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Abstract: Deep-learning (DL) noise reduction techniques in computed tomography (CT) are expected
to reduce the image noise while maintaining the clinically relevant information in reduced dose
acquisitions. This study aimed to assess the size, attenuation, and objective image quality of reno-
ureteric stones denoised using DL-software in comparison to traditionally reconstructed low-dose
abdominal CT-images and evaluated its clinical impact. In this institutional review-board-approved
retrospective study, 45 patients with renal and/or ureteral stones were included. All patients had
undergone abdominal CT between August 2019 and October 2019. CT-images were reconstructed
using the following three methods: filtered back-projection, iterative reconstruction, and PixelShine
(DL-software) with both sharp and soft kernels. Stone size, CT attenuation, and objective image
quality (signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR)) were evaluated and compared
using Bonferroni-corrected Friedman tests. Objective image quality was measured in six regions-of-
interest. Stone size ranged between 4.4 × 3.1–4.4 × 3.2 mm (sharp kernel) and 5.1 × 3.8–5.6 × 4.2 mm
(soft kernel). Mean attenuation ranged between 704–717 Hounsfield Units (HU) (soft kernel) and
915–1047 HU (sharp kernel). Differences in measured stone sizes were ≤1.3 mm. DL-processed
images resulted in significantly higher CNR and SNR values (p < 0.001) by decreasing image noise
significantly (p < 0.001). DL-software significantly improved objective image quality while main-
taining both correct stone size and CT-attenuation values. Therefore, the clinical impact of stone
assessment in denoised image data sets remains unchanged. Through the relevant noise suppression,
the software additionally offers the potential to further reduce radiation exposure.

Keywords: deep-learning; computed tomography; renal and ureteral stones; denoising

1. Introduction

In patients with acute flank pain and suspected renal or ureteral stones, non-contrast-
enhanced computed tomography (CT) is recommended for diagnosis [1]. CT also allows for
the assessment the composition and size of potential urinary tract stones [2,3]. The attenuation
of reno-ureteric stones can provide information on their composition or origin. Furthermore,
the size of the stones can influence the treatment strategy [4]. Measurements of stone size and
CT-attenuation can be performed in either soft tissue window or bone window, depending
on the clinic’s standard operating procedure. There is still no general or international stan-
dard on how the measurements should be performed. Both methods are described in the
literature [5], though they are known to provide different measurements. Usually, soft-tissue
window settings tend to overestimate stone size, while bone window settings tend to slightly
underestimate stone size [6]. Furthermore, the attenuation is influenced by the size of the
measurement area (region of interest) and partial volume effects.
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A major concern of CT imaging is the associated radiation exposure and the potential
carcinogenic effects [7,8]. Therefore, it is important to reduce the radiation burden of the CT,
while maintaining its diagnostic accuracy. Dose reduction in CT is threefold and relates to
(a) hardware optimization, (b) protocol optimization, and (c) post-processing software, i.e.,
noise-reduction techniques. Noise-reduction techniques, such as iterative reconstruction
or deep-learning-based post-processing software allow for the reduction in the required
radiation exposure [8,9]. However, the underlying principle of these techniques is often
kept confidential. The potential effect on image quality and quantitative image information
needs to be evaluated thoroughly prior to clinical application.

One example of a deep-learning-based software for noise suppression is PixelShine
(AlgoMedica, Sunnyvale, CA, USA). PixelShine was already evaluated in terms of objective
image quality in different body regions, such as low-dose abdominal CT and whole-body
low-dose CT [8,10]. However, the influence on small structures, such as the size and CT-
attenuation values of reno-ureteric stones have not been evaluated so far. Therefore, the
aim of this study was to assess whether and to what degree the post-processing software
PixelShine influences attenuation measurements and stone size in patients that undergo
low-dose abdominal CT and the degree to which the objective image quality is altered by
the artificial intelligence (AI)-based technique.

2. Materials and Methods
2.1. Patient Cohort

This IRB-approved retrospective study included all patients that underwent low-dose
abdominal CT in our department with radiological indication of suspected stone disease
and were diagnosed with at least one stone in the urinary tract between 16 August 2019
and 13 October 2019.

2.2. CT Acquisition

CT examinations were performed on a Somatom Definition Flash CT scanner (Siemens
Healthineers, Forchheim, Germany) without contrast-enhancement. The protocol was a
dedicated low-dose protocol. In detail, patients were scanned in the prone position and
scan coverage included the upper poles of the kidneys to the pelvic floor. Scan parameters
were a tube potential of 100 kVp, reference tube-current time product 80 mAs, collimation
128 × 0.6 mm, pitch 0.6, and rotation time 0.5 sec. Dose parameters (CTDIvol and DLP)
were documented to calculate the effective dose with the DLP to effective dose conversion
factor of k = 0.0151 mSv/(mGycm) [11].

2.3. Image Reconstruction

Six reconstructions were obtained:

(a) B30f: Filtered back-projection with a B30f kernel for soft tissue presentation.
(b) B70f: Filtered back-projection with a B70f kernel for bone or lung presentation.
(c) I30f: Iterative reconstruction (SAFIRE (Siemens Healthineers, Forchheim, Germany))

with an I30f kernel for soft tissue presentation.
(d) I70f: Iterative reconstruction (SAFIRE (Siemens Healthineers, Forchheim, Germany))

with an I70f kernel for bone or lung presentation.
(e) P30f: PixelShine (AlgoMedica), version 1.2.104, using the reconstructed images of

(a) with the parameters P214A8S.
(f) P70f: PixelShine (AlgoMedica), version 1.2.104, using the reconstructed images of

(b) with the parameters PB14A4L2.

The reconstructions (e) and (f) were obtained by sending the filtered-back projections
from (a) and (b), stored in our picture archive and communication system (PACS, Sectra
Medical Systems, Linköping, Sweden) to the PixelShine server. Since PixelShine is a
commercial software product, the algorithm is kept confidential. Post-processed images
were returned to PACS for further evaluation.
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2.4. Image Analysis

Image analysis was performed in ImageJ version 1.52p (National Institute of Health,
Bethesda, ML, USA). Circular regions-of-interest (ROIs) with a radius of approximately 10
mm (area 314 mm2) were drawn in the liver, spleen, paravertebral muscle, fat, vertebral
body and in the air outside the patient for all six reconstructions for all patients. The
position of the ROI was identical in each image set. Measured parameters were ROI area
size, CT value, standard deviation (noise), and minimum and maximum CT values.

Subsequently, signal to noise ratio (SNR) and contrast to noise ratio (CNR) were
calculated according the following formulas:

SNR =
signal in ROI
noise in ROI

(1)

CNR =
signal in stone − signal in f at

noise in f at
(2)

Furthermore, one radiologist-in-training with 4 years of experience (B.V.) in reading
abdominal CT measured the size (x- and y-diameter) and CT-attenuation of all detected
stones in all six image data sets for all patients. Stones were magnified for the measurement
in order to obtain exact measurement boundaries. Reading of images was performed in
PACS with anonymized image data (patient information and type of reconstruction were
unknown to the radiologist). In case of multiple stones, the largest stone was evaluated.
The same stone in each set of reconstructions was evaluated.

2.5. Analysis of Urinary Concrements

Analysis of urinary concrements was performed using Fourier-transform-infrared-
(FT-IR) spectroscopy by an external accredited laboratory (Labor Limbach, Heidelberg,
Germany) [12].

2.6. Statistical Analysis

Analysis of patient data was performed using Microsoft Excel 2016 (Redmond, WA,
USA). Statistical differences in CT values, image noise and size measurements between the six
reconstructions were calculated using SPSS version 28 (IBM, Chicago, IL, USA) [13]. For the
statistical analyses, Friedman tests with related samples and post hoc Bonferroni-correction
were performed. The level of significance was p < 0.05. Figures were built using R [14].

3. Results
3.1. Patient Characteristics

In the evaluated study period, 45 patients (32 males, 13 females) were diagnosed with a
stone in the urinary tract. All stones were visible in each respective reconstruction. A mean
CTDIvol of 2.6 ± 1.1 mGy (range 1.3–7.9 mGy) and a mean DLP of 108.9 ± 42.4 mGycm (range
47.4–288.5 mGycm) were obtained. The average effective dose amounted to 1.6 ± 0.6 mSv
(range 0.7–4.4 mSv).

3.2. Stone Size

Stone size varied between measurements in soft tissue and sharp reconstructions.
Stones in sharp kernel reconstructions presented with a more distinct edge than in soft
kernel reconstructions. Differences are depicted in Figure 1.

In a direct comparison between soft tissue and sharp reconstructions, the measured
stone sizes were significantly smaller (p < 0.001) when measured in sharp reconstructions,
except for the x-diameter of the stones on iterative reconstructed images (p = 1.000). The
largest differences in size amounted to 3.3 mm (P30f vs. P70f). Within one reconstruction
kernel, differences in stone size were ≤1.3 mm. Results of statistical analyses are provided
in Table 1.
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Figure 1. Image example of a patient with an ostial stone on the left side (prone position). (A–C): 
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PixelShine applied on filtered back-projection. Soft tissue window: width 300 HU, level 40 HU. Bone 
window: width: 1500 HU, level 450 HU. 
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P 5.4 ± 3.1 BC 4.1 ± 2.2 D 4.4 ± 3.0 3.2 ± 2.1 

Results of the statistical comparisons: A, B, D, E: p < 0.001; C: p = 0.006. Abbreviations: B: filtered 
back-projection, I: iterative reconstruction; P: PixelShine. 

When applying soft kernels, stone diameters (x- and y) measured with iterative re-
construction were smaller than measured on filtered back-projections or PixelShine-pro-
cessed reconstructions in 87/90 (96.7%) and 83/90 (92.2%) of the cases, respectively. When 
applying sharp kernels, there were no statistically significant differences in the size meas-
urements between the three reconstruction techniques. 

3.3. CT-Attenuation Values of Stones 
In a direct comparison between all reconstructions with sharp and soft kernels, the 

measured CT values were significantly higher in reconstructions with sharp kernels (p < 
0.001). 

Mean CT values of stones in sharp and soft kernels are provided in Table 2, together 
with their statistical analysis. In general, attenuation measurements were lowest in Pix-
elShine-processed images. Figure 2 visualizes the measured stone attenuations and their 
distributions. In one tiny stone (size <1 mm × 1 mm), the CT value in the B70f-reconstruc-
tion was 751 HU higher than in P70f- and I70f-reconstructions. 

Figure 1. Image example of a patient with an ostial stone on the left side (prone position). (A–C): soft
kernel, (D–F): sharp kernel: left: filtered back-projection, middle: iterative reconstruction, right:
PixelShine applied on filtered back-projection. Soft tissue window: width 300 HU, level 40 HU. Bone
window: width: 1500 HU, level 450 HU.

Table 1. Results of the stone size measurements and statistical analysis. Size measurements of
the three evaluated reconstructions were compared (B vs. I, I vs. P, P vs. B). Differences between
measurements with shared superscripts were statistically significant. There were no significant
differences between sharp kernel reconstructions.

x (mm) y (mm) x (mm) y (mm)

Soft Kernels Sharp Kernels

B 5.6 ± 3.0 AC 4.2 ± 2.2 E 4.4 ± 3.0 3.1 ± 2.0
I 5.1 ± 3.1 AB 3.8 ± 2.1 DE 4.4 ± 3.0 3.1 ± 2.1
P 5.4 ± 3.1 BC 4.1 ± 2.2 D 4.4 ± 3.0 3.2 ± 2.1

Results of the statistical comparisons: A, B, D, E: p < 0.001; C: p = 0.006. Abbreviations: B: filtered back-projection,
I: iterative reconstruction; P: PixelShine.

When applying soft kernels, stone diameters (x- and y) measured with iterative
reconstruction were smaller than measured on filtered back-projections or PixelShine-
processed reconstructions in 87/90 (96.7%) and 83/90 (92.2%) of the cases, respectively.
When applying sharp kernels, there were no statistically significant differences in the size
measurements between the three reconstruction techniques.

3.3. CT-Attenuation Values of Stones

In a direct comparison between all reconstructions with sharp and soft kernels, the mea-
sured CT values were significantly higher in reconstructions with sharp kernels (p < 0.001).

Mean CT values of stones in sharp and soft kernels are provided in Table 2, to-
gether with their statistical analysis. In general, attenuation measurements were lowest
in PixelShine-processed images. Figure 2 visualizes the measured stone attenuations and
their distributions. In one tiny stone (size <1 mm × 1 mm), the CT value in the B70f-
reconstruction was 751 HU higher than in P70f- and I70f-reconstructions.

Table 2. Results of the stone CT-value measurements and statistical analysis. Stone CT values of the
three evaluated reconstructions were compared (B vs. I, I vs. P, P vs. B). Differences between CT
values with shared superscripts were statistically significant.

Soft Kernels Sharp Kernels

B 717.6 ± 405.9 A 1047.3 ± 490.7 C

I 714.4 ± 459.4 A 986.2 ± 516.5 B

P 704.2 ± 424.5 915.9 ± 449.6 BC

Results of the statistical comparisons: A: p = 0.046, B: p = 0.040, C: p < 0.001. Abbreviations: B: filtered back-
projection, I: iterative reconstruction; P: PixelShine.
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Figure 2. CT values measured from stones in (a) soft kernel reconstructions (filtered back-projection
(B30f), iterative reconstruction (I30f) and PixelShine (P30f)) and (b) sharp kernel reconstructions
((filtered back-projection (B70f), iterative reconstruction (I70f) and PixelShine (P70f)). * p < 0.050,
*** p < 0.001.

3.4. Stone Composition

A urinary stone analysis was available for 25/45 patients (55.6%). The majority of
stones were composed of calcium-oxalate (15/45, 33.3%). Other stones were composed of a
mixture of calcium-oxalate and carbonate apatite (5/45, 11.1%), or uric acid (3/45, 6.7%),
of a mixture of carbon apatite and magnesium ammonium phosphate (1/45, 2.2%) and of
cysteine (1/45%, 2.2%). Corresponding CT values are presented in Table 3. Although the
CT values of stones composed of uric acid and calcium oxalate are similar for soft kernel
reconstructions, differences are larger for sharp kernel reconstructions.

Table 3. Composition of the stones and corresponding attenuation values where results of X-ray
diffraction were available. Data provided as median with 25%- and 75%-quartiles in parentheses,
where n > 1 stone was available.

Soft Kernel Reconstruction Sharp Kernel Reconstruction

Composition n B I P B I P

CaOx 15 772
(523–1059)

739
(508–1147)

829
(531–1044)

1316
(1045–1583)

1251
(703–1565)

1119
(791–1399)

Calcium-Oxalate-
carbonate apatite 5 703 (663–777) 672 (668–675) 632 (598–699) 1092

(1000–1339)
1251

(1156–1254)
850

(764–1124)

Uric acid 3 501 (430–664) 513 (412–645) 515 (422–562) 460 (452–967) 464
(434–1040)

507
(463–972)

Cystine 1 721 714 725 731 745 714

Carbonate-Apatite-mix 1 1174 1257 1202 1149 1358 1320

3.5. CT Values and Image Noise in Tissues and Air

Differences in CT values between ROIs in liver, spleen, fat, and muscle were com-
parable in reconstructions with soft kernels, with maximum differences of 0.5% between
the reconstructions (see Table 4a). In air and bone ROIs reconstructed with sharp kernels,
differences in attenuation were within 5.5%. Still, there were significant differences in
mean attenuation.
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Table 4. Results of the CT value measurements and statistical analysis in the regions-of-interest liver,
spleen, muscle, fat (soft kernels) and in the air and lung (sharp kernels). CT values of the three
evaluated reconstructions were compared (B vs. I, I vs. P, P vs. B). Differences between CT values
with shared superscripts were statistically significant.

(a)

CT Value B I P

Air (sharp) −940.0 ± 12.0 A −933.4 ± 11.2 AB −939.4 ± 11.9 B

Bone (sharp) 188.8 ± 63.3 D 186.0 ± 66.7 C 196.2 ± 63.5 CD

Liver (soft) 44.7 ± 16.3 44.7 ± 16.1 44.6 ± 16.1
Muscle (soft) 51.3 ± 6.7 EF 51.1 ± 6.7 F 50.8 ± 7.0 E

Spleen (soft) 45.4 ± 3.5 45.4 ± 3.4 45.4 ± 3.4
Fat (soft) −116.1 ± 9.7 H −116. ± 9.6 G −115.6 ± 9.6 GH

Results of the statistical comparisons: A–G: p < 0.001, H: p = 0.001.

(b)

Image Noise B I P

Air (sharp) 77.5 ± 15.9 49.4 ± 13.5 28.5 ± 14.3
Bone (sharp) 212.3 ± 40.1 143.0 ± 31.1 124.0 ± 20.7
Liver (soft) 38.2 ± 7.7 26.2 ± 5.0 20.3 ± 4.8

Muscle (soft) 31.6 ± 5.6 21.7 ± 3.9 14.5 ± 2.6
Spleen (soft) 34.5 ± 7.0 23.4 ± 4.8 16.4 ± 4.1

Fat (soft) 29.4 ± 5.6 20.4 ± 4.2 12.8 ± 3.1

Statistical differences (p < 0.001) among all reconstructions within one ROI.
Abbreviations: B: filtered back-projection, I: iterative reconstruction; P: PixelShine.

Image noise varied between the reconstructions as follows (see Table 4b): highest noise
values were measured in filtered back-projections whereas lowest noise values were mea-
sured with the denoising software PixelShine. Differences between the reconstructions were
significant (p < 0.001). In fat, image noise was 57% lower in P30f- than in B30f-reconstructions.

3.6. SNR and CNR

The highest SNR values independent of the kernel type and tissue were determined
for PS-reconstructed images. Due to higher noise values when applying sharp kernels,
SNR values were considerably lower compared to applying soft kernels, where the image
noise was suppressed. See Figure 3 for the SNR measured in the liver and bone.

Highest CNR values measured in stones and fat tissue were determined for PixelShine
due to lowest noise levels both in soft tissue and in bone reconstructions (CNR 29.3 for B30f
compared to 67.1 for P30f). Differences between the kernels were statistically significant
(p < 0.001) (see Figure 4).
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Figure 4. Contrast to noise ratio for (a) soft kernel and (b) sharp kernel reconstructions. Differences
between the three reconstruction techniques were significant (*** p < 0.001, ** p = 0.002).

4. Discussion

Reno-ureteric stones were evaluable with traditional filtered back-projection, iterative
reconstruction, and the novel deep-learning method PixelShine. Sharp kernel reconstruc-
tions resulted in smaller stone size measurements and significantly higher CT-attenuation
values than soft kernel reconstructions. The differentiation between stone compositions
was improved using sharp kernel reconstructions. Using AI-based methods offers increased
signal-to-noise and contrast-to-noise ratios with the potential to further reduce radiation
exposure to the patient.

There is still no gold standard for how to measure the attenuation and size of stones,
e.g., with a defined reconstruction method or type of kernel. Especially with the increasing
number of scanner-integrated or vendor-independent post-processing techniques, the
comparability between the different methods may be difficult.

The software PixelShine has already been evaluated in a few technical and clinical
research investigations, such as in ultra-low dose abdominal, pelvic, or midfacial trauma
CT [8,10,15–19]. The publications show that the deep learning technique provides diagnos-
tic images even at radiation exposures of 30% of the initial dose, regardless of the scanner
type or reconstruction technique [8]. This is achieved by vigorously reducing image noise,
resulting in increased signal-to-noise and contrast-to-noise ratios [8,10,15,18]. However,
until now, no evaluation of (a) the detection and (b) the characterization of reno-ureteric
stones in PixelShine-post-processed low-dose computed tomography of the abdomen has
been published. The influence of deep learning techniques on the detection, image quality,
size and attenuation of stones has already been studied for other vendors (AiCE, GE Health-
care and TrueFidelityTM

, Canon Medical Solutions) (see Table 5) [20–22]. Comparable to
our results, the aforementioned techniques reduce noise, possibly allowing for a reduction
in the radiation dose in the future. Unfortunately, smaller stones <3mm could possibly be
missed when reducing the radiation exposure, so the techniques should still be considered
with caution.
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Table 5. Comparison of deep-learning based reconstruction tools employed for the diagnosis of kidney and ureter stones.

Parameter This Study Zhang et al. [20] Thapaliya et al. [21] Delabie et al. [22]

Vendor Algomedica Siemens Healthineers Canon Medical Systems Canon Medical Systems GE Healthcare

Techniques used PixelShine IR (Safire),
FBP DLR (AiCE) HIR DLR (AiCE, six

options evaluated) AIDR3D DLR
(TrueFidelityTM)

FBP
ASiR-V

Preprocessing
techniques FBP Raw data None described Raw data Raw data None described

Type of
dataset used

CT of kidney stones in 45 patients, both soft
tissue and bone kernel and window settings

CT of kidney stones in 51 patients with
intra-individual comparison, soft

tissue window settings; LDCT-HIR
as gold standard

CT of kidney stones in 7 patients,
AIDR3D as gold standard, soft

tissue window

CT of kidney stones in 75 patients, soft
tissue window (stone detection), bone

window (stone count)

Evaluation
measures

Image noise, CNR, SNR,
attenuation, stone size

Radiation exposure, stone
characteristics, image noise,

SNR, subjective IQ

Stone detection, stone size,
inter-rater reliability

Attenuation, noise measurements,
SNR, contrast, CNR, detectability, IQ,

stone size category;

Advantage Higher
objective IQ Direct reconstruction

Reduced radiation
exposure,
higher IQ

High level of
agreement

with AIDR3D

Quantitative and
qualitative

IQ improved

Disadvantage Secondary
reconstruction Image noise Lower sensibility Higher

sensibility
More image noise

than AiCE

Contrast between
kidney and spleen
different to ASiR-V

Image noise

Recommendation

Usage of PixelShine to reduce image noise;
use sharp kernel reconstructions bone

window to improve differentiation between
stone compositions

DLR with ultra-low dose CT to
reduce dose, though it might

miss stones <3mm

Usage of DLR to potentially
reduce radiation exposure

Usage of DLR to improve IQ, though it
still might miss stones <3mm

Abbreviations: CT: computed tomography, CNR: contrast-to-noise ratio, DLR: Deep-learning reconstruction, HIR: hybrid iterative reconstruction, IQ: image quality, LDCT: low-dose CT,
SNR: signal-to-noise-ratio.
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In general, reno-ureteric stones were evaluable in the post-processed reconstructions
in this study, both with a sharp kernel and a soft kernel. No stone was missed. How-
ever, CT values and stone sizes differed between the three evaluated techniques. When
measuring the CT values in the six evaluated image data sets per patient, the highest CT
numbers were determined using sharp kernel and filtered back-projection as reconstruc-
tion methods. Iterative reconstruction and PixelShine resulted in lower CT-attenuation
values. The measured stone diameters explain the difference. Diameters in reconstructions
with sharp kernels were approximately 1 mm smaller compared to the diameters in soft
kernel reconstructions. Presuming that the stone size is smaller since its margins are better
distinguishable when employing sharp kernels, the CT value is more likely to be measured
in the centre region of the stone. In this case, the periphery of the stone that might already
contain soft tissue instead of stone material is elided. Therefore, less partial volume artifacts
influence the measurement of attenuation, which would decrease the average CT value.
Therefore, we recommend the diagnosis and measurement of reno-ureteric stones using
sharp reconstructions and bone window settings (see Figure 5).
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Figure 5. Proposed method for diagnosis of reno-ureteric stones: Patients should undergo low-dose
computed tomography (CT), reconstructed with filtered back-projection (FBP) with a sharp kernel
and post-processed with PixelShine as deep learning reconstruction (DLR) algorithm to remove
image noise. All measurements (size, CT attenuation in Hounsfield units (HU)) should be performed
in bone window settings.

Lidén et al. evaluated the impact of image post-processing parameters on the size of
renal stones and further assessed the inter- and intra-reader variability of stone size mea-
surements [23]. They noticed considerable differences between reconstructions of different
slice thickness and increment, window settings (bone vs. soft tissue), and furthermore,
an intra-reader variability of ±0.5 mm and an inter-reader variability of ±1.3 mm. They
concluded that a difference in size estimation of a structure of one or two millimeters is of
no significance in most clinical situations [23]. In our study, differences in sizes were of a
maximum 3.3 mm between soft and sharp kernel reconstructions and 1.3 mm within one
reconstruction kernel. These differences are likely to have no significance on the treatment
of patients.

Although differences in CT values of the stones were visible within one kernel, the
CT value only influenced the immediate treatment if the stone passed without medical
intervention. Unfortunately, single-source CT cannot provide information on the stone
composition that is as detailed as that of a dual-energy CT [24–26]. It is possible to obtain a
rough differentiation between different compositions by means of the CT value; however,
there is no strict cut-off value for each composition (e.g., uric acid, cysteine, calcium) [27].
In general, stones consisting of uric acid have CT values of lower than 600 HU, which was
supported by our study [2,3,28,29]. Stones consisting of calcium oxalate tend to have higher
CT values (>1000 HU), again supported by our study [2,3,28,29]. We were able to see that
the differentiation between stones composed of uric acid and stones composed of calcium
oxalate is clearer with sharp kernel reconstructions. In the case of medical intervention
due to an immobile stone, differentiation helps to induce a medicinal therapy for uric acid
stones, whereas calcium oxalate stones require interventional therapy.
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In this study, the range of CT values within one reconstruction kernel could result
in a misinterpretation of the composition since differences in CT values could be as large
as 750 HU; however, this is only the situation in rare cases and with very small stones.
The referring doctor usually only receives information regarding the occurrence, size and
position of a stone rather than the composition. The direct treatment is usually based on the
clinical presentation and patient symptoms rather than the stone composition. Furthermore,
stones are frequently calcified, which might hide the actual stone composition [30].

Unfortunately, many articles do not describe the reconstruction kernel they use, rather
only detailing the window settings (e.g., bone or soft tissue window). However, the
reconstruction kernel changes the sharpness an image noise of structures [31]. Typically,
soft tissue reconstruction kernels tend to smoothen tissue edges. In contrast, sharp kernels
are often edge enhancing, creating sharper and more distinct tissue edges. Sharp kernels
influence the size of a small structures and consequently, also the CT value of measured
stones, since the partial volume effects are reduced. Nevertheless, even when using the
same kernel, CT values and stone sizes are influenced by employing different window
settings (bone vs. soft tissue windows) [23,28,29,32].

Both soft and sharp reconstruction kernels exhibit advantages and disadvantages in
the detection and measurement of stones. The anatomical classification is easier with soft
kernels and soft tissue window, as the ureters and their anatomical course can be better
distinguished here. However, the detectability of stones is usually higher when using sharp
kernels and bone window, since the high attenuation of stones in these settings is more
prominent compared to soft tissue settings. Umbach et al. and Danilovic et al. proposed
using bone window and small slice thickness to determine the stone size due to a higher
accuracy compared to measurements in soft tissue window settings [32,33]. However,
they did not provide information on the employed reconstruction filter. Moreover, Eisner
et al. also proposed using bone window settings and to magnify the image to increase the
accuracy of stone measurements [34].

Independent of the stone characteristics, this study also examined the objective image
quality between the six different reconstructions. PixelShine’s image noise reduction ability
was already proven in different studies [8,10,15,18]. This study demonstrated the highest
signal-to-noise and contrast-to-noise ratios with reconstructions employing PixelShine, both
for soft and sharp kernels. A noise reduction in the region around the stones might improve
the detection of very small stones. However, in this study, all stones could be detected in all
reconstructions, independent of the noise level. Some limitations need to be mentioned. The
evaluation of stones in terms of material compositions is best performed by means of dual-
energy CT [35]. However, this technique is not always available in every center and often is
associated with higher radiation exposure [24,35,36]. In our institute, the detection of reno-
ureteric stones was performed with a single tube potential. Furthermore, stone size was
not available for any of the patients, and composition was only available for some patients.
Hence, we could not evaluate stone composition and stone size thoroughly. However,
this study did not aim at the exact stone composition. Furthermore, other reconstruction
methods, such as ADMIRE (Siemens Healthcare, Forchheim, Germany) might have resulted
in different characterizations. Additionally, since the software PixelShine is a commercial
product, the exact algorithm is kept confidential and it can be used simply to evaluate
the results.

5. Conclusions

The size and CT value of reno-ureteric stones differ between sharp and soft recon-
struction kernels. Within one type of kernel, post-processing methods such as PixelShine
influence the measurements to a certain degree, however, this does not impede the clinical
decision. Currently, the software is not part of our standard reconstruction process, but is
only employed for research purposes. Therefore, PixelShine images were reconstructed
in a subsequent step. However, it is possible to integrate the reconstruction process in the



Diagnostics 2022, 12, 1627 11 of 12

general workflow. A noise-reduction algorithm, which can decrease the radiation exposure
of these patients is of great advantage and is highly recommended.

Yet, a standard measuring procedure within one institute is required, since the differ-
ences in size and CT value between soft and sharp kernel reconstructions were statistically
significant and so might be useful for further treatment. In general, we recommend the
usage of PixelShine and sharp kernel reconstructions, diagnosed in a bone window to
increase the differentiability of stone compositions.
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