26(6):2607–19. https://doi.org/10.1096/fj.11-

198093 PMID: 22426117.

49. Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, et al. Analysis of the adult human

plasma metabolome. Pharmacogenomics. 2008; 9(4):383–97. https://doi.org/10.2217/14622416.9.4.

383 PMID: 18384253.

50. Dunn WB, Lin W, Broadhurst D, Begley P, Brown M, Zelena E, et al. Molecular phenotyping of a UK

population: defining the human serum metabolome. Metabolomics. 2015; 11:9–26. https://doi.org/10.

1007/s11306-014-0707-1 PMID: 25598764.

51. Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopa-

thy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol. 1984;

16(4):481–8. https://doi.org/10.1002/ana.410160409 PMID: 6093682.

52. van Waardenburg DA, de Betue CT, Luiking YC, Engel M, Deutz NE. Plasma arginine and citrulline con-

centrations in critically ill children: strong relation with inflammation. Am J Clin Nutr. 2007; 86(5):1438–

44. https://doi.org/10.1093/ajcn/86.5.1438 PMID: 17991657.

53. Schlune A, Vom Dahl S, Haussinger D, Ensenauer R, Mayatepek E. Hyperargininemia due to arginase

I deficiency: the original patients and their natural history, and a review of the literature. Amino Acids.

2015; 47(9):1751–62. https://doi.org/10.1007/s00726-015-2032-z PMID: 26123990.

PLOS ONE Anticoagulant additives and preanalytical errors in metabolomics

PLOS ONE | https://doi.org/10.1371/journal.pone.0249797 April 8, 2021 18 / 18

https://doi.org/10.1146/annurev.neuro.24.1.31
http://www.ncbi.nlm.nih.gov/pubmed/11283304
http://www.ncbi.nlm.nih.gov/pubmed/18458713
https://doi.org/10.1309/C0NM-Q7R0-LL2E-B3UY
http://www.ncbi.nlm.nih.gov/pubmed/10705825
https://doi.org/10.1093/ajcp/107.1.105
http://www.ncbi.nlm.nih.gov/pubmed/8980376
http://www.ncbi.nlm.nih.gov/pubmed/3338153
http://www.ncbi.nlm.nih.gov/pubmed/8149611
http://www.ncbi.nlm.nih.gov/pubmed/1905774
http://www.ncbi.nlm.nih.gov/pubmed/8149601
https://doi.org/10.1096/fj.11-198093
https://doi.org/10.1096/fj.11-198093
http://www.ncbi.nlm.nih.gov/pubmed/22426117
https://doi.org/10.2217/14622416.9.4.383
https://doi.org/10.2217/14622416.9.4.383
http://www.ncbi.nlm.nih.gov/pubmed/18384253
https://doi.org/10.1007/s11306-014-0707-1
https://doi.org/10.1007/s11306-014-0707-1
http://www.ncbi.nlm.nih.gov/pubmed/25598764
https://doi.org/10.1002/ana.410160409
http://www.ncbi.nlm.nih.gov/pubmed/6093682
https://doi.org/10.1093/ajcn/86.5.1438
http://www.ncbi.nlm.nih.gov/pubmed/17991657
https://doi.org/10.1007/s00726-015-2032-z
http://www.ncbi.nlm.nih.gov/pubmed/26123990
https://doi.org/10.1371/journal.pone.0249797

