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Abstract

Segmentation-free direct methods are quite efficient for automated nuclei extraction from high dimensional images. A few
such methods do exist but most of them do not ensure algorithmic robustness to parameter and noise variations. In this
research, we propose a method based on multiscale adaptive filtering for efficient and robust detection of nuclei centroids
from four dimensional (4D) fluorescence images. A temporal feedback mechanism is employed between the enhancement
and the initial detection steps of a typical direct method. We estimate the minimum and maximum nuclei diameters from
the previous frame and feed back them as filter lengths for multiscale enhancement of the current frame. A radial intensity-
gradient function is optimized at positions of initial centroids to estimate all nuclei diameters. This procedure continues for
processing subsequent images in the sequence. Above mechanism thus ensures proper enhancement by automated
estimation of major parameters. This brings robustness and safeguards the system against additive noises and effects from
wrong parameters. Later, the method and its single-scale variant are simplified for further reduction of parameters. The
proposed method is then extended for nuclei volume segmentation. The same optimization technique is applied to final
centroid positions of the enhanced image and the estimated diameters are projected onto the binary candidate regions to
segment nuclei volumes.Our method is finally integrated with a simple sequential tracking approach to establish nuclear
trajectories in the 4D space. Experimental evaluations with five image-sequences (each having 271 3D sequential images)
corresponding to five different mouse embryos show promising performances of our methods in terms of nuclear
detection, segmentation, and tracking. A detail analysis with a sub-sequence of 101 3D images from an embryo reveals that
the proposed method can improve the nuclei detection accuracy by 9 % over the previous methods, which used
inappropriate large valued parameters. Results also confirm that the proposed method and its variants achieve high
detection accuracies (w 98% mean F-measure) irrespective of the large variations of filter parameters and noise levels.
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Introduction

The development of time-lapse imaging technique using

fluorescent proteins (e.g., green fluorescence protein (GFP)) creates

ample opportunities of recording optically sectioned images of

biological samples. These images can be used to uncover

complicated biological processes like embryogenesis, endocytosis

or fusion (during viral infections), and disease (e.g., cancer)

spreading [1–4]. Mouse embryogenesis involves many biological

processes (e.g., cellular division, differentiation, and apoptosis) that

can be unveiled through studying cellular dynamics. However,

understanding cell dynamics requires the accurate extraction and

tracking of cell nuclei over high dimensional space and time [5].

Our objective is therefore to develop computational technique for

automated extraction of nuclear information based on image

analysis. Given appropriate temporal resolution, individual cells

can be followed over time, providing a continuous recording of

proliferation, differentiation, and morphogenesis. However, ex-

ploring above information from 4D time-series is not trivial due to

imaging limitations and the non-uniformity of the responses of

fluorescence probes, especially when nuclei get closer at higher

developmental stages [6].

To solve the problem for accurate nuclei detection, two main

research streams can be found. First one performs nuclei

segmentation followed by centroid extraction. Methods in this

stream integrate simple threshold-based results with other image

processing methods like morphological operations, mode finding,

watershed, and level set to segment nuclei in the presence of noise,

uneven contrast, and juxtaposed nuclei [7–16]. However, most

such methods are either manual or very specialized to particular

organisms and/or imaging techniques. Schnabel et al. [11]

proposed a software implementing a 3D interactive method for

manually identifying cell-nuclei of C. elegans, while Parfitt et al. [12]

followed the same technique to establish lineage allocation in the

early mouse embryo. Although these methods claim improved

results, their manual cell marking procedure is time-consuming

and includes subjective errors. Keller et al. [13] adopted specially

designed digital scanned laser light sheet fluorescence microscopy

(DSLM) to study embryogenesis of zebra fish. Good segmentation

results were achieved due to high signal to noise ratio (SNR) and
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spatial resolution of the DSLM images. However, image signatures

of a mouse embryo are quite different from those of a zebra-fish

because of the differences in the tissue organization. In case of the

mouse embryo, cells grow inside the non-transparent tissue

volume, whereas they (i.e., cells) grow in a thin tissue-layer on

the zebra-fish embryo surface that encloses transparent materials.

Therefore, the methods that are specific to certain organisms (e.g.,

zebra fish or C.elegans) and/or special imaging techniques (e.g.,

DSLM) may not be applicable to the usual confocal images for

mouse embryogenesis.

The second research stream [14–21] applies matched filtering

for the enhancement of object-intensity distribution that facilitates

computing nuclei centers as local maxima. Although the methods

in this stream have the potentials of increased performance against

juxtaposed cells, a little attention is observed so far. Byun et al.

applied inverse Laplacian of Gaussian (LoG) filter to the enhanced

feline retina images. The length of the filter was considered

proportional to the empirically fixed average nuclear diameter

[14]. Bao et al. [15] proposed a similar enhancement procedure

using cube filter, whose length was also considered as the mean

diameter of the available nuclei at each time-point. However, the

fixed-length filter does not provide accurate spatial enhancement.

A. Santella et al. applied difference of Gaussian (DoG) filtering for

enhancing 3D images, but this method does not perform adaptive

smoothing, usually required for better enhancement and detection

[16]. J. Han et al. proposed a multiscale iterative radial voting

technique for nuclear seed estimation [17]. Although this method

is claimed to have robustness against noise, it was tested only with

3D images having relatively high voxel resolution (0.15 | 0.15 |

0.75 mm). Moreover, the method did not discuss about parameter

optimization for varying nuclei sizes. Bashar et al. proposed a

multiscale spatial enhancement method for nuclei detection [18].

Although good results were achieved with manually selected

parameters (i.e., the minimum and maximum filtering lengths), an

inaccurate parameter selection may lead to poor detection

accuracy. Since nuclei sizes vary over space and time, temporal

adaptation is also important. Recently, Bashar el al. [19–21]

proposed spatio-temporal techniques, which estimate the mini-

mum and the maximum filter lengths based on the normalized-

volume-ratio (NVR) of nuclear objects between the current and all

of the previous frames. These approaches improve the detection

accuracy 2 to 3 % over the previous method [18]. However,

computed filter lengths are less accurate, because NVR includes

background pixels during the computation of mean object volume.

Since more automation with lesser manual parameters and the

robustness to the variations of the enhancement and noise

parameters are important biological demands, we propose a

multiscale adaptive method for the robust detection of cell nuclei

from 4D fluorescence images. The contributions of our paper are

as follows:

N An efficient segmentation-free direct nuclei detection method

is proposed. This method employs multiscale spatio-temporal

adaptive enhancement using Gaussian filtering, which can

create more homogeneous object-structures for efficient and

robust nuclei detection with reduced parameters. A feedback

mechanism, based on optimizing a radial gradient function, is

designed to achieve above robustness with improved detection

accuracy. A simplified form of the proposed method is

suggested for more parameter reduction. Single-scale versions

of the above two methods are also analyzed with respect to

nuclear detection.

N A centroid-driven segmentation method is developed for

nuclear volume extraction. This method integrates the

extracted centroid information and the mentioned feedback

mechanism to segment spherical nuclei volumes even when the

cells are juxtaposed. This method can therefore be used for

separating clustered nuclei especially at high developing stages.

N Detail experimental evaluation and comparison are performed

with special focus on the robustness against parameter and

noise variations.

N A simple tracking method using distance optimization is also

discussed. This method associates estimated centroids between

two consecutive 3D frames based on nearest neighbor

principle. Preliminary evaluation in the fixed population case

indicates promising performance of the method.

The rest of the paper is organized as follows. In the ‘‘Proposed

Method’’ section, a detail description of the proposed method is

given including its extended feature on the spatio-temporal

adaptiveness to the robust nuclei detection. The system used for

imaging mouse embryos at early developing stages, the charac-

teristics of imaging data, and the procedure for ground-truth

formation are explained in the ‘‘Imaging System and Data’’

section. The section entitled ‘‘Experimental Evaluation’’ describes

the evaluation and comparative performance of our method using

imaging data including the discussion on the obtained results.

Finally, our work is summarized in the ‘‘Conclusion’’ section.

Proposed Method

The proposed method extracts nuclei centroids from every three

dimensional image corresponding to each discrete time point. An

overview of the proposed method is shown in Fig. 1.

Preprocessing
Fluorescence images suffer from a set of disturbances induced

by confocal microscopy systems: blur effects induced by the point

spread function of optical setup, Poisson noise that arises from

photon counting process, and additive Gaussian shot noise.

Moreover, nuclear signal is heterogeneous due to heterogeneous

structures of chromatin, yielding bright spots within the nuclei

regions. Incorrect parameter settings may induce partial occlusion

of image objects, including unexpected discrete noises. To reduce

noise effects, we first apply a 3D median filter of 5|5|3 pixels to

remove bright spots or other impulsive noise in the data. A cubic

interpolation is then performed in the z-direction to obtain

approximately isotropic voxels. Above two operations generate a

preprocessed image, denoted as Ipre(x,y,z).

Candidate Regions Extraction
Candidate regions of interest approximately encompass nuclei

regions in the image. These regions were segmented by roughly

removing background regions. The use of candidate regions brings

two important benefits. Firstly, it reduces the risk of detecting

strong noise peaks (if any) in the later steps. Secondly, it saves

processing time for large volume biological images. In our

research, we apply Otsu global threshold method [22], which

exploits the bi-modality of the image histogram to obtain

candidate binary masks from the preprocessed image. Finally,

the candidate region image, Ican(x,y,z), is obtained by retaining

the contents of the pre-processed image corresponding to the

binary regions.

Spatio-temporal Adaptive Enhancement
Image enhancement is an important step for the segmentation-

free direct extraction of cell nuclei. In general, this process smooths

micro-structures inside object regions and assists in finding nuclei

Robust Nuclei Detection in 4D Fluorescence Images
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centroids using simpler techniques. Cell nuclei typically vary in

sizes and shapes over space and time, especially during mouse

embryo development in the early stages. A spatio-temporal

adaptive enhancement is therefore effective for our research.

Our previous method employs multiscale enhancement using fixed

filtering parameters over time [18]. An interactive selection of

fixed parameters can produce fairly good results. However, the

wrong selection of parameters may cause detrimental effects on the

final outcome. Data-driven adaptive enhancement is therefore

necessary to minimize the remaining noise components in the

candidate-region image. This step ensures proper smoothing the

object surfaces in the 3D candidate-region image and makes them

suitable for subsequent processing. Three important benefits that

can be achieved from adaptive filtering are: (i) spatio-temporal

adaptive enhancement ensures high detection accuracy; (ii) it

brings robustness to the detection method against variations of

initial filtering parameters; (iii) it also suppress noise and provides

more automation to the system through parameter reduction. If

I t
can(x,y,z) be the 3D candidate region image, and Gt

s(x,y,z) be the

base enhancement filter at scale index s, the enhanced image at

time t can be computed using discrete convolution:

I t
s (x,y,z)~I t

can(x,y,z) � Gt{1
s (x,y,z), ð1Þ

where � represents the convolution operator. The time index in

Gt{1
s indicates that the filter kernel is computed from the previous

frame to obtain the enhanced image of the current frame, i.e.,

I t
s (x,y,z). We choose 3D Gaussian function as the base filter that

can be given by

Gt
s(x,y,z)~e

{f x2

2(st
xs)2

z
y2

2(st
ys)2

z z2

2(st
zs)2
g
, ð2Þ

where st
xs, st

ys, and st
zs are the spread parameters of the Gaussian.

In our research, separable one dimensional discrete Gaussian

filters (e.g., gt
xs, gt

ys, and gt
zs) were used for implementing discrete

convolution in Eq. 1. If the finite length of the filter along the x

direction is given by lt
xs, we can relate it to the spread parameter

by lt
xs~6st

xsz1. With this length, lt
xs, the 1D Gaussian filter is

defined by

gt
xs(i)~ e

{ i2

2(st
xs)2 if 0ƒiƒlt

xs

0 Otherwise:

8<
:

Similar equations can be defined for lt
ys, lt

zs, gt
ys(j), and gt

zs(k),

respectively. These filter lengths (lt
xs,l

t
ys,l

t
zs)) are the required filter

parameters to be estimated from the image. In our research, we

use isotropic filters for which one dimensional finite filter lengths

are given by lt
xs~lt

ys~lt
zs~lt

s. Therefore, the spread parameter for

the isotropic filter can be obtained by st
s~

lt
s{1

6
.

Multiscale Adaptive Filtering. Multiscale filtering is an

appropriate choice, when nuclei have size variations with respect

to time and space. Bashar et al. proposed such an approach, where

the minimum and maximum filter lengths (lt
max,lt

min) required for

spatial adaptation is computed from the current and all of the

previous time-point images [19–21]. Normalized volume ratio of

the candidate object pixels was used to obtain above lengths.

However, the inclusion of background pixels in the candidate

regions especially in the case of touching nuclei limits the

improvement of the detection results by 2% on average. In this

study, we estimate the above lengths based on the extracted nuclei

objects through optimization as detailed in the section Nuclear Size

Optimization. In a single-embryo image, if nobj be the total nuclei

Figure 1. Block diagram of the proposed adaptive method.
doi:10.1371/journal.pone.0101891.g001
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and dt
opt(i) is the optimal diameter (See Eq. 15) for the ith nucleus,

we can obtain the minimum and maximum object sizes by

dt
max~MAXfdt

opt(1),dt
opt(2),::::,dt

opt(nobj)g, ð3Þ

dt
min~MINfdt

opt(1),dt
opt(2),::::,dt

opt(nobj)g: ð4Þ

Once the maximum and minimum object sizes were known, we

can compute lt
max and lt

min by

lt
max~

qwdt{1
max r if tw1

qwl0
maxr otherwise,

(
ð5Þ

lt
min~

qwdt{1
min r if tw1

qwl0
minr otherwise,

(
ð6Þ

where w is the weighting factor, varying from 0 to 1. It is chosen

1.0 for the selected Gaussian filter. Note that l0
max, l0

min are the

maximum and the minimum filter lengths, used for processing the

first frame in the sequence. At any time-point t, if lt
max and lt

min are

known, we can obtain multiple filter lengths for the spatial

optimization using

lt
s~lt

minz(s{1)d0, ð7Þ

where s~1,2,::::,smax; smax~q
ltmax{lt

min

d0
rz1, and d0 is the fixed

incremental length. With the above lengths, multiple filters are

applied at every pixel of the 3D image using Eq. 1 and the

resulting responses are maximized by

I t
enh(x,y,z)~ arg max

s
(I t

s (x,y,z)): ð8Þ

Spatio-temporal adaptation described above provides stable

nuclei detection, which is insensitive to the initial filter parameters.

Single-scale Adaptive Filtering. If nuclei in a single time-

point 3D image have very small variations in sizes, single-scale

temporal adaptation is an alternate option. In the single case, the

enhanced image in Eq. 1 can be given by

I t
enh(x,y,z)~It

can(x,y,z) � Gt{1(x,y,z): ð9Þ

Once again, we select Gaussian function as our base filter,

whose spread parameter (st) in the separable and isotropic case,

can be related to the finite length parameter (lt) by lt~6stz1.

This length should corresponds to the mean size of the nuclei for

the adaptive enhancement. In our study, an initial value (l0) of this

parameter has been chosen empirically. Once we have l0 at hand,

we can run the proposed size optimization step (Please refer to the

section Temporal Feedback Mechanism) to estimate the average object

diameter (dt
avg) from all nuclei of the image at time t. If a single-

embryo image at time t have nobj nuclei and dt
opt(i) is the optimal

Figure 2. Computation of Radial Gradient Magnitude (RGM). Schematic diagrams for (A) computing Isph and Iann, and (B) showing the spatial
variations of RGM values.
doi:10.1371/journal.pone.0101891.g002

Robust Nuclei Detection in 4D Fluorescence Images

PLOS ONE | www.plosone.org 4 July 2014 | Volume 9 | Issue 7 | e101891



diameter (See Eq. 15) for the ith nucleus, we can compute

lt~
qwdt{1

avg r if tw1

qwl0r otherwise,

(
ð10Þ

where dt
avg~

Pnobj
i~1

dt
opt(i)

nobj
and w is the weight factor as described

before.

Centroid Extraction
Three stages of processing are performed for centroid extrac-

tion. Stage-1 performs the computation of local maxima and

generates maxima clusters using threshold on the characteristic

ratio, which represents the percentage of lower intensity voxels

from the central voxel in a local neighborhood. Connected

component labeling followed by averaging is performed to obtain

initial centroids. Stage-2 refines Stage-1 results by analyzing the

convexity of the intensity profiles in three orthogonal directions.

Previous method used a fixed length during the selection of

orthogonal intensity profiles [18]. Profile lengths in the previous

method were assumed to be less than 50 % of the diameter of the

largest nucleus in the image sequence. However, the proposed

method automatically estimates the mean object diameter from

the 3D image and uses it as the profile length for the next image in

the sequence. Stage-3 merges fragmented nuclei (if any) in the

Stage-2 results. Note that above three stages involve three

threshold parameters, i.e., the ratio, shape, and distance param-

eters (thR, thshape, thdist), respectively. Please refer to our previous

work [18] for the detail of these stages. However, we assign thR to

100% in this research, because our proposed method reduces

inhomogeneity in the object intensity distribution and facilitates

selecting threshold value (Please refer to the next section for detail

analysis).

Temporal Feedback Mechanism
This step estimates filter parameters from the current image and

sends them to process the next image in the sequence. Such

procedure performs the proper enhancement based on the sizes of

available objects in the image. In this study, nuclei are assumed to

have spherical shape and their diameters are considered as

parameters for multiscale enhancement of images. Nuclear

diameters are estimated using the enhanced image. We introduce

a new objective function Frgm, called radial gradient magni-

tude (RGM), to estimate nuclei diameters at each position of

Stage-1 centroids. This function is defined as the absolute

difference between two one dimensional functions, computed

from the 3D enhanced candidate region image. The first signal

represents the spatial variations of mean intensities in the

concentric spherical volumes that are gradually increasing in

radius from each center. The second is the mean intensities of

spherical annular regions between two consecutive radius-pairs

starting from the smallest sphere of 1 pixel radius. If c0 is the

centroid position of a Stage-1 nucleus, RGM and the related

functions can be defined by

Frgm(ri; c0)~DIsph(ri; c0){Iann(ri,riz1; c0)D, ð11Þ

where

Isph(ri; c0)~

P
0ƒrƒri

Ienh(r;c0)

Nri
ð12Þ

Iann(ri,riz1; c0)~

P
riƒrƒriz1

Ienh(r; c0)

Nri ,riz1

: ð13Þ

In the above equations, Nri
and Nri ,riz1

are the total voxels in

the spherical and annular regions bounded by ri and riz1 as

shown in Fig. 2(A) and

c0~(x0,y0,z0)

i~1,2,::::,n

Figure 3. Block diagram of Variant-2 and Variant-3 of proposed method.
doi:10.1371/journal.pone.0101891.g003
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r~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x{x0)2z(y{y0)2z(z{z0)2

q
:

Since Isph corresponds to the mean intensities within the

concentric spheres, its values fall slowly than those in the annular

regions, Iann as shown in Fig. 2(B). As a result, RGM increases

gradually from the center to the object boundary, where it

becomes maximum and then starts falling due to approximately

constant values of Iann until reaching to the zero value (See

Fig. 3(B)). The inner radius at the maximum RGM value can be

regarded as the optimal radius of the nucleus. This is achieved by

maximizing the objective function as in Eq. 14.

ropt(c0)~ arg max
ri

Frgm(ri; c0): ð14Þ

Note that the radius rn denotes the approximate object

boundary surface, while the radius rnz1 indicates the surface in

the background region. For notational convenience, the optimal

radius for the jth nucleus at time t is denoted by r
j
opt(t; cj). Finally,

the object size, i.e., the optimal diameter of the extracted nucleus is

obtained by

d
j
opt(t)~2|r

j
opt(t; cj): ð15Þ

Stage-1 (Please refer to the section Centroid Extraction may

contain false centroids due to remaining noises after adaptive

Figure 4. Block diagram of the method for Nuclear Volume Segmentation.
doi:10.1371/journal.pone.0101891.g004

Figure 5. Contrast-enhanced 2D slices from our image dataset. Sample images with time-point and z-slice pairs at (A) (t25, 18), (B) (t34, 35),
(C) (t45, 22), (D) (t86, 22), (E) (t91, 24), and (F) (t98, 29). Each image has dimension: 103 | 103 pixels and has voxel resolution: dx~dy~0:8 and
dz~2:0 mm.
doi:10.1371/journal.pone.0101891.g005
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Figure 6. Estimated nuclei by the proposed method. Number of estimated nuclei for (A) embryo-1, (B) embryo-2, (C) embryo-3, and (D)
embryo-4, respectively. Each embryo sequence consists of 271 images, i.e., s1 to s271, which contain nuclei from 2 to approximately 32 cell-stages.
doi:10.1371/journal.pone.0101891.g006
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enhancement. However, the estimated diameters for such objects

may be very small. We therefore eliminate spurious objects before

computing final parameters. We empirically choose a minimum

size threshold (thsize & 10 pixels), which is less than the half of the

largest nucleus diameter in the recorded images. The maximum,

minimum, and the average diameters of the Stage-1 nuclei are

used as feedback parameters to adaptively enhance the next

sequential image.

Other Variants of Proposed Method
Variant-1 is the single-scale version of the proposed method. In

this variation, the enhancement of the candidate region image is

done using single scale adaptive filtering. Variant-2 and Variant-3

are the simplified versions of the proposed method and its single-

scale variant. These methods are aimed for the parameter

reduction. Block diagram of the simplified method is shown in

Fig. 3. The preprocessed image undergoes multiscale (or single-

scale) adaptive enhancement. Centroid extraction here consists of

two stages. Stage-1 extracts the initial nuclei centroids as before,

while the last stage (Stage-2) employs the feedback mechanism (as

explained above)for detecting final centroids. This stage estimates

nuclear diameters and centroids by size optimization. A size

threshold (thsize) is applied as before to eliminate spurious objects.

Note that the simplified method does not use Stage-2 and Stage-3

of the proposed method. As a result, the relevant parameters, i.e.,

thshape and thdist are also reduced.

Centroid-driven Nuclear Volume Segmentation
Proposed nuclei detection method can be integrated with a

simple threshold technique for nuclear volume segmentation. It

has an advantage of recovering approximate nuclear volumes from

clustered nuclei at high developmental stage. Figure 4 shows the

flow diagram for nuclear volume segmentation. The same

optimization method (as in the section Temporal Feedback Mechanism)

is used to estimate nuclear diameter at each final centroid position

in the enhanced 3D image. This diameter along with the

respective centroid is then projected onto the result (binary image)

of a typical segmentation method. As results, the final segmenta-

tion of the nuclear volumes is achieved. This volume information

can be associated with many applications including mitosis

detection, object classification, and the object tracking.

Computational Efficacy, Hardware, and Software
The proposed method is implemented using Microsoft Visual

Studio 2008 on the windows platform. Most of the source codes

are written using visual C++ except few cases, where we use some

functions from freely available image processing library [26].

Volume rendered images are prepared using non-free software

‘‘PLUTO’’ [25]. Codes for plotting tracking diagrams are written

using commercially available MATLAB software. Source code is

not open at the moment. All tests are conducted using a windows

PC having an Intel(R) Core(TM) i7 CPU 3.20GHz with 8GB

RAM. Proposed robust detection program takes about 0.05

minutes to process a single frame, i.e., a 3D single embryo image

of size 103 | 103 | 102.

Imaging System and Data

Imaging System
Mouse embryo images were captured by Cell Voyager

(CV1000) microscope system integrated with Nipkow disc confocal

system, (Yokogawa Electric Corporation, Japan) with a 206
UPlan Apo NA = 0.8. Two main features of our microscopy

system are (i) the ability of eliminating out-of-focus blur by

confocal image capture and (ii) the low photo-toxicity due to lower

incident light power per unit volume of the specimen. The

reduction of the light power is achieved by segregating laser beam

using multiple pinholes of the Nipkow disk. An mRNA injection

based technique is applied to image mouse embryo cultured by in-

vitro fertilization (IVF) [23,24]. This technique consists of mRNA

synthesis via in vitro transcription of plasmid encoding a fluorescent

fusion protein following microinjection into the oocyte cytoplasm

and subsequent observation using fluorescence microscopy. The

fertilized oocytes were injected at the anaphase/telophase stage

with 5 ng/mL of mRNA encoding histone H2B-mRFP1, so that

cell nuclei and chromosomes were stained. An excitation light of

561 nm wavelength was applied at 15 minutes interval for about

70 hours, which approximately covers from 1-cell to the early

blastocyst stage of mouse development.

Ethics Statement. Note that all of the animal experiments

were performed with the approval of the Animal Care and Use

Committee of Osaka University, Osaka, Japan.

Imaging Data
The original video consists of 271 time-points with 13821

fluorescence 2D images, each of size 512 | 512 pixels. Each of

the original pixels has resolution of 0.8 | 0.8 mm2 in the x-, and y-

directions. Temporal resolution was 15 minutes, while the number

of z-slices was 51 with 2 mm interval. Original dataset contains an

image-sequence of twelve early developing mouse embryos. In our

research, we create five image-sequences for five single embryos

containing approximately 2 to 32 cells. Each single time-point

image in these sequences has a resolution of 103 | 103 | 51

pixels. Each of the five derived sequences also contains 271 time-

points, which can be denoted by s1 to s271. Two sub-sequences of

101 and 91 3D images (s170 to s271; s170 to s260) from the fifth

embryo were used for detail study. For convenience, these two sets,

each enclosing roughly 8 to 32 nuclei, were denoted by t1-t101

and t1-t91. Figure 5 shows a set of 2D contrast enhanced images

from our datasets.

Ground Truth Data
Nuclei centroid positions that can be measured from 3D images

were considered as ground truth (GT) data. First of all, we

generate preprocessed images by Gaussian smoothing and median

filtering with appropriate interpolation. These images are then

investigated using a visualization software PLUTO [25]. From

each 3D image, we first generate a binary nuclei image using

manual threshold in the software. 2D slices in the 3D binary

images are then examined along the z-direction using mouse

operation in PLUTO. For each nucleus, the slice containing the

largest object cross-section gives the z-position, while the object-

center in that slice gives the x- and y-coordinates for the nucleus.

PLUTO GUI displays the image coordinates of each nucleus,

when mouse is clicked at its center. The location of the nucleus

center is fixed visually. The sliding button in the PLUTO screen

indicates the z-slice number.

Experimental Evaluation

In this section, we perform experiments on five 3D image

sequences, obtained from five different mouse embryos. One

hundred and one (101) 3D sequential images from an embryo

have been used for detail quantitative analysis. Three well-known

metrics are used for quantifying the results of nuclei detection [28].

Robust Nuclei Detection in 4D Fluorescence Images
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Sensitivity, S~
TP

TPzFN
, ð16Þ

Precision, P~
TP

TPzFP
, ð17Þ

F-measure, F~2:
P:S

PzS
, ð18Þ

where TP (i.e.,true positive), FP (i.e., false positive), and FN (false

negative) represent the number of correctly detected, falsely

detected, and the undetected nuclei, respectively.

Computation of Evaluation Metrics
We compute above metrics at each time-point using the output

binary-centroid image and the corresponding GT centroid

positions for that image [18]. A local 3D spherical neighborhood

(i.e., window) of 10 pixel radius (regarded as evaluation threshold,

thev~10) is centered at each GT position in the centroid image. In

the expected case, this window will include at least one centroid as

a correct detection. If it encloses more than one centroids, the one

with the lowest distance is considered as the correct detection. In

the worst case, it may include nothing. We can thus obtain a score

of true positive (TP) from each 3D test image. Once TP is counted,

false positive (FP) and false negative (FN) are computed using

FP~ntot{TP and FN~ngt{TP, where ntot and ngt are the

number of estimated and ground-truth centroids for the same test

image.

Results and Performance Analysis
Proposed method is evaluated by using datasets, described in

the Imaging Data section. Following are the parameters [18] that we

used for experimental evaluation of the proposed method and its

variants: thR~1:0, thshape~0:85, thdist~10 pixels, thsize~10, and

thev~10 pixels. Note that the simplified variants of the proposed

method (i.e., Variant-2 and Variant-3) do not require thshape and

thdist parameters. There are some parameters (l0
min and l0

max for

multiscale, l0 for single scale) that require to be selected only for

the first frame during sequential processing. These were selected

empirically along with miltiscale parameter dl0, which remains

fixed for processing whole image-sequence.

Qualitative Analysis. Figure 6 shows the results of the

estimated nuclei for four developing mouse embryos. Image

sequences in these embryos cover mouse development until early

blastocyst stage. Each embryo shows a consistent development

from 1-cell stage to approximately 32 cell stage. Note that the

estimated nuclei at or before the first discontinuity (at around

frame s32) in each graph represents pronuclei of the two sex cells

(i.e., male spermatozoa and female oocyte) at the zygotic 1-cell

stage. Therefore, one cell stage of fertilized cell is not distinguish-

able from confocal images. The beginning of two-cell stage starts

at around s41 and then undergo systematic cell divisions through

multiple developmental stages (e.g., 2–4, 4–8, 8–16, or 16–32

cells). Above figure shows almost constant populations at different

developmental stages, providing an indication of healthy embryos.

It also indicates the efficiency of the proposed detection method.

Note that the transition periods gradually increase towards larger

populations, implying the asymmetric cell divisions of the early

developing embryos. Another observation is the more frequent ups

and downs in the nuclear count graphs at higher developing stages

(e.g., 32-cells). This behavior indicates the increasing difficulties in

Figure 7. Estimated nuclei centroids at 16–32 cell-stage. Volume rendered views of nuclei for 3D images at (A) t71, (B) t81, and (C) t91,
obtained by manual threshold and the corresponding (D-F) labeled centroid images, obtained by the proposed adaptive method. Initial filter lengths
(l0

min, l0
max) were set to their optimal values, i.e., (11, 31) pixels for multiscale Gaussian filtering.

doi:10.1371/journal.pone.0101891.g007
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detecting clustered cells at larger populations in an automated

way.

Figure 7 shows volume rendered snapshots of the extracted

nuclear centroids. The top row of Fig. 7 shows nuclei volumes,

obtained by manual threshold, while the spherical color objects in

the bottom row indicate the centroid detection ability of the

proposed method, even when the nuclei are highly clustered.

Figure 8 shows volume rendered views of the segmented nuclear

volumes by manual (column A), typical (column B, [22]) and the

proposed (column D) methods, respectively. Note that the

proposed centroid-driven segmentation method successfully sepa-

rates the clustered nuclei, even though there are lots of overlaps

among closely located nuclei at high time-points (e.g., t76, t86, and

t96).

Results of nuclei detection have been applied for tracking
nuclei using a simple frame by frame association method based

on nearest neighbor searching technique [29]. Figure 9 shows the

preliminary results at 8-cell (Fig.9 A–C) and 16-cell (Fig. 9 D–F)

stages, respectively. Twenty two (i.e., t1–t22) and twenty six (i.e.,

t36–t61) frames in the 8-cell and 16-cell stages were used in this

study. Cell movement patterns were shown in the 2D projection

space (Fig. 9 (A, D)) as well as in the 3D space (Fig. 9 (B–C, E–F)).

A good agreement between the estimated (blue lines) and the

manually generated tracks (red lines) indicates the effectiveness of

our tracking method. The color gradients of the tracklets in Fig. 9

(C, F) express the moving directions of nuclei within the embryo,

where blue and red lines indicate the start and end points of their

journey. However, small translational error between the estimated

and the GT tracks do exists, which implies the subjective error of

the ground truth data.

Quantitative Analysis. Quantitative analysis is conducted

using nuclei counts and F-measure metrics. We compute these

metrics from 101 3D sequential images of a developing embryo

that contains 8 to 32 cells. Figure 10 shows the results of the

estimated nuclei over time. Blue lines in this figure show the

estimated nuclei by the proposed method and its variations, while

red lines show the ground truth nuclei. Correlations between blue

and red curves roughly indicate the degree of correct detection by

the proposed method and its variations. The proposed adaptive

method showed clear superiority as the estimated lines closely

follow the GT lines without much perturbations. The single scale

version of the proposed method, i.e., Variant-1 also follows the GT

curve except at the large population stage (e.g., 32 cells), where

frequent ups and downs were observed. Variant-2 and Variant-3,

Figure 8. Clustered nuclei separation. Volume rendered views of the extracted nuclei centroids and volumes for 3D images, obtained by (A)
manual threshold, (B) automated threshold, (C) the proposed centroid detection method, and (D) the proposed centroid-driven segmentation
method. Sample images contain approximately 32 nuclei, which correspond to the developmental stages at high time-points i.e., at t76, t86, and t96
out of the sub-sequence of 101 images, used in our experiment.
doi:10.1371/journal.pone.0101891.g008
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which are the simplified versions of the proposed method, show

more frequent oscillations in the estimated nuclei numbers that we

observe throughout the nuclei-count curves. Note that there is

spike in the ground truth at frame number 9 as shown in Fig. 10.

This spike indicates ten nuclei at frame-9, while neighboring

frames have constantly eight nuclei. In fact, the correct number

will be eight, since the timing does not confirm any real cell

division event. A close inspection however showed that it was a

mistake happened during visual inspection.

Similar findings are reflected in the F-measure graphs

(Figure 11), computed on the estimated nuclei. Very high values

and less fluctuations of this metric, especially at high time-points,

indicate the efficacy and stability of the proposed method and its

single-scale variant. F-measure time-series for other variants

(Variant-2 and Variant-3) show gradually increasing perturbations

from multiscale to single-scale versions. These results are in

congruence with the nuclear counting graphs in Fig. 10. One

reason behind these observations is that the simplified methods

(Variant-2 and Variant-3) use object-size threshold (thrad ), which

sometimes removes small low-contrast objects with diameters less

than 10 pixels (i.e., thrad~5 pixels). On the other hand, threshold

operation in the proposed method (and its variant) might have a

Figure 9. Nuclei tracking results at 8- and 16-cell stages of an embryo. Nuclear motion tracks in the (A, B, C) 8-cell and (D, E, F) 16-cell stages;
Blue and red lines in the 2D projected space (A, D) and 3D space (B, E) indicate the estimated and ground truth nuclear tracks without explicit moving
directions; Color gradients in the 3D space (C, F) indicate the directions through which cells move inside the embryo. Blue and red colors indicate the
start and end points of the moving cells. Note that twenty two frames (i.e., t1 to t22) at the 8-cell stage and twenty six frames (i.e., t36 to t61) at 16-
cell stage are used for track generation. The selected distance threshold (thtrack) for the correspondence establishment was 25 pixels.
doi:10.1371/journal.pone.0101891.g009
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very small effects on the estimated filter lengths. However, such

small perturbations do not affect the enhancement and subsequent

detection steps in these methods. Both experiments also indicate

that the multiscale enhancement based methods (proposed and

Variant-2 Figs. 10 and 11 (A) and (C)) produce better results (in

terms of nuclear counting and F-measure) than their single scale

counterparts (Variant-1 and Variant-3 Figs. 10 and 11 (B) and

(D)).

The efficiency of the proposed method and its variants can be

computed from the grand average values of the performance

metrics as shown in Fig. 12. Note that the three estimated metrics

(sensitivity, precision, and F-measure) are averaged over temporal

(101 time-points) and parametric (Please refer to the next section)

axes. On average, F-measure scores (green bars) of the methods in

descending order are (i) Proposed (99.31%), (ii) Variant-1 (99.13

%), (iii) Variant-2 (98.74%), and (iv) Variant-3 (98.53 %). These

results showed very competitive performances of the proposed

method and its variants. Therefore, the use of the simplified

methods may be an alternative, when users require handling a

reduced set of threshold parameters. Note that multiscale

enhancement-based methods (Proposed and Variant-2) showed

slightly improved performances over their single scale counterparts

(Variant-1 and Variant-3). This improvement was expected

because nuclei sizes usually have intra- and inter-frame variations

for which multiscale filtering usually works well.

Estimating nuclear volumes is very important for various

applications including tracking [15] and cellular phenotype

analysis [4]. An experiment with 91 sequential 3D images (t1 to

t91) is performed to estimate nuclear volumes applying the

proposed method in Fig. 4. Estimated nuclear diameters and their

variations are shown in Fig. 13. Two important observations are:

(i) our datasets have small but smooth variations of average nuclei

diameters over time (Fig. 13(A)); (ii) nuclei diameters have large

variations during the occurrences of cell division events (i.e., t21–

t35, t62–t79) compared to other times (Fig. 13 (B)). Therefore,

standard deviation of the estimated nuclei sizes can be used to

Figure 10. Nuclei detection results for the proposed method and its variants. Number of extracted nuclei by (A) the proposed, (B) Variant-1,
(c) Variant-2, and (D) Variant-3 over time. Results include 101 sequential images from a developing embryo containing 8 to 32 cells.
doi:10.1371/journal.pone.0101891.g010
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quantify gross transition periods of the cellular development in the

multicellular embryos.

Robustness Analysis and Performance Comparison
Robustness analysis is performed in two perspectives: (i)

robustness to parameter variations and (ii) robustness to noise.

In the first case, robustness is analyzed against the variations of

filtering parameters for multiscale enhancement. In the second

case, the robustness is justified against different noise levels.

Comparative analysis is performed in terms of robustness

consideration using sensitivity, precision, and F-measure metrics.

Proposed method and its variants are compared with two

methods: (i) multiscale-based non-adaptive nuclei detection

method [18] and (ii) its single scale version. These methods are

denoted as Previous (MSF) or Previous-1 and Previous (SSF) or

Previous-2, where MSF and SSF stand for multiscale and single-

scale filtering. Since Previous-1 method showed better perfor-

mance compared to the method in [15], we will not consider it

here for further comparison. Multiscale iterative radial voting is

another recent method [17]. Due to lack of having publicly

available source code, the detail one-to-one comparison with our

proposed method is omitted here. However, this method showed

4% detection error with 144 mammosphere colony images, while

our method shows (& 1 %) error with 101 mouse embryo images.

Besides, this method was tested with high resolution images (0.15

| 0.15 | 0.75 mm3), while our method is applied to relatively low

resolution images (0.8 | 0.8 | 2.0 mm3).

Robustness to Parameter Variations. Expected outcome

of the proposed method should be insensitive to the selection of the

major parameters. Robustness to parameter variations is therefore

an important consideration. Once again, sensitivity, precision, and

F-measure metrics are used to evaluate parameter sensitivity. In

our enhancement-based method, we consider single/multiscale

filtering parameters (i.e., the average or the minimum and

maximum filter lengths) are main parameters that can affect final

detection results. To justify the robustness of the proposed method

(and its variants), a set of parameter values is selected on the basis

of the largest nucleus in our dataset. We obtain this size (& 25

Figure 11. Performance comparison using F-measure. F-measure values, obtained by (A) the proposed, (B) Variant-1, (C) Variant-2, and (D)
Variant-3 over time. Results include 101 3D sequential images from a developing embryo containing 8 to 32 cells.
doi:10.1371/journal.pone.0101891.g011
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pixels) from a 3D image having fewer objects using simple

threshold method. For multiscale based methods (Proposed and

Variant-2), the minimum and the maximum filter lengths (l0
min and

l0
max) were varied from 5 to 50 and 17 to 62 pixels, respectively. A

fixed interval (empirically chosen) of 12 pixels is maintained

between each pair (minimum, maximum) of parameters (e.g., (5,

17)). A set of parameter pairs is thus computed applying linear

sampling on both parameter ranges using 5 pixels interval. Filter

lengths for multiscale filtering (spatial) within each pair is obtained

using a fixed sampling interval, dl0, of 3 pixels (Eq. 7). For single-

scale based methods (Variant-1 and Variant-3), initial filter length

(l0) is varied from 5 to 50 pixels with an increment of 5 pixels.

Analysis results were shown in Fig. 14, where blue, red, green,

and purple curves show variations of sensitivity, precision, and F-

measure metrics for the proposed method and its variants. Clearly,

all three metrics for our adaptive methods preserve high accuracy

(w 98 %) despite having a large variations of filter parameters.

However, sensitivity (Fig. 14(A)) and F-measure (Fig. 14(C)) curves

of the previous methods start dropping at (25,37) (multiscale) and

25 (single-scale) and ultimately reach to the 83.71 % and 90.20 %,

when filter parameters reach to the high end of the selected range.

Above observation is re-confirmed by the F-measure plots at the

highest parameter settings (Fig. 14(D)), when previous methods

drop to 90.20% and 90.35%, while the proposed method and its

three variations maintain their high detection rates, i.e., 99.31 %,

99.13 %, 98.77 %, and 98.56 %, respectively. Precisions for all

methods remain in the high states as expected because over-

smoothing by large filter lengths reduces both the true and the

estimated nuclei without increasing false detections (Fig. 14(B)).

Performance degradation due to the wrong selection of filter

parameters can be well explained by Fig. 15. All metrics (i.e.,

nuclei-count, sensitivity, and F-measure) except precision (red and

green lines) start dropping at t31 and never return to the high state

for previous methods (Fig. 15 A, C, D). In contrast, the proposed

method and its variants (blue lines) always maintain high metric

values except slight drifts at higher time-points. Precision remains

in the high state for all methods except some minor variations.

Robustness to External Noise. In order to justify the noise

tolerance of the proposed method, additive white Gaussian noise is

added to a 3D image before applying nuclear detection algorithm.

The considered image is a snapshot of a developing embryo at the

early blastocyst stage containing 32 nuclei. If I(x,y,z) is the image

and e(x,y,z) is the noise signal, generated from the noise spread

snoise, then signal-to-noise ratio (SNR) in dB and the noisy image

(In(x,y,z)) are obtained [30] by

SNR~10| log10

P
x,y,z I x,y,zð Þ2P
x,y,z e x,y,zð Þ2

ð19Þ

In(x,y,z)~I(x,y,z)ze(x,y,z): ð20Þ

To cover a large SNR range, i.e., 104.74–4.74 dB, we compute

30 noise spread values (snoise) linearly using snoise~sminzsinc,

where smin~0:01 for the whole set of values, while sinc~5:0 for

the first 21 and 100.0 for the last 9 values. Our proposed method is

then applied to the noisy image (In(x,y,z)) to recover nuclei

objects. A sample result is shown in Fig. 16, where each column

represents a noise (SNR) level, noisy image, its histogram,

corresponding enhanced image, and its histogram, respectively.

First row shows that the image is gradually degraded with

increasing noise variances, i.e., the decreasing SNR levels. Nuclear

Figure 12. Performance comparison of the proposed method and its variants. Grand average scores of (Blue) sensitivity, (Red) precision,
and (Green) F-measure, obtained by the proposed methods and its variants. Note that three metrics are averaged over temporal and parametric axes,
where the temporal axis includes 101 sequential images, while the parametric axis includes ten different sets of filtering parameters.
doi:10.1371/journal.pone.0101891.g012
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structures get quite damaged at the highest noise level, i.e., at

SNR~4:74 dB. Histograms in the second row indicate that the

widths of the intensity distributions are expanding slowly with

decreasing bin frequencies at increasing noise levels. This is what

we expected since Gaussian noise randomly adds discrete black

and white dots, which generates new intensities by breaking

original intensity structures. However, our robust method recovers

all objects by the adaptive multiscale filtering (Please refer to the

third row of Fig. 16). Fourth row shows the histograms of the

enhanced images that are almost same in structures, indicating the

robustness of our method irrespective of the noise levels in the

input images. Figure 17 shows the full experimental results, which

include the graphs for SNR levels, ground truth nuclei numbers

(light blue), and the estimated nuclei against the noise spread

values. This figure shows that the selection of wrong parameters to

large values (e.g., l0
min~50 and l0

min~62) degrades the detection

performances of the previous methods when cell population

increases to 32 (green and purple lines). Note that the detection

accuracy falls below 75%, i.e., less than 24 nuclei are detected out

of 32 nuclei, which further decreases due to increasing noise

spreads (Fig. 17). In contrast, the proposed adaptive method

quickly re-estimate the required parameters to (11,31) at 32 cell

stage even though the initial parameters for the first frame were

large, i.e., (50, 62); It achieves high detection accuracy & 100 %,

which remains almost steady irrespective of the noise levels in the

input image (red line). This is the beauty of the proposed method

because its multiscale spatio-temporal adaptive filtering recovers

almost all nuclei through optimal enhancement.

Comparative analysis is summarized in the Table 1. Proposed

method and Variant-1 show steady high F-measure (99.31 %,

99.13 %) for all sets of initial filter lengths (Columns 2 and 3). F-

measure metric values for Variant-2 and Variant-3 are smaller at

the lowest end (98.47 %, 98.32 %) than those at the highest end

(98.77 %, 98.56 %) of the parameter range (i.e., (5,17) * (50, 62)

for MSF and (5 * 50) for SSF) indicating their sensitivity to small

filter lengths. On the other hand, F-measure scores of Previous-1

and Previous-2 fall drastically with increasing filter lengths from

their high values (99.30 %, 99.20 %) to the lowest values (90.20 %,

90.35 %), indicated as boldface numbers in the table. At this

condition, our proposed method can achieve & 9% improvement

over the previous methods. Note that the previous methods can

also achieve good accuracies (99.30%, 99.20%) if the filter lengths

are properly set to 15 for single-scale and (20,32) for multiscale

cases (boldface numbers in the table). The robustness of the

proposed method (and its variants) is due to the fact that the

feedback mechanism computes proper filter lengths, which ensure

Figure 13. Estimated nuclei sizes by the proposed method. Temporal variations of (A) the mean nuclei diameters, and (B) the standard
deviations of nuclei diameters. Results include 91 sequential 3D images from an embryo, containing 8 to 32 cells.
doi:10.1371/journal.pone.0101891.g013
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accurate enhancement of the preprocessed image. As a result,

unwanted local peaks even within nuclear region get suppressed

and homogeneous objects are produced. In the non-adaptive case,

there is no mechanism that can revert unexpected structures

induced due to the improper enhancement.

Discussion

A multiscale adaptive filtering based method is proposed for the

robust detection of nuclei centroids from 4D fluorescence images.

Three variants, namely a simplified version of the proposed

method and single-scale versions of both methods, are also

discussed. The use of feedback mechanism ensures appropriate

Figure 14. Robustness against parameter variations. Time average scores of (A) sensitivity, (B) precision, and (C) F-measure against the
variations of initial filter parameters; and (D) average F-measure scores, obtained by the proposed method and its variants, when initial filter
parameter(s) are randomly selected to high values, e.g., (50, 62) pixels for multiscale and 50 pixels for single-scale filtering.
doi:10.1371/journal.pone.0101891.g014
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enhancement and makes the proposed method robust against

variations of filtering parameters and additive noise. Proposed

method and its variants can produce more than 98% accuracy in

the nuclei detection in terms of sensitivity, precision, and

F-measure. Currently, we apply Gaussian and median filters for

noise suppression. A better noise pre-filtering may further improve

the detection results. Although simplified methods require less

parameters, they (Variant-2 and Variant-3) may miss low contrast

and small nuclei due to inappropriate selection of the minimum

size threshold (i.e., thrad ) at the final stage of detection. In contrast,

the proposed method performs threshold operation at an

intermediate stage (i.e., at Stage-1), which may over-smooth the

next sequential image if there are missing nuclei. However, the

effect may not be severe due to a small number of missing nuclei,

which can cause only a minor increase in the estimated parameters

(e.g., minimum-, maximum- or average- nuclear diameter).

Proposed method requires the minimum and maximum lengths

for the first frame only, while the rest of the frames in the time-

series are automatically processed using feedback mechanism. The

selection of these lengths may be based on the empirical

knowledge about nucleus size. Since robustness analysis confirms

the steady detection performance over a large range of parameter

values (e.g., 10 times of the lowest parameter values as in Fig. 14),

we can select the initial parameters by intuition. More precisely,

we can estimate them by implementing a typical segmentation

(e.g., manual/automated threshold) method to an image having

fewer objects [22]. Free software (e.g., ImageJ) can also be used for

this purpose [27]. Approximate size of a nucleus can then be used

for selecting above parameters. Note that we feedback estimated

minimum and maximum nuclei diameters as filter lengths for

multiscale Gaussian filtering in the proposed method. Experimen-

tal analysis (not shown) also reveals that if we use cube filters

Figure 15. Robustness against high-valued parameters. (A) The number of estimated nuclei and the scores of (B) precision, and (C) sensitivity,
and (D) F-measure over time, when arbitrarily large parameter values (e.g., (50, 62) pixels for multiscale, and 50 pixels for single-scale) are selected.
doi:10.1371/journal.pone.0101891.g015
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Figure 16. Robustness analysis against additive white Gaussian noise. Noisy image, its histogram, the enhanced image, and its histograms,
when SNR levels are (A) 104.74 dB, (B) 10.76 dB, and (C) 4.74 dB, respectively. Proposed method recovers nuclei structures using the optimized initial
parameters, i.e., l0

min~11, l0
max~31, and d0~3 (pixel unit). A 3D image having 32 nuclei is considered for analysis.

doi:10.1371/journal.pone.0101891.g016
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instead of Gaussian, the feedback parameters have to be half of the

estimated lengths for having the best detection accuracy.

Another observation is that multiscale enhancement-based

method always performs better than its single-scale counterpart

(Figs. 10 and 11). The variation of nuclei sizes (Fig. 12) during

Figure 17. Robustness analysis against additive white Gaussian noise. (blue) SNR levels, (light-blue) ground truth, and the number of
estimated nuclei for (red) the proposed, (green) previous-1, (purple) previous-2 against increasing noise spreads, when large initial parameters
(l0

min~50, l0
max~62, and d0~3) are selected. Note that the proposed method re-estimates a new set of parameters: l0

min~11, l0
max~31, and d0~3

using feedback mechanism, while previous methods fail to do. A 3D image having 32 nuclei is considered for analysis.
doi:10.1371/journal.pone.0101891.g017

Table 1. Summary of comparative performances based on F-measure metric.

Filter Lengths Average (over time) F-measure (%)

single-scale
(multiscale) Proposed Variant-1 Variant-2 Variant-3 Previous-1 Previous-2

5(5,17) 99.31 99.13 98.47 98.32 98.59 98.70

10(10,22) 99.31 99.13 98.77 98.50 99.06 98.92

15(15,27) 99.31 99.13 98.77 98.56 99.26 99.20

20(20,32) 99.31 99.13 98.77 98.56 99.30 99.12

25(25,37) 99.31 99.13 98.77 98.56 98.99 98.66

30(30,42) 99.31 99.13 98.77 98.56 97.48 97.03

35(35,47) 99.31 99.13 98.77 98.56 96.12 95.15

40(40,52) 99.31 99.13 98.77 98.56 93.39 92.93

45(45,57) 99.31 99.13 98.77 98.56 92.10 91.96

50(50,62) 99.31 99.13 98.77 98.56 90.20 90.35

Grand average 99.31 99.13 98.74 98.53 96.45 96.20

(over time and
parameter space)

Initial lengths for the enhancement filtering (l0 , l0
max , l0

min) are varied in the range: (l0~5*50) for single-scale, and (l0
min~5*50; l0

max~17*62) for multiscale filtering.
Intermediate values for each parameter are obtained by linear sampling at an interval of 5, i.e., at dl~5. All parameters are in pixel unit.
doi:10.1371/journal.pone.0101891.t001
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embryo development also suggests the use of multiscale filtering.

However, the proposed multiscale based method showed 1% F-

measure improvement over its single-scale version using the

current dataset (Please refer to the last row of Table 1). The detail

analysis as in Fig. 10 indicates that our method performs the most

stable (i.e., less fluctuations) and the highest detection compared to

all other variants. This observation also postulate that the

proposed method may produce high detection accuracy in the

densely populated scenario, e.g., neural or cancerous cells with

large size variations.

Comparative study showed that the proposed method outper-

forms our previous method [18] and its single-scale variant. It can

achieve approximately 9 % improvement compared to the

previous methods, when filter parameter(s) are poorly selected to

large values (i.e., 50 for single-scale, and (50, 62) for multiscale

filtering)(Table 1).

Another advantage of our method is that we can segment

nuclear volumes from clustered nuclei objects using the same

feedback mechanism with a typical segmentation method (e.g.,

Local/Global threshold) (Fig. 8). This helps us analyzing nuclei

dynamics through tracking nuclei over time. Nuclear volumes can

also contribute to other applications like mitosis detection, cell

cycle analysis, and phenotype clustering.

The decline of the nuclei detection accuracy at or after 32 cell

stage happens due to decrease in RNA molecules over develop-

ment as well as imaging limitations. We injected mRNA of H2B

histone at one cell stage before the start of imaging procedure.

Since RNA level per nucleus gradually decays with mitosis over

time, the contrast of the image also decreases. Moreover, the

received fluorescent signal along the z-direction decreases at all

time-points due to scattering of the signal from deeper levels of the

embryo. This causes non-uniform contrast along z-direction,

which might be more pronounced when nuclear population

increases at high time-points. In our analysis, we used imaging

data up to the early blastocyst stage of mouse embryo develop-

ment. An improvement in the detection accuracy at the late

blastocyst stage may be possible using transgenic mice, which

maintains approximately uniform intensity of fluorescent signal

over time.

In this work, we did not perform any deconvolution operation

on 3D/4D imaging data prior to image analysis. Instead, we

performed simple noise filtering on our datasets using 3D Gaussian

and median filtering. For early stage of development, deconvolu-

tion is not necessary because it may enhance micro-structures

within nuclei that we suppress by Gaussian filtering. Applying

multiscale filtering, rather than deconvolution, seems reasonable

as the multiscale enhancement step of the proposed algorithm also

takes care of scale of the typical objects and the noise levels in the

imaging data. When high precision is expected, deconvolution

operation might be considered especially for late developmental

state. However, its outcome is uncertain without precise informa-

tion about point spread function and noise characteristics of the

confocal microscopy images. Iterative blind deconvolution is also

expensive in case of processing 4D images and may cause artifacts.

For any absolute demand, an efficient and accurate deconvolution

technique need to be developed for processing high dimensional

images.

Our method for automated extraction of nuclear information

from 3D images can be a useful tool for understanding cell therapy

processes. In this paper, we achieved about 99% accuracy of

detection compared with our previous results with 90% accuracy.

In tracking of embryogenesis, we have to detect many nuclei in 4D

images. For example, our data consists of about 270 time frames. If

each frame contains 10 embryos on average, we have to detect

2160 nuclei. With 99% accuracy, we will have 21 erroneous nuclei

that should be corrected manually or by other methods, whereas

we have 210 erroneous ones with only 90% accuracy of our

previous method. 21 is reasonable enough for manual correction

but 210 is too much. In this respect, our method is relevant for the

application of mouse embryogenesis tracking. Moreover, our

proposed segmentation method can be extended to extract intra-

embryo regions at early blastocyst stage; for example, the volume

ratio of inner-cell-mass and blastocoel regions is a useful parameter

for embryo quality assessment in the In-Vitro-Fertilization (IVF)

treatment. By employing new datasets specialized for these

applications, we believe that our method will play pivotal roles.

Conclusion

A robust method and its three variations are proposed for

automated extraction of nuclei centroids from 3D fluorescence

image sequences. The robustness in the nuclei detection is

achieved by adaptively estimating filter parameters, which ensure

proper enhancement of the preprocessed image for efficient nuclei

detection. An optimization technique, employing absolute radial

gradient as an objective function, is proposed to estimate these

parameters. Finally, a centroid-driven segmentation method,

employing the same optimization technique, is proposed to

segment nuclear volumes. Experimental evaluation was performed

on five image-sequences from five developing mouse embryos.

Qualitative analysis showed promising results for the nuclei

detection, volume estimation, and tracking. A detail quantitative

analysis with 101 3D sequential single-embryo images showed very

high detection performance (w98%) of the proposed method and

its variants in terms of sensitivity, precision, and F-measure.

Robustness analyses also showed very high and steady detection

performances of the proposed methods irrespective of large

variations of filter parameters and SNR levels with additive white

Gaussian noise. Our analysis also showed that the proposed

multiscale based robust methods are superior to their single scale

counterparts. In future, the proposed methods will be extended for

elaborate tracking experiments with more 3D embryo sequences

involving cell division event.

Acknowledgments

The authors wish to thank all laboratory members as well as anonymous

reviewers for their valuable comments and suggestions.

Author Contributions

Analyzed the data: MKB. Contributed reagents/materials/analysis tools:

KY MKB. Wrote the paper: MKB TJK. Conceived and designed the

research: MKB KY TJK. Performed imaging experiments: KY. Designed

and engineered the algorithms: MKB. Designed and developed the

software: MKB. Obtained permission for experiments on mice: KY.

References

1. Kurihara D, Hamamura Y, Higashiyama T (2013) Live-cell analysis of plant
reproduction: Live-cell imaging, optical manipulation, and advanced microscopy

technologies. Develop., Growth, Differ. 55: 462–473.

2. Huang Y, Osorno R, Tsakiridis A, Wilson V (2012) In Vivo Differentiation

Potential of Epiblast Stem Cells Revealed by Chimeric Embryo Formation. Cell

Reports 2: 1571–1578.

3. Godinez WJ, Lampe M, Koch P, Eils R, Mller B, et al. (2012) Identifying Virus-
Cell Fusion in Two-Channel Fluorescence Microscopy Image Sequences Based

on a Layered Probabilistic Approach. IEEE Trans. on Medical Imaging 31 (9):
1786–1808.

4. Khan AM, Humayun A, Raza S-E, Khan M, Rajpoot NM (2012) Novel

Paradigm for Mining Cell Phenotypes in Multi-tag Bioimages Using a Locality

Robust Nuclei Detection in 4D Fluorescence Images

PLOS ONE | www.plosone.org 20 July 2014 | Volume 9 | Issue 7 | e101891



Preserving Nonlinear Embedding. In Proc. ICONIP 2012 LNCS 7666 (Part IV):

575–583.
5. Peng H (2008) Bioimage informatics: A new area of engineering biology.

Bioinformatics 24 (17): 1827–1836.

6. Kurotaki Y, Hatta K, Nabeshima Y, Fujimori T (2007) Blastocyst axis is
specified independently of early cell lineage but aligns with the Zp shape. Science

316: 719–723.
7. Lee GG, Lin H-H, Tsai M-R, Chou S-Y, Lee W-J, et al. (2013) Automatic Cell

Segmentation and Nuclear-to-Cytoplasmic Ratio Analysis for Third Harmonic

Generated Microscopy Medical Images. IEEE Trans. Biomedical Circuits and
Systems 7(2): 158–168.

8. Li G, Liu T, Tarokh A, Nie J, Guo L, et al. (2007) 3d cell nuclei segmentation
based on gradient flow tracking. BMC Cell Biology 8 (40): 1–10.

9. Dzyubachyk O, Cappellen WA, Essers J, Niessen WJ, Meijering E (2010)
Advanced level-set-based cell tracking in time-lapse fluorescence microscopy.

IEEE Trans. Medical Imaging 29(3): 852–867.

10. Wang Q, Niemi J, Tan CM, You L, West M (2010) Image segmentation and
dynamic lineage analysis in single-cell fluorescence microscopy. Cytometry

Part A 77A: 101–110.
11. Schnabel R, Hutter H, Moerman D, Schnabel H (1997) Assessing normal

embryogenesis in Caenorhadditis elegans using a 4d microscope: Variability of

development and regional specification. Developmental Biology 184: 234–265.
12. Parfitt DE, Zernicka-Goetz M (2010) Epigenetic modification affecting

expression of cell polarity and cell fate genes to regulate lineage specification
in the early mouse embryo. Molecular Biology of the Cell 21: 2649–2660.

13. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of
zebrafish early embryonic development by scanned light sheet microscopy.

Science 322: 1065–1069.

14. Byun J, Verardo MR, Sumengen B, Lewis GP, Manjunath BS, Fisher SK (2006)
Automated tool for the detection of cell nuclei in digital microscopic images:

Application to retinal images. Molecular Vision 12: 949–960.
15. Bao Z, Murray JI, Boyle T, Ooi SL, Sandel MJ, et al. (2006) Automated cell

lineage tracing in Caenorhabditis elegans. In Proc. National Academy Science of

USA 103(8): 2707–2712.
16. Santella A, Du Z, Nowotschin S, Hadjantonakis A-K, Bao Z (2010) A hybrid

blob-slice model for accurate and efficient detection of fluorescence labeled
nuclei in 3D. BMC Bioinformatics 11(580): 1–13.

17. Han J, Cheng H, Yang Q, Fontenay G, Groesser T, et al. (2011) Multiscale
iterative voting for differential analysis of stress response for 2D and 3D cell

culture models. Journal of Microscopy 241(3): 315–326.

18. Bashar MK, Komatsu K, Fujimori T, Kobayashi TJ (2012) Automatic

Extraction of Nuclei Centroids of Mouse Embryonic Cells from Fluorescence

Microscopy Images. PLoS ONE 7(5): e35550. doi:10.1371/journal.

pone.0035550

19. Bashar MK, Komatsu K, Fujimori T, Kobayashi TJ (2012) Time-adaptive

filtering for nuclei extraction from fluorescence microscopy images. In Proc. The

34th Annual International Conference of IEEE EMB Society (EMBC2012).

Late Breaking Research Paper, San Diego, USA, August 28 to September 01.

pp.134.

20. Bashar MK, Komatsu K, Fujimori T, Kobayashi TJ (2012) Adaptive Cell Nuclei

Detection from Fluorescence Images By Optimizing Object Sizes. In Proc. IEEE

EMBS Conference on Biomedical Engineering and Science, Langkawi,

Malaysia, December 17–19. pp. 621–626.

21. Bashar MK, Komatsu K, Fujimori T, Kobayashi TJ (2012) Improving the

Detection of Cell Centroids from Fluorescence Images by Adaptive Filtering. In

Proc. IEEE Co-sponsored International Conference on Electrical and Computer

Engineering (ICECE2012), Dhaka, Bangladesh, December 20–22. pp. 256–259.

22. Ostu N (1979) A threshold selection method from gray-level histograms. IEEE

Trans. SMC 9: 62–66.

23. Yamagata K (2010) DNA methylation profiling using live-cell imaging. Methods

52(3): 259–266.

24. Yamagata K, Ueda J (2013) Long-term live-cell imaging of mammalian

preimplantation development and derivation process of pluripotent stem cells

from the embryos. Dev Growth Differ. 55(4): 378–389.

25. PLUTO (Computer aided diagnosis system for multiple organs and systems)

Website. Available: http://pluto.newves.org/trac. Accessed 2014 June, 16.

26. MIST (Media Integration Standard Toolkit) Website. Available: http://mist.

suenaga.m.is.nagoya-u.ac.jp/trac-en/. Accessed 2014 June, 16.

27. ImageJ (Image Processing and Analysis in Java) Website. Available: http://rsb.

info.nih.gov/ij/. Accessed 2014 June, 16.

28. Baeza-Yates R Ribeiro-Neto B (2011) Modern Information Retrieval: The

Concept and Technology behind Search. New York, NY: ACM Press, Addison-

Wesley.

29. Li K, Miller ED, Chen M, Kanade T, Weiss LE, et al. (2008) Cell population

tracking and lineage construction with spatio temporal contex. Medical Image

Analysis 12: 546–566.

30. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical

Recipes in C, The Art of Scientific Computing. Cambridge: Cambridge

University Press.

Robust Nuclei Detection in 4D Fluorescence Images

PLOS ONE | www.plosone.org 21 July 2014 | Volume 9 | Issue 7 | e101891

http://pluto.newves.org/trac
http://mist.suenaga.m.is.nagoya-u.ac.jp/trac-en/
http://mist.suenaga.m.is.nagoya-u.ac.jp/trac-en/
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/

