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Abstract

The European wasp, Vespula germanica (Fabricius) (Hymenoptera: Vespidae), is of

Palaearctic origin, being native to Europe, northern Africa and Asia, and introduced into

North America, Chile, Argentina, Iceland, Ascension Island, South Africa, Australia and

New Zealand. Due to its polyphagous nature and scavenging behaviour, V. germanica

threatens agriculture and silviculture, and negatively affects biodiversity, while its aggres-

sive nature and venomous sting pose a health risk to humans. In areas with warmer winters

and longer summers, queens and workers can survive the winter months, leading to the

build-up of large nests during the following season; thereby increasing the risk posed by this

species. To prevent or prepare for such unwanted impacts it is important to know where the

wasp may be able to establish, either through natural spread or through introduction as a

result of human transport. Distribution data from Argentina and Australia, and seasonal phe-

nology data from Argentina were used to determine the potential distribution of V. germanica

using CLIMEX modelling. In contrast to previous models, the influence of irrigation on its dis-

tribution was also investigated. Under a natural rainfall scenario, the model showed similari-

ties to previous models. When irrigation is applied, dry stress is alleviated, leading to larger

areas modelled climatically suitable compared with previous models, which provided a bet-

ter fit with the actual distribution of the species. The main areas at risk of invasion by V. ger-

manica include western USA, Mexico, small areas in Central America and in the north-

western region of South America, eastern Brazil, western Russia, north-western China,

Japan, the Mediterranean coastal regions of North Africa, and parts of southern and eastern

Africa.
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Introduction

Vespula germanica (Fabricius) (Hymenoptera: Vespidae), known as the European wasp in

Australasia, South Africa and South America, and the German wasp elsewhere, is of Palaearctic

origin, occurring naturally in Europe, northern Africa and Asia, and being introduced into the

USA, Canada, Chile, Argentina, Iceland, Ascension Island, South Africa, Australia and New

Zealand [1–4]. Its scavenging feeding habits and use of anthropogenic structures for nesting

sites brings the species in close contact with humans [5, 6]. This may lead to a close association

between its distribution and areas of human settlements, which may also influence its invasive

potential.

Vespula germanica is polyphagous, with the adults feeding on carbohydrates in the form of

sugars, and workers collecting protein for the larvae [2, 7–9]. Therefore, they can cause a prob-

lem for various human economic and recreational activities. For example, in New Zealand,

they became a serious problem for beekeeping, robbing the hives of honey and bees [10,11]. In

Israel, they were found to damage the udders and teats of dairy cows [12,13]. They also cause

problems in orchards and vineyards where they feed on the fruit, and due to their aggressive

nature, they attack and sting human workers, especially at harvest [11, 14–16]. Being venom-

ous, they deliver a painful sting and can produce multiple stings, which may result in allergic

reactions [14, 15]. Due to their scavenging behaviour, association with human food sources

(e.g. protein food consumed by humans, bread and sugary liquids), and aggressive nature, they

become a problem at picnic sites, schools and other public places, where they are a nuisance

and pose a threat to humans and their pets [6, 15–17]. In addition to anthropogenic impacts,

V. germanica can also impact natural ecosystems in invaded areas [18, 19], where they prey on

and compete with a wide range of arthropods [15, 18]. In New Zealand for example, they com-

pete with native species such as birds and invertebrates for honeydew excretions in beech for-

ests, before being displaced by the common wasp, Vespula vulgaris (L.) [20, 21].

Vespula germanica generally has an annual life cycle, with queens hibernating in sheltered

areas through cold winters. During warmer spring weather, the fertilized queens build nests

and start new colonies [7, 8, 22, 23]. Nests are mostly built underground, but they may also

use tree trunks, cavities in walls, or ceilings of buildings [6, 7, 14, 24–27]. Nests grow in size

throughout summer, with workers attending to the larvae, reaching maximum size during

autumn [7]. During this time, new queens and increasingly more males are produced, which

then mate, and subsequently the queens hibernate during winter while the rest of the colony

dies out [7, 27, 28]. However, the phenology of the wasp differs in areas of its invasive range

such as Australia and New Zealand where the winters are warmer and the summers are longer

than in the higher latitudes in the Northern Hemisphere. In such regions, queens and workers

are able to survive the winter period to continue into the next season, resulting in the develop-

ment of much larger nests [26, 27, 29–31].

From the list of countries it has invaded, it is clear that V. germanica has a high invasive

potential, and can tolerate or adapt to a wide range of habitats and climates. For example, in

Argentina, it has spread throughout most of the Patagonian and Sub-Antarctic biogeographi-

cal provinces, as well as the southern part of the Monte province [32], while in the USA it

now occurs in almost 30 states [4]. Within six years after its introduction in New Zealand, it

infested 80 000 km2 to inhabit both main islands [15]. In contrast to its behaviour in other

invaded countries where it has spread and invaded larger areas, this has not been observed in

South Africa. Despite being detected as early as 1974 in the Cape Peninsula [7], V. germanica
currently still only occurs in a relatively small portion of the Western Cape Province [33]. It is

unclear why it showed limited invasive behaviour in South Africa and its limited spread has

resulted in few studies being conducted locally on the species, with no attempts being made to
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eradicate the species from the Western Cape [2]. This situation has changed recently with

active research being undertaken to establish the feasibility of either eradication, or at least

monitoring and preventing further spread at the range edge [33, 34]. The potential distribution

of this species and the extent of areas of favourable climatic conditions is important informa-

tion required to assist such management decisions.

CLIMEX models [35, 36] have been constructed previously to estimate the potential distri-

bution of V. germanica. The first model was that of Spradbery & Maywald [37], investigating

the potential distribution in Australia. The second was done by Tribe & Richardson [38],

investigating the potential spread in South Africa. The model by Spradbery & Maywald [37]

was updated by Bob Sutherst (CSIRO, Canberra, Australia) during 2004. This updated version

was not published, but a CLIMEX parameter file was created in CLIMEX version 3, which is

accessible to CLIMEX users [39]. Tribe & Richardson [38] estimated the fynbos biome of the

southern and western part of the Western Cape Province to be only marginally suitable, which

may explain its low rate of spread. However, these models were built on general data on the

presence of V. germanica in Europe, Asia, North Africa and, in the case of Spradbery & May-

wald [37], also the Middle East. Since then, V. germanica has expanded its distribution, with

more presence and absence data in the form of specific geographical point locations becoming

available. This makes it possible to update the Sutherst model.

In this paper, we used distribution data for V. germanica from Argentina and Australia, as

well as seasonal phenology data from Argentina to fit a CLIMEX Compare Locations model.

The CLIMEX model was then applied to global climate data and the results compared with

global presence data (including detailed presence data from South Africa) for V. germanica in

regions not used for model fitting. The validated model was then used to create a global cli-

matic risk map as a composite of natural rainfall and irrigation scenarios.

Materials and methods

Distribution data

Distribution data for Argentina was obtained from Masciocchi & Corley [32] and Maitè
Maschiocchi (pers comm.) (Fig 1A), while Australian data was obtained from Spradbery &

Maywald [37], Horwood et al. [40], Philip Spradbery (pers comm.) and Marc Widmer (pers

comm.) (Fig 1B). South African distribution data was obtained from Haupt [33]. Information

on global distribution was obtained from CABI [4].

CLIMEX

CLIMEX (Hearne Scientific Software Pty Ltd, Australia) [35, 36] is a semi-mechanistic model-

ling package that was developed mainly to estimate the potential distribution of invasive spe-

cies, and to explore the climatic factors that influence population growth or decline. The

CLIMEX Compare Locations model simulates the mechanisms that influence a species’ popu-

lation growth and survival responses to climate, in order to estimate its potential geographical

distribution and seasonal abundance [36].

CLIMEX assumes that a population may experience two types of season annually, those

favourable for growth and those that are stressful, during which the population will decline

[35, 36]. The programme integrates a population’s weekly responses to climate and uses these

to calculate a number of annual and weekly indices, including annual and weekly Growth Indi-

ces (GIA and GIW respectively), stress indices (SI) and the Ecoclimatic Index (EI), which indi-

cates the overall climatic favourability [36]. In addition, stress functions can be fitted for cold,

dry, hot, wet, cold-dry, cold-wet, hot-dry and hot-wet stress indices. Besides the temperature
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and moisture stresses, the potential distribution of a species may also be limited by a minimum

length of the growing season measured in degree-days.

The annual Growth Index (GIA) represents the potential for population growth and devel-

opment, and combines the organism’s response to temperature, soil moisture and, where rele-

vant, day-lengths and diapause. CLIMEX combines the growth and stress indices into an

overall Ecoclimatic Index (EI), ranging from 0 to 100 [36]. Assigning classes of suitability to EI

values between 0 and 100 is usually an arbitrary process intended to reduce the perceived level

of model precision compared with that implied by a percentile score.

CLIMEX can provide the user with maps of annual summary variables, such as the Ecocli-

matic Index (EI), the annual Growth Index (GIA) and the stress indices, as well as weekly time-

series graphs of state variables such as the weekly Growth Index (GIW) [36]. The CLIMEX

model was constructed by iteratively fitting the stress parameters until the geographical distri-

bution simulated by CLIMEX (EI�1) coincided with the Argentinean and Australian distribu-

tion (Fig 1A and 1B), and Argentinean seasonal phenology accorded with graphs of GIW (see

Table 1 for parameters). Relevant biological information (e.g. developmental thresholds)

informed the selection of the stress mechanisms parameter value selection to ensure that they

were biologically plausible.

The 10’ CliMond climate dataset was used within CLIMEX to represent current climate

[41] The CM10_1975H_V1.2 dataset of historical long-term monthly climate averages for

minimum and maximum temperature, precipitation and relativity humidity at 09h00 and

15h00 is centred on 1975.

CLIMEX parameter fitting

The parameter sets of the CLIMEX models by Spradbery & Maywald [37], Tribe & Richardson

[38] and Sutherst et al. [39], were taken as a starting point when building the V. germanica

Fig 1. The distribution of V. germanica in (a) Argentina and (b) Australia, plus key locations in each

country used to model the potential distribution. For Australia not all presence sites are shown, focusing

more on sites in the northern boundary of its distribution. Distribution data for Tasmania is not included as it

occurs widespread throughout the island. Open circles: presence sites; black crosses: absence sites; blue

dotted lines: main rivers.

https://doi.org/10.1371/journal.pone.0181397.g001
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model. These models were constructed based on the known distribution of the wasp in

Europe, Asia, the Middle East and North Africa [37, 38]. The model based on the parameter

set of Spradbery & Maywald [37] indicated that wasp populations benefit from cool to hot, dry

conditions, but are sensitive to prolonged cold, as well as hot, wet conditions. These previous

models estimated certain parts in the dry desert such as Patagonia in Argentina, where V. ger-
manica is known to occur, to be climatically unsuitable [32, 37–39]. While climate is the pri-

mary range-limiting factor for poikilotherms [42, 43], climate-modifying factors such as

irrigation can also play an important role in extending a species range beyond the limits

afforded by climate. We therefore hypothesised that the persistence of V. germanica in these

xeric regions may be predicated on irrigation. Google Earth revealed that many of these pres-

ence sites in Argentina lie alongside river beds. We explored the possibility that consideration

of irrigation patterns provides a better model fit. Further adjustments were made to the model

to accord with published information on the temperature thresholds for V. germanica, as well

as distribution data from Argentina and Australia (Fig 1A and 1B), and phenological observa-

tions in Argentina (Table 1).

Table 1. CLIMEX parameters used to model the distribution of V. germanica, based on its distribution in Argentina and Australia, as well as sea-

sonal phenology in Argentina.

Index Parameter Value#

Spradbery Tribe & Sutherst Current

& Maywald Richardson et al. model

Temperature DV0 = lower threshold (˚C) 10 10 10 6.5

DV1 = lower optimum temperature (˚C) 18 18 18 18

DV2 = upper optimum temperature (˚C) 26 26 26 26

DV3 = upper threshold (˚C) 33 31 31 33

Moisture SM0 = lower soil moisture threshold 0 0.2 0.2 0.2

SM1 = lower optimum soil moisture 0.6 0.8 0.6 0.6

SM2 = upper optimum soil moisture 1.5 2 1.5 1.5

SM3 = upper soil moisture threshold 2.5 3 2.5 2.5

Cold stress DTCS = degree-day threshold (stress accumulates if the number 10 10 10 10

of degree-days above DVCS is below this value) (˚C-days)

DHCS = stress accumulation rate (week -1) -0.00014 -0.00014 -0.00014 -0.00016

DVCS = developmental temperature threshold (˚C) 10 10 10 6.5

Heat stress TTHS = heat stress temperature threshold (˚C) 31 30 31 33

THHS = stress accumulation rate (week -1) 0.0035 0.005 0.0035 0.0035

Dry stress SMDS = soil moisture dry stress threshold 0.2 0.2 0.15 0.2

HDS = stress accumulation rate (week -1) -0.006 -0.01 -0.008 -0.008

Wet stress SMWS = wet stress threshold 2.5 3 2.5 0

HWS = stress accumulation rate (week -1) 0.002 0.002 0.002 0

Hot-wet TTHW = hot-wet stress temperature threshold (˚C) 26 0 26 22

stress MTHW = hot-wet stress moisture threshold 0.8 0 0.8 0.4

PHW = stress accumulation rate (week -1) 0.03 0 0.03 0.009

Annual heat PDD = number of degree-days above DV0

sum needed to complete one generation (˚C-days) 350 350 350 350

Parameters for models by Spradbery & Maywald [37], Tribe & Richardson [38] and Sutherst et al. [39] are also included.
#Values without units are dimensionless indices of a 100 mm single bucket soil moisture model (0 = oven dry, 1 = field capacity).

https://doi.org/10.1371/journal.pone.0181397.t001
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Temperature index. The temperature index parameters were similar to those used in the

models by Spradbery & Maywald [37], Tribe & Richardson [38] and Sutherst et al. [39]

(Table 1). The minimum temperature for development (DV0) was reduced from 10˚C to

6.5˚C to allow all presence sites along the Andes mountains in Argentina [32] to be modelled

as suitable. This was also in line with results from Coelho & Ross [44] and Kasper et al. [23],

indicating that 7˚C was the lower threshold for V. germanica activity, as well as Goller & Esch

[45], which stated the lower threshold for flight activity to be 6 to 7˚C. The lower (DV1) and

upper (DV2) optimum temperature was kept at 18˚C and 26˚C respectively. The maximum

temperature for development (DV3) was set to 33˚C, which was in line with the upper thresh-

old of 35˚C for activity, determined by Coelho & Ross [44]. Austin & Hopkins [46] and Kasper

et al. [23] also recorded a decrease in wasp activity for temperatures above 35˚C. The number

of degree-days per generation (PDD) was kept at 350. Given the reduced value of DV0, this

indicated a slightly higher thermal sum for a generation compared with previous models.

Moisture index. The same moisture thresholds of Sutherst et al. [39] were used. The

lower moisture threshold (SM0) was set to 0.2, somewhat above permanent wilting point. The

lower optimal soil moisture threshold was set to 0.6. The upper optimal soil moisture threshold

(SM2) and limiting high soil moisture threshold (SM3) was set to 1.5 and 2.5 respectively. A

similar parameter set was also used by Spradbery & Maywald [37].

Cold stress. A similar cold stress scenario to that of Spradbery & Maywald [37], Tribe &

Richardson [38]) and Sutherst et al. [39] was used. The degree-day threshold (DTCS) value

was kept at 10˚C-days and the stress accumulation rate was increased from -0.00014 week-1 to

-0.00016 week-1 to compensate for the lower DV0 value. The developmental temperature

threshold (DVCS) was also decreased from 10 to 6.5˚C to be in line with the lower DV0 value.

Heat stress. The heat stress mechanism was the same as that used by Spradbery & May-

wald [37] and Sutherst et al. [39]. However, the heat stress temperature threshold (TTHS) was

increased from 31 to 33˚C to accommodate the higher DV3 value in the current model. The

heat accumulation rate (THHS) was kept the same at 0.0035 week-1.

Dry stress. The soil moisture dry stress threshold (SMDS) was set to 0.2, and the stress

accumulation rate (HDS) to -0.008 week-1. This resulted in the drier areas of Patagonia, as well

as the drier areas in the northern boundary of its distribution in southern Australia, e.g. Kal-

goorlie (Western Australia), Port Augusta (South Australia) and Dareton (New South Wales)

being modelled as unsuitable, where persistence of V. germanica is more plausibly contingent

on irrigation.

Wet stress. Wet stress was not included in the model, as it had minimal impact on the

modelled potential distribution.

Hot-wet stress. The hot-wet stress parameters of Spradbery & Maywald [37] and Sutherst

et al. [39] are considered to be too high since hot-wet stress generally reflects the effects of

competition, predation or parasitism, and hence the stress tends to accumulate over longer

periods compared with hot or wet stress functions [36]. This means that it should have a low

accumulation rate. The hot-wet temperature threshold (TTHW) was set to 22˚C, the hot-wet

moisture threshold (MTHW) to 0.4 and the stress accumulation rate (PHW) to 0.009 week-1.

This estimated south-east Asia to be climatically unsuitable, which corresponds to the absence

of V. germanica from these areas [4].

Seasonal phenology. Seasonal phenology trends for the Patagonian region in Argentina

were obtained from Maitè Masciocchi (pers comm.). In this region, the queens start the colo-

nies during late September to early October. The first workers are seen in January, showing a

peak in abundance during March. By late April or early May the wasps disappear completely.

This was compared graphically with the GIW values from the model output to see whether or

not there was concordance between the modelled GIW and the seasonal occurrence
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throughout the year. Where there was a mismatch, the inclusion of irrigation was explored to

see if a better fit could be obtained.

Irrigation. A summer top-up irrigation scenario of 2.5 mm day-1 was applied to produce

two types of maps: (a) a map showing the estimated distribution with the assumption that all

areas across the world are irrigated, and (b) a risk map contingent on irrigation being practiced

in the 10’ cell according to the global irrigation map [47], producing a composite risk map. In

areas that were under irrigation according to Siebert et al. [47], the EI of the irrigation scenario

was mapped, while in areas where zero irrigation is applied, the EI of the non-irrigation sce-

nario was mapped.

Results

The potential distribution of V. germanica in Argentina under a natural rainfall scenario is

shown in Fig 2A. Many of the presence sites in the Patagonian region fall out of the modelled

potential range. With the current model, the main limiting factor in this region is dry stress

(Fig 3). When 2.5 mm day-1 irrigation was added as a top-up to natural rainfall during sum-

mer, all the presence sites fall into the suitable range, including the presence sites in the colder

Andes Mountains (Fig 2B). Fig 2C gives a composite risk map, based on the areas across the

globe considered to be under irrigation [47]. In this scenario, the potential range is similar to a

natural rainfall scenario, with many of the presence sites falling out of the climatically suitable

range. However, the composite risk scenario did show a slight improvement in model fit com-

pared to the natural rainfall scenario, with some of the sites, e.g. in the northern region of Pata-

gonia, now being suitable. In the Pampas region in north-eastern Argentina, the climate is

estimated to be suitable, as with previous models, yet V. germanica is absent from this region.

Fig 4 shows the seasonal climate and CLIMEX indices in selected locations in the Patago-

nian region (see Fig 1 for positions of these locations). In all three these locations, the GIW was

zero in the absence of irrigation. However, when irrigation was applied, the GIW improved, fit-

ting well with the observed phenology of the species, with queens initiating the colonies during

spring and worker activity peaking during March, where after there is a decline towards the

winter period, during which the species is absent.

The potential distribution of V. germanica in Australia under a natural rainfall scenario is

shown in Fig 5A. The most northern sites along the west and east coast (Kalbarri and Mary-

borough respectively) fall into the modelled suitable range (see Fig 1 for position of the sites).

However, Kalgoorlie, Port Augusta and Dareton fall out of the suitable range. This was due to

dry stress (Fig 3). When the irrigation scenario was applied, these sites became climatically

suitable (Fig 5B). The Darling River is also considered to be a cut-off point in the distribution

of the species in New South Wales (Marc Widmer, pers comm.). This matched the modelled

potential range under an irrigation scenario. However, when only the areas that are considered

to be under irrigation were taken into account (composite risk scenario), Kalgoorlie, Port

Augusta and Dareton fall out of the modelled suitable range (Fig 5C).

The modelled potential distribution for South Africa under a natural rainfall scenario indi-

cates that the locations in the Western Cape where V. germanica currently occurs are where

the climate is projected to be either highly suitable or optimal (Fig 6A). Suitability is also pro-

jected along a narrow band in the south coast, stretching all the way to the east coast. Most of

the eastern half of the country is projected to be climatically suitable. When the irrigation sce-

nario was applied, the climatic suitability of the region in the Western Cape in which the spe-

cies occurs changed to optimal. In addition, the suitability in the Western Cape showed a

northward expansion, including a large part of the Northern Cape (Fig 6B). With the compos-

ite risk scenario, the climatically suitable area is smaller than when irrigation is applied
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throughout South Africa, with only small patches in the Northern Cape being favourable.

However, it still shows a wider potential distribution than with a natural rainfall scenario (Fig

6C).

Fig 7 shows the potential global distribution for a natural rainfall scenario and a composite

risk scenario. Under natural rainfall, the estimated distribution of V. germanica in Asia does

Fig 2. The projected climate suitability for V. germanica in Argentina, (a) without irrigation, (b) with

2.5 mm day-1 top-up irrigation during summer and (c) with a composite risk irrigation scenario (where

areas are not under irrigation, the EI of the natural rainfall scenario is mapped, while with areas under

irrigation the EI of the irrigation scenario is mapped), using the CLIMEX Ecoclimatic Index (EI). Open

circles: presence sites; black crosses: absence sites; blue dotted lines: main rivers. Unsuitable: EI = 0;

marginal: EI = 1–4; suitable: EI = 5–9; highly suitable: EI = 10–29; optimal: EI = 30–100.

https://doi.org/10.1371/journal.pone.0181397.g002
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not provide a good fit with the actual distribution (Fig 7A). However, when an irrigation sce-

nario is applied to those areas known to be irrigated (composite risk scenario), the fit in Asia

improves dramatically (Fig 7B). Besides dry stress, hot-wet stress is also an important factor

limiting the species’ distribution, with most tropical regions being climatically unsuitable (Figs

3B and 7).

Discussion

Under a natural rainfall scenario, the model shows similarities with the models by Spradbery

& Maywald [37], Tribe & Richardson [38] and Sutherst et al. [39]. In Argentina, the main dif-

ference lies in the narrow band along the Andes Mountains that now appears to be climatically

suitable. This is due to the lower temperature threshold that was chosen in the current model.

The fact that presence and absence data was available for Argentina made it possible to

improve the current model compared with the previous three models. In Australia, there was

also an improvement between the presence data and the estimated range, with the current

model being similar to the models by Spradbery & Maywald [37] and Sutherst et al. [39], with

less sites falling out of the estimated range than with the model by Tribe & Richardson [38]. In

both these countries, the fit between presence data and the estimated range was improved

when irrigation was added. However, when a composite risk scenario was mapped, where only

the areas considered to be under irrigation [47] was shown, the fit was less accurate, especially

Fig 3. Annual (a) dry stress (DS) and (b) hot-wet stress (HWS) indices for V. germanica.

https://doi.org/10.1371/journal.pone.0181397.g003
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in Argentina, with many presence sites in the Patagonian region falling out of the estimated

suitable range.

The anomalies between distribution in Argentina and Australia and the modelled range

with the composite risk scenario could be due to the dataset of Siebert et al. [47] failing to cap-

ture all areas under irrigation. However, since these presence sites in Australia and Argentina

mostly fall into areas where crop production is not practiced on a commercial scale and which

are unlikely to be irrigated, it is more likely that the Siebert et al. [47] dataset does not capture

the effect of human habitat modification (e.g. people watering gardens, thereby supplying a

water source) and the geography of the areas (e.g. the fact that many presence sites in Argen-

tina lie along river beds where there will be an increase in water availability) on the distribution

of the species. These few anomalies may therefore lie outside the limits of the methods to esti-

mate pest risks and habitat suitability. The effects of agricultural irrigation may also be con-

founded with other anthropogenic activities, which could provide food and shelter for V.

germanica. However, these factors operate at a scale finer than the agro-climatic scale. The irri-

gation practices directly affect the potential for a broad range of plant hosts to persist in xeric

environments, and the polyphagous nature of V. germanica means that it is unlikely to be lim-

ited within these irrigated regions that are modelled as being climatically suitable. Conversely,

there may be some isolated locations outside of the agricultural irrigation zones that support

populations of V. germanica due solely to the presence of anthropogenic activities.

The Pampas region, which is projected to be climatically suitable, is a fertile agricultural

region. Besides suitable climate, there should also be a sufficient food source available. There-

fore, it is unclear why the species is unknown from this region. However, there are some small

mountain ranges (e.g. Sierra Lihuel-Calel, Sierra de la Ventana and Sierra del Tandil) separat-

ing the Patagonian region from the Pampas region, which may have acted as a geographical

barrier, so far preventing or slowing V. germanica from spreading into the Pampas region.

Fig 4. Climate and CLIMEX indices for three sites in the Patagonian region in Argentina where V. germanica

occurs, but is projected to be climatically unsuitable without irrigation. T max = maximum temperature; T

min = minimum temperature; MIW (irrigation) and GIW (irrigation) = weekly moisture and growth indices under an

irrigation scenario (2.5 mm day-1 top-up to natural rainfall during summer) respectively; MIW (natural) and GIW (natural) =

weekly moisture and growth indices under a natural rainfall scenario respectively; TIW = weekly temperature index.

https://doi.org/10.1371/journal.pone.0181397.g004
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Fig 5. The projected climate suitability for V. germanica in Australia, (a) without irrigation, (b) with 2.5

mm day-1 top-up irrigation during summer and (c) with a composite risk irrigation scenario (where
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In Argentina, the improved fit between GIW and the seasonal phenology of V. germanica
with irrigation indicated a need for sufficient water supply. The latter was observed by Hor-

wood et al. [40], who found a positive correlation between rainfall and wasp abundance in the

Sydney Metropolitan Area, Australia. Horwood et al. [40] suggested that rainfall is needed as a

source for drinking water, as well as for the formation of wood pulp used in nest construction.

In Tasmania, Madden [48] also indicated a positive effect of autumn and spring rainfall on

queen production and nest establishment respectively. It was suggested that autumn rain leads

to an increase in the activity of insects, while spring rain increases both insect activity and

flowering, leading to a larger supply of proteins and carbohydrates [48]. This supports the

inclusion of an irrigation scenario, which simulates the effect of rainfall in an otherwise dry

region with insufficient water supply.

Some authors stated that excess rain can negatively impact the species by flooding of the

underground nests, preventing either survival of overwintering nests in the warmer climates

(autumn rain) or survival of the newly founded nests (spring rain) [37, 48, 49]. However, in

Australia, New Zealand and the USA, they were found to also nest aboveground [5, 11, 25, 37],

with some areas in Southern Australia having a larger proportion of nests aboveground than

underground [31, 46]. Kasper et al. [31] attributed this to the possibility that more nesting sites

are available aboveground, e.g. in highly populated areas where lawns and meadows are

replaced by buildings, roads and concrete. In North America, more nests were constructed

aboveground compared to Europe [5]. The tendency to nest aboveground is also observed in

South Africa. In such instances, the wasps will not drown when the soil becomes saturated.

In South Africa, the estimated suitable range under a natural rainfall scenario showed simi-

larities to previous models [37–39]. If climate is the only factor taken into consideration, V.

germanica will be able to spread easily along the coastal band in the south into the favourable

zone in the eastern part of the country. Tribe & Richardson [38] also considered this to be the

most likely route for natural expansion of the species’ range. When irrigation is considered

with the composite risk scenario, the climatic suitability increased along the southern coastal

band, shifting more towards the north, making this an even more favourable route of expan-

sion. Furthermore, some additional locations in the northern parts of the Western Cape, as

well as the southern parts of the Northern Cape were estimated to be suitable, although

mostly these were marginally suitable. This may be a pathway for jump dispersal due to

human transport, making it easier for the species to expand its range into the more favour-

able eastern zone. It also gives an indication that a trapping network for detection of the

species outside its current range in the Western Cape should not only include the favour-

able coastal band and eastern zone, but also extend northwards into the Northern Cape. It

is clear that the realised distribution range of V. germanica in South Africa is still small rela-

tive to its potential range. Based on this information we suggest a co-ordinated eradication

effort can at least be considered.

At a global scale our model with a natural rainfall scenario showed similarities to the models

by Spradbery & Maywald [37] and Sutherst et al. [39]. However, the model by Tribe & Rich-

ardson [38] estimated the species to be better adapted to the humid tropical regions in Africa

and south-eastern Asia, including the Philippines, Indonesia, Malaysia and Papua New Guinea

and south-eastern China, where the species is absent. The main reason for this difference with

areas are not under irrigation, the EI of the natural rainfall scenario is mapped, while with areas under

irrigation the EI of the irrigation scenario is mapped), using the CLIMEX Ecoclimatic Index (EI). Open

circles: presence sites; black crosses: absence sites (distribution data for Tasmania is not shown); blue dotted

lines: main rivers. Unsuitable: EI = 0; marginal: EI = 1–4; suitable: EI = 5–9; highly suitable: EI = 10–29;

optimal: EI = 30–100.

https://doi.org/10.1371/journal.pone.0181397.g005
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Fig 6. The projected climate suitability for V. germanica in South Africa, (a) without irrigation, (b) with

2.5 mm day-1 top-up irrigation during summer and (c) with a composite risk irrigation scenario (where

areas are not under irrigation, the EI of the natural rainfall scenario is mapped, while with areas under

irrigation the EI of the irrigation scenario is mapped), using the CLIMEX Ecoclimatic Index (EI). Open
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the other two models, as well as the current model, is because the model described in Tribe &

Richardson [38] did not include hot-wet stress (Fig 3B), which was needed to model South

East China as unsuitable. With irrigation (composite risk scenario), the improved fit between

the current distribution and the estimated range again supported the inclusion of irrigation

when modelling the potential distribution of the species. The main areas still at risk of invasion

by V. germanica include the western region of the USA, Mexico, small areas in Central Amer-

ica and in the north-western region of South America, eastern Brazil, western Russia, north-

western China, Japan, the Mediterranean coastal regions of North Africa, and parts of south-

ern and eastern Africa.

By including agricultural irrigation as a location-specific factor we were able to markedly

improve the overall fit of the model, simultaneously improving both sensitivity and specificity.

circles: presence sites. Unsuitable: EI = 0; marginal: EI = 1–4; suitable: EI = 5–9; highly suitable: EI = 10–29;

optimal: EI = 30–100.

https://doi.org/10.1371/journal.pone.0181397.g006

Fig 7. The projected global climate suitability for V. germanica, (a) without irrigation, (b) with a

composite risk irrigation scenario (where areas are not under irrigation, the EI of the natural rainfall

scenario is mapped, while with areas under irrigation the EI of the irrigation scenario [2.5 mm day-1

top-up irrigation during summer] is mapped), using the CLIMEX Ecoclimatic Index (EI). Tick marks:

countries or provinces/states within countries where V. germanica is known to occur. Unsuitable: EI = 0;

marginal: EI = 1–4; suitable: EI = 5–9; highly suitable: EI = 10–29; optimal: EI = 30–100.

https://doi.org/10.1371/journal.pone.0181397.g007
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This modelling technique [50–52] is likely to yield significant improvements to niche models

of most agricultural pests, diseases and weeds.

Supporting information

S1 File. Underlying data.

(XLSX)

Acknowledgments

We would like to thank the South African National Biodiversity Institute (SANBI) for funding

this project through the Department of Environmental Affairs (South Africa), Citrus Research

International (CRI) for providing technical equipment, Philip Spradbery and Marc Widmer

for providing information on distribution in Australia, and Maitè Masciocchi for providing

information on distribution and seasonal phenology in Argentina.

Author Contributions

Conceptualization: MDV RV DJK.

Formal analysis: MDV DJK.

Writing – original draft: MDV.

Writing – review & editing: MDV RV DJK.

References
1. Chapman RE, Bourke AFG. (2001) The influence of sociality on the conservation biology of social

insects. Ecology Letters 4: 650–662.

2. Allsopp MH. (2004) The European wasp, Vespula germanica, in South Africa. South African Bee Jour-

nal 76: 69–80.

3. Tezcan S, Karsavuran Y, Pehlivan E, Anlaş S, Yildirim E. (2005) Contribution to the knowledge of Ves-

pidae (Hymenoptera: Aculeata) fauna of Turkey. Türkiye Entomoloji Dergisi 29(2): 101–110.

4. CABI (2016) Vespula germanica [original text by Spradbery P, Dvorak L]. In: Invasive Species Compen-

dium, Wallingford, UK: CAB International. Available from: http://www.cabi.org/isc.

5. Akre RD, Ramsay C, Grable A, Baird C, Stanford A. (1989) Additional range extension by the German

yellowjacket, Paravespula germanica (Fabricius), in North America (Hymenoptera: Vespidae). Pan-

Pacific Entomologist 65: 79–88.

6. Gerber HS. (1990) Note on the occurrence of Paravespula germanica (Hymenoptera: Vespidae) in the

Lower Fraser Valley of British Columbia. Journal of the Entomological Society of British Columbia 87:

73–74.

7. Whitehead VB, Prins AJ. (1975) The European wasp, Vespula germanica (F.), in the Cape Peninsula.

Journal of the Entomological Society of southern Africa 38: 39–42.

8. Hurd CR, Nordheim EV, Jeanne RL. (2003) Elite workers and the colony-level pattern of labor division

in the yellowjacket wasp, Vespula germanica. Behaviour 140: 827–845.

9. Sackmann P, Corley JC, Masciocchi M, Novas G. (2010) Effects of the bittering agent denatonium ben-

zoate on the success of toxic baiting of pestiferous German wasps (Vespula germanica). International

Journal of Pest Management 56(1): 69–74.

10. Clapperton BK, Alspach PA, Moller H, Matheson AG. (1989) The impact of common and German

wasps (Hymenoptera: Vespidae) on the New Zealand beekeeping industry. New Zealand Journal of

Zoology 16: 325–332.

11. Donovan BJ. (1992) Problems caused by immigrant German and common wasps in New Zealand, and

attempts at biological control. Bee World 73: 131–148.

12. Braverman Y, Marcusfeld (NIR) O, Adler H, Yakobson B. (1991) Yellow jacket wasps can damage

cows’ teats by biting. Medical and Veterinary Entomology 5: 129–130. PMID: 1768892

Including irrigation in niche modelling of Vespula germanica

PLOS ONE | https://doi.org/10.1371/journal.pone.0181397 July 17, 2017 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181397.s001
http://www.cabi.org/isc
http://www.ncbi.nlm.nih.gov/pubmed/1768892
https://doi.org/10.1371/journal.pone.0181397


13. Braverman Y, Chizov-Ginzburg A, Yeruham I, Kolsky O, Saran A. (1998) Control experiments with yel-

low jacket wasps (Hymenoptera: Vespidae) injuring cattle in Israel. Journal of Economic Entomology

91: 486–491. PMID: 9589629

14. Richards KT. (1985) European wasps. Agriculture Protection Board Infonote 15/85; Agdex No. 612.

15. Davidson S. (1986) The European wasp–here to stay? Ecosystem 50: 14–17.

16. Bashford R. (2001) The spread and impact of the introduced Vespine wasps Vespula germanica (F.)

and Vespula vulgaris (L.) (Hymenoptera: Vespidae: Vespinae) in Tasmania. Australian Entomologist

28(1): 1–12.

17. Morse RA, Eickwort GC, Jacobson RS. (1976) The economic status of an immigrant yellowjacket, Ves-

pula germanica (Hymenoptera: Vespidae), in Northeastern United States. Environmental Entomology

6(1):109–110.

18. Sackmann P, D’Adamo P, Rabinovich M, Corley JC. (2000) Arthropod prey foraged by the German

wasp (Vespula germanica) in NW Patagonia, Argentina. New Zealand Entomologist 23: 55–59.

19. Wood GM, Hopkins DC, Schellhorn NA. (2006) Preference by Vespula germanica (Hymenoptera: Ves-

pidae) for processed meats: implications for toxic baiting. Journal of Economic Entomology 99: 263–

267. PMID: 16686122

20. Moller H, Tilley JAV. (1989) Beech honeydew: seasonal variation and use by wasps, honey bees, and

other insects. New Zealand Journal of Zoology 16: 289–302.

21. Beggs J. (2001) The ecological consequences of social wasps (Vespula spp.) invading an ecosystem

that has an abundant carbohydrate resource. Biological Conservation 99: 17–28.

22. Farji-Brener AG, Corley JC. (1998) Successful invasions of hymenopteran insects into NW Patagonia.

Ecologia Austral 8: 237–249.

23. Kasper ML, Reeson AF, Mackay DA, Austin AD. (2008) Environmental factors influencing daily foraging

activity of Vespula germanica (Hymenoptera, Vespidae) in Mediterranean Australia. Insectes Sociaux

55: 288–295.

24. Spradbery JP. (1971) Seasonal changes in the population structure of wasp colonies (Hymenoptera:

Vespidae). Journal of Animal Ecology 40: 501–523.

25. Crosland MWJ. (1991) The spread of the social wasp, Vespula germanica, in Australia. New Zealand

Journal of Zoology 18: 375–388.

26. Donovan BJ, Howie AME, Schroeder NC, Wallace AR, Read PEC. (1992) Comparative characteristics

of nests of Vespula germanica (F.) and Vespula vulgaris (L.) (Hymenoptera: Vespinae) from Christ-

church City, New Zealand. New Zealand Journal of Zoology 19: 61–71.

27. Miller PF, Peters BA, Vernon F. (2005) A field study on the control of European wasp Vespula germa-

nica (Hymenoptera: Vespidae) and paper wasp Polistes sp. (Hymenoptera: Vespidae) using a novel

aqueous powder formulation. In: Lee C-Y, Robinson WH, editors. Proceedings of the 5th International

Conference on Urban Pests; 2005; Malaysia: Perniagaan Ph’ng @ P&Y Design Network; p. 387–391.

28. Ward D, Honan P, Lefoe G. (2002) Colony structure and nest characteristics of European wasps, Ves-

pula germanica (F.) (Hymenoptera: Vespidae), in Victoria, Australia. Australian Journal of Entomology

41: 306–309.

29. Harris RJ. (1996) Frequency of overwintered Vespula germanica (Hymenoptera: Vespidae) colonies in

scrubland-pasture habitat and their impact on prey. New Zealand Journal of Zoology 23: 11–17.

30. Goodisman MAD, Matthews RW, Spradbery JP, Carew ME, Crozier RH. (2001) Reproduction and

recruitment in perennial colonies of the introduced wasp Vespula germanica. The Journal of Heredity

92(4): 346–349. PMID: 11535648

31. Kasper ML, Reeson AF, Austin AD. (2008) Colony characteristics of Vespula germanica (F.) (Hyme-

noptera, Vespidae) in a Mediterranean climate (southern Australia). Australian Journal of Entomology

47: 265–274.

32. Masciocchi M, Corley J. (2013) Distribution, dispersal and spread of the invasive social wasp (Vespula

germanica) in Argentina. Austral Ecology 38: 162–168.

33. Haupt K. (2015) Assessment of the invasive German wasp, Vespula germanica, in South Africa. M.Sc.

Thesis, Stellenbosch University. Available from: http://scholar.sun.ac.za/handle/10019.1/97092.

34. Veldtman R, Addison P, Tribe GD. (2012). Current status and potential future impact of invasive vespid

wasps (Vespula germanica and Polistes dominulus) in South Africa. IOBC/wprs Bulletin Vol. 75, Work-

ing Group ‘Landscape Management for Functional Biodiversity’. Proceedings of the meeting at Lleida

(Spain), 7–10 May 2012. (editors) J. Holland, B. Gerowitt, O., Alomar, F. Bianchi, L. Eggenschwiler, M.

van Helden, C. Moonen, H-M. Poehling & W. Rossing, ISBN 978-92-9067-252-4 [vi + 245 pp.].

35. Sutherst RW, Maywald GF. (1985) A computerised system for matching climates in ecology. Agricul-

ture, Ecosystems and Environment 13: 281–299.

Including irrigation in niche modelling of Vespula germanica

PLOS ONE | https://doi.org/10.1371/journal.pone.0181397 July 17, 2017 16 / 17

http://www.ncbi.nlm.nih.gov/pubmed/9589629
http://www.ncbi.nlm.nih.gov/pubmed/16686122
http://www.ncbi.nlm.nih.gov/pubmed/11535648
http://scholar.sun.ac.za/handle/10019.1/97092
https://doi.org/10.1371/journal.pone.0181397


36. Kriticos DJ, Maywald GF, Yonow T, Zurcher EJ, Herrmann NI, Sutherst RW. (2015) CLIMEX Version 4:

Exploring the Effects of Climate on Plants, Animals and Diseases. CSIRO, Canberra.

37. Spradbery JP, Maywald GF. (1992) The distribution of the European or German wasp, Vespula germa-

nica (F.) (Hymenotera: Vespidae), in Australia: past, present and future. Australian Journal of Zoology

40: 495–510.

38. Tribe GF, Richardson DM. (1994) The European wasp, Vespula germanica (Fabricius) (Hymenoptera:

Vespidae), in southern Africa and its potential distribution as predicted by ecoclimatic matching. African

Entomology 2: 1–6.

39. Sutherst RW, Maywald GF, Kriticos DJ (2007) CLIMEX Version 3: User’s Guide. Hearne Scientific Soft-

ware Pty Ltd.

40. Horwood MA, Toffolon RB, Brown GR. (1993) Establishment and spread of Vespula germanica (F.)

(Hymenoptera: Vespidae) in New South Wales and the influence of rainfall on its abundance. Journal of

the Australian Entomological Society 32: 241–248.

41. Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I, Bathols J et al. (2012) CliMond: global high-reso-

lution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and

Evolution 3: 53–64.

42. Andrewartha HG, Birch LC. (1954) The Distribution and Abundance of Animals. Chicago, IL, USA, Uni-

versity of Chicago Press.

43. Woodward FI. (1987) Climate and Plant Distribution. Cambridge, UK, Cambridge University Press.

44. Coelho JR, Ross AJ. (1996) Body temperature and thermoregulation in two species of yellowjackets,

Vespula germanica and V. maculifrons. Journal of Comparative Physiology B 166: 68–76.

45. Goller F, Esch H. (1990) Comparative study of chill-coma temperatures and muscle potentials in insect

flight muscles. Journal of Experimental Biology 150: 221–231.

46. Austin AD, Hopkins DC. (2002) Collaborative research program on the control of the European wasp in

South Australia. Report for Adelaide research & Innovation Pty Ltd, reference Z 0120, 41 pp.

47. Siebert S, Doll P, Hoogeveen J, Faures JM, Frenken K, Feick S. (2005) Development and validation of

the global map of irrigation areas. Hydrology and Earth System Sciences 9: 535–547.

48. Madden JL. (1981) Factors influencing the abundance of the European wasp (Paravespula germanica

[F.]) Journal of the Australian Entomological Society 20: 59–65.

49. Fox-Wilson G. (1946) Factors affecting populations of social wasps, Vespula species, in England

(Hymenoptera). Proceedings of the Royal Entomological Society of London (A) 21: 17–27.

50. Pardey PG, Beddow JM, Hurley TM, Kriticos DJ, Park RF, Duveiller E et al. (2013) Right-sizing stem

rust research. Science 340: 147–148. https://doi.org/10.1126/science.122970 PMID: 23580514

51. Kriticos DJ, Brunel S, Ota N, Fried G, Oude Lansink A, Panetta FD et al. (2015) Downscaling pest risk

analyses: Identifying current and future potentially suitable habitats for Parthenium hysterophorus with

particular reference to Europe and North Africa. PLoS ONE 10(9): e0132807. https://doi.org/10.1371/

journal.pone.0132807 PMID: 26325680

52. Yonow T, Kriticos DJ, Ota N, Van den Berg J, Hutchison WD. (2016) The potential global distribution of

Chilo partellus, including consideration of irrigation and cropping patterns. Journal of Pest Science

https://doi.org/10.1007/s10340-016-0801-4 PMID: 28275325

Including irrigation in niche modelling of Vespula germanica

PLOS ONE | https://doi.org/10.1371/journal.pone.0181397 July 17, 2017 17 / 17

https://doi.org/10.1126/science.122970
http://www.ncbi.nlm.nih.gov/pubmed/23580514
https://doi.org/10.1371/journal.pone.0132807
https://doi.org/10.1371/journal.pone.0132807
http://www.ncbi.nlm.nih.gov/pubmed/26325680
https://doi.org/10.1007/s10340-016-0801-4
http://www.ncbi.nlm.nih.gov/pubmed/28275325
https://doi.org/10.1371/journal.pone.0181397

