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Hepatocellular carcinoma (HCC) is highly heterogeneous. Mo-
lecular subtyping for guiding immunotherapy is warranted.
Previous studies have indicated that enhancer RNAs (eRNAs)
are involved in tumor heterogeneity and immune infiltration.
However, the eRNA landscape and its correlation with immune
infiltration inHCC remain unknown. Here we first revealed the
genome-wide eRNA landscape in two HCC cohorts. Then we
divided individuals with HCC into three immune-related clus-
ters (C1, C2, and C3) based on eRNA expression profiles. The
prognosis, biological properties, immune infiltration, clinical
features, genomic features, and drug response were analyzed.
C1 was enriched in immune infiltration and potentially sensi-
tive to immune checkpoint inhibitors (ICIs). C2 displayed fea-
tures of immune depletion, high proliferation activity, malig-
nant clinical features, and the worst prognosis. C2 may
benefit from targeted therapy. C3 presented moderate immune
infiltration, metabolism-related signatures, and the best prog-
nosis. Transarterial chemoembolization (TACE) may be effec-
tive for C3. Finally, we constructed a 51-eRNA classifier for
subtype prediction and validated its efficacy in The Cancer
Genome Atlas (TCGA) cohort and Sun Yat-sen University Can-
cer Center (SYSUCC) cohort. Our results provide a novel
method for immune classification of HCC, shed new light on
tumor heterogeneity, and may aid in HCC immunotherapy.

INTRODUCTION
Liver cancer is the second leading cause of cancer-related death
worldwide.1 Hepatocellular carcinoma (HCC) is the most prevalent
pathological type of liver cancer. Although several recent improve-
ments have been made in comprehensive therapy of HCC, the
5-year survival of individuals with HCC still remains poor.2 HCC is
a highly heterogeneous disease.3 Molecular subtyping has important
implications when devising individualized therapeutic strategies for
individuals with HCC.4

Enhancers are essential regulatory elements of DNA that activate
target gene transcription.5,6 Tens of thousands of enhancers have
been identified in the Encyclopedia of DNA Elements
(ENCODE).7 Although enhancers generally regulate gene expres-
sion in cis, they also exert long-range effects, which are indepen-
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dent of position and orientation when activated by chromosomal
rearrangement or specific transcription factors.8–10 Recently, with
the development of RNA sequencing technology, it has been re-
ported that enhancers also function as noncoding RNA transcrip-
tion units to generate enhancer RNAs (eRNAs), which can be used
to infer the activities of enhancer loci.11 As an important compo-
nent of the transcriptome and epigenome, accumulating evidence
shows that eRNAs are widely involved in human cancer by modu-
lating chromatin structure or interacting with transcriptional reg-
ulators.12–14 Qin et al.15 performed molecular subtyping of lung
adenocarcinoma based on functional eRNAs, which identified
distinct immune signatures among different subtypes and might
be instructive for cancer immunotherapy. However, the genome-
wide eRNA landscape and its correlation with the immune micro-
environment in HCC remain largely undefined.

In this study, we illustrated the genome-wide landscape of eRNAs in
HCC by analyzing total RNA sequencing data from the GEO database.
We established a novel immune-related HCC subtyping strategy based
on the expression profile of eRNAs, and the prognosis, immune infil-
tration, biological properties, clinical features, genomic features and
drug responses of different subtypes were analyzed. Finally, we gener-
ated a 51-eRNA classifier for subtype prediction. The efficacy of the
classifier was validated in HCC cohorts from The Cancer Genome
Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) and Sun Yat-
sen University Cancer Center (SYSUCC).
RESULTS
Landscape of eRNAs in HCC

The main research processes of this study are summarized in
Figure 1. We first explored the genomic distribution of eRNAs
and found that they were relatively uniform across all chromo-
somes except chromosome 13 (Figure 2A). The length of most
The Authors.
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Figure 1. Overview of the study workflow
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eRNAs was around 300 bp in two cohorts (Figure 2B). The average
expression level of global eRNA was significantly upregulated in
HCC compared with that in normal liver (Figure 2C), implying
that eRNAs may be involved in HCC carcinogenesis. Next we
analyzed the average expression level of global eRNA in different
groups based on age, sex, a-fetoprotein (AFP) level, tumor size,
Tumor Node Metastasis (TNM) stage and hepatitis viral infection
status. No significant difference in the average expression level of
global eRNA was observed between different age, sex, AFP level,
and tumor size groups (Figures S1A–S1D), except for remarkably
downregulated expression of global eRNAs in hepatitis C virus
(HCV)-infected samples versus hepatitis B virus (HBV)-infected
samples in the Yoon et al.17 cohort (Figure S1F), which suggested
a distinct regulation pattern because of different virus infections.
eRNAs tended to be highly expressed in advanced HCC tissues
in the Candia et al.16 cohort, although it was not statistically sig-
nificant (p = 0.28; Figure S1E).

Differentially expressed eRNAs (DEeRNAs) in HCC and normal liver
were identified (Figure 2D). There were 68 upregulated eRNAs and 55
downregulated eRNAs in both cohorts (Figure 2F). The genomic dis-
tribution of DEeRNAs is presented in Figure 2E. Functional enrich-
ment analyses of co-expressed protein-coding genes (PCGs) of
DEeRNAs were performed. We focused on eRNAs upregulated in
HCC and found that PCGs correlated to these eRNAs were mainly
involved in cell cycle, DNA replication, mismatch repair, and several
metabolism-related pathways, indicating that these eRNAs may play
essential roles in HCC carcinogenesis (Figure 2G; Table S2).
Identification of three HCC subtypes based on expression

profiles of eRNAs

To explore HCC molecular subtyping based on expression profiles of
eRNAs, we conducted non-negative matrix factorization (NMF) an-
alyses in two training cohorts (the Candia et al.16 and Yoon et al.17

cohorts). The cophenetic correlation coefficients were calculated to
decide the appropriate number of subtypes, and k = 3 was chosen
(Figures 3A and 3D). We classified individuals with HCC into three
subtypes: clusters 1, 2, and 3 (C1, C2, and C3, respectively)
(Figures 3B and 3E). Principal-component analysis (PCA) showed
that individuals in the three subtypes were well separated
(Figures 3C and 3F). SubMap analyses confirmed that C1, C2, and
C3 in the Candia et al.16 cohort were highly associated with corre-
sponding subtypes in the Yoon et al.17 cohort (Figure 3G). Significant
differences between subtypes were observed in overall survival (OS)
or disease-free survival (DFS). C3 had a survival advantage over C1
and C2 (OS in the Candia et al.16 cohort, C3 versus C1, p = 0.029,
C3 versus C2, p < 0.001; DFS in the Yoon et al.17 cohort, C3 versus
C1, p = 0.025, C3 versus C2, p < 0.001) (Figures 3H and 3I). The sub-
type-specific eRNAs are shown in Figures S2A and S2B and Table S4.

Prognostic significance of the eRNA subtyping system in HCC

We first evaluated the prognostic significance of the eRNA subtyping
system in the Candia et al.16 and Yoon et al.17 cohorts. Univariate and
multivariate Cox regression identified C3 as an independent prog-
nostic factor in the Candia et al.16 and Yoon et al.17 cohorts
(Figures 4A and 4D). Then we evaluated the efficacy of the eRNA sub-
typing system in prognosis prediction through time-dependent
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receiver operating characteristic (ROC) analyses. The area under the
ROC curve (AUC) for 1-, 3- and 5-year OS was 0.8, 0.71, and 0.64 in
the Candia et al.16 cohort and 0.71, 0.72, and 0.79 for 1-, 2-, and 3-year
DFS in the Yoon et al.17 cohort (Figures 4B and 4E). We also
compared the predictive ability of eRNA subtype with other clinical
parameters. The results showed that the predictive ability of the
eRNA subtyping system was superior to the predictive ability of
TNM staging system, serum AFP level, tumor size, or cirrhosis
(Figures 4C and 4F).

Biological properties of the three HCC subtypes

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and
cancer hallmark gene set enrichment analyses were utilized to distin-
guish the characteristic pathways related to the three subtypes. As
shown in Figures 5A and 5B, pathways involved in metastasis, im-
mune infiltration, and tumorigenesis were significantly enriched in
C1, indicating that C1 was correlated to immune infiltration. C2
was inactive in immune-related pathways but had a remarkable
enrichment in proliferation-related pathways, including G2M check-
point, DNA replication, mismatch repair, E2F targets, and cell cycle.
C3 presented moderate activity in immune-related pathways and was
activated in metabolism-related pathways, including adipogenesis,
bile acid metabolism, and drug metabolism, suggesting that C3 was
a well-differentiated subtype of HCC. Generally, C1 had a more acti-
vated immune microenvironment compared with C2 and C3.

Characterization of immune infiltration in the three HCC

subtypes

Pathway enrichment analyses revealed that the extent of immune infil-
tration was significantly different in the three subtypes. We analyzed
the immune and stromal scores according to the estimation of stromal
and immune cells in malignant tumours using expression data
(ESTIMATE) algorithm (Figures 6A and 6B). C1 displayed markedly
higher immune and stromal scores than C2 and C3 in the Candia
et al.16 cohort. A similar trend was observed in the Yoon et al.17 cohort,
which was in line with the results of functional enrichment analyses.
C1 also exhibited higher cytolytic activity scores than C2 and C3, indi-
cating activation of the tumor microenvironment (TME) in C1
(Figure 6C).

We also evaluated the expression level of 15 immune checkpoint
genes that may become potential therapeutic targets for HCC in the
three subtypes. C1 showed the highest expression of 13 genes (except
for LAG3 and OX40L) among the three subtypes, suggesting that in-
dividuals in C1 may benefit from immune checkpoint inhibitors
(ICIs). Both cohorts exhibited similar results (Figure 6D).
Figure 2. Landscape of eRNA in HCC

(A) The genomic distribution of eRNA in the Candia et al.16 (left) and Yoon et al.17 co

Length distribution of eRNAs in two cohorts. (C) Average expression of global eRNAs in

and normal liver tissue in two cohorts. Red, upregulated; white, not significantly differe

two cohorts. Orange dots, location of upregulated eRNAs; blue dots, location of d

DEeRNAs in two cohorts. (G) Functional enrichment analysis of upregulated eRNAs

the data.*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Then we analyzed immune infiltration cells in the three HCC sub-
types through tumor immune estimation resource (TIMER),
microenvironment cell populations (MCP)-counter, and xCell.
C1 showed significant enrichment of immune cells, including B
cells, CD8+ T cells, and dendritic cells. C1 and C3 displayed higher
enrichment of endothelial cells and cancer-associated fibroblast
cells. Consistent with the immune and stromal scores, C2 showed
the lowest activity in immune cells and stromal cells (Figure 6E).
Our eRNA subtyping system distinguished three immune-related
HCC subtypes. C1 was defined as an immune-enriched subtype
and C2 as an immune-depleted subtype. C3 was moderately infil-
trated by immune cells.

Clinical characteristics of the three HCC subtypes

Wenext investigated clinical features of the three subtypes in the Can-
dia et al.16 and Yoon et al.17 cohorts. In the Candia et al.16 cohort, C2
had a higher level of AFP (Figure 7A). Similarly, C2 also had more
aggressive clinical features in the Yoon et al.17 cohort, such as larger
tumor size and increased relapse rate (Figure 7B). These results
confirmed that C2 was correlated with poor prognosis. Other clinical
characteristics, such as age, sex, virus infection, tumor numbers, and
Child-Pugh score, showed no significant difference among the three
subtypes.

Considering that several HCC classifications have been reported so
far, we estimated the correlation between eRNA subtype and previous
classifications, including the Boyault et al.18 subtype, Hoshida et al.26

subtype, Lee et al.24 subtype, and Roessler et al. subtype (Figures 7C
and 7D). In the Candia et al.16 cohort, the C1 subtype was signifi-
cantly linked to the Boyault et al.18 G4 class, the Hoshida et al. S1
class, the Lee et al. A class, and the Roessler et al.19 high-risk group
(p < 0.001). The C2 subtype was strongly correlated with the Boyault
et al.18 G2/3 class, the Hoshida et al. S2 class, the Lee et al. A class, and
the Roessler et al.19 high-risk group (p < 0.001). The C3 subtype was
associated with the Boyault et al.18 G4/6 class, the Hoshida et al. S3
class, the Lee et al. B class, and the Roessler et al.19 low-risk group
(p < 0.001). Similarly, in the Yoon et al.17 cohort, the C1 subtype
was significantly correlated with the Boyault et al.18 G4 class, the
Hoshida et al. S1 class, the Lee et al. A class, and the Roessler
et al.19 high-risk group (p < 0.001). The C2 subtype was strongly
linked to the Boyault et al.18 G4/5 class, the Hoshida et al. S2 class,
and the Roessler et al.19 high-risk group (p < 0.001). The C3 subtype
was associated with the Boyault et al.18 G4 class, the Hoshida et al. S3
class, the Lee et al. B class, and the Roessler et al. low-risk group
(p < 0.001). These results revealed that eRNA subtype had great con-
sistency with previous studies.
horts (right). Pink dots, locations; purple peaks, density of eRNA distribution. (B)

HCC and normal liver tissues in two cohorts. (D) Volcano plot of DEeRNAs in HCC

nt; blue, downregulated. (E) The distribution of DEeRNAs on 23 chromosomes in

ownregulated eRNAs; peaks, density of eRNA distribution. (F) Venn diagram of

in two cohorts. Boxplot “boxes” indicate the first, second, and third quartiles of
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Figure 3. Identification of three HCC subtypes based on expression profiles of eRNAs

(A) Cophenetic correlation coefficient for k = 2–7 for the Candia et al.16 cohort. (B) NMF subtyping based on eRNA expression profile in the Candia et al.16 cohort. (C) PCA of

eRNAs to divide individuals with HCC into three subtypes in the Candia et al.16 cohort. (D) Cophenetic correlation coefficient for k = 2–7 for the Yoon et al.17 cohort. (E) NMF

subtyping based on eRNA expression profile in the Yoon et al.17 cohort. (F) PCA of eRNAs to divide individuals with HCC into three subtypes in the Yoon et al.17 cohort. (G)

SubMap analysis of GEPs between the HCC subtypes in the Candia et al.16 and Yoon et al.17 cohorts. (H) OS of three subtypes in the Candia et al.16 cohort. (I) DFS of three

subtypes in the Yoon et al.17 cohort.
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Genomic features of different immune subtypes

To investigate whether gene somatic mutation was distinct among the
three subtypes, we focused on genes involved in cell cycle regulation,
Wnt/b-catenin signaling, hepatic differentiation, and chromatin
modification in the Candia et al.16 cohort (Figures 8A and 8B). Gener-
ally, the C1 subtype had the lowest gene mutation burden among the
three subgroups (Figure 8C). The mutation frequency of cell-cycle-
related genes was higher in C2 (53%) than C1 (22%) and C3 (46%),
which was consisted with the proliferative feature of C2. Although
230 Molecular Therapy: Oncolytics Vol. 26 September 15 2022
the mutation frequency of cell-cycle-related genes was also common
in C3, the function enrichment result and the correlation analysis
with other HCC classifications did not support C3 as a high-prolifer-
ation subtype. Albumin (ALB) and apolipoprotein B (APOB) muta-
tion were most common in the C3 subtype (50%) compared with
C1 (5.5%) and C2 (21%), in agreement with the dysregulation of
cellular metabolism in C3. CTNNB1 mutation was most frequent
in the C3 subtype (39.3%), suggesting that the Wnt/b-catenin
pathway may be dysregulated in C3. No significant difference in



Figure 4. Prognostic significance of the eRNA subtyping system in HCC

(A) Univariate andmultivariate Cox regression analyses of OS in the Candia et al.16 cohort. (B) Time-dependent ROC analysis of eRNA subtyping in the Candia et al.16 cohorts.

(C) The sensitivity and specificity of eRNA subtyping, TNM stage, and cirrhosis in prognostic prediction were estimated by time-dependent ROC curves in the Candia et al.16

cohort. (D) Univariate and multivariate Cox regression analyses of DFS in the Yoon et al.17 cohort. (E) Time-dependent ROC analysis of eRNA subtyping in the Yoon et al.17

cohort. (F) The sensitivity and specificity of eRNA subtyping, TNM stage, tumor size, and AFP level in prognostic prediction were estimated by time-dependent ROC curves in

the Yoon et al.17 cohort.
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chromatin-modification-related gene mutations was observed among
the three subtypes (Figure 8A).

Potential response to targeted therapy, immunotherapy, and

transarterial chemoembolization (TACE) in the three HCC

subtypes

Considering that the immune microenvironment is closely related to
drug response in cancer treatment, we explored whether eRNA-based
classification could be instructive for developing an individualized
therapeutic strategy in clinical practice. We compared the gene
expression profiles (GEPs) of the three immune subtypes with HCC
cell lines that had drug sensitivity data. For targeted agents (sorafenib
and cabozantinib), C2 showed a significant correlation with the sor-
afenib and cabozantinib response group (sorafenib, p = 0.003; cabo-
zantinib, p = 0.015) in the Yoon et al.17 cohort (Figure 9A). The
same tendency was observed in the Candia et al.16 cohort, but the re-
sults were not all statistically significant (sorafenib, p = 0.015; cabo-
zantinib, p = 0.053) (Figure 9D). On the contrary, C1 was strongly
associated with the sorafenib- and cabozantinib-resistant group
(Candia et al.16 cohort, sorafenib, p = 0.004, cabozantinib, p =
0.018; Yoon et al.17 cohort, sorafenib, p = 0.002, cabozantinib, p =
0.011) (Figures 9A and 9D). These results showed that C2 was
more likely to benefit from sorafenib and cabozantinib treatment.
C1 was more likely to respond to the programmed cell death pro-
tein 1 (PD-1) inhibitor in both cohorts (Candia et al.16 cohort,
p = 0.014; Yoon et al.17 cohort, p = 0.033) (Figures 9B and 9E).
The same tendency was observed for cytotoxic T lymphocyte-asso-
ciated protein 4 (CTLA-4) inhibitor response, but the results were
not all statistically significant (Candia et al.16 cohort, p = 0.131;
Yoon et al.17 cohort, p = 0.033). However, C2 seemed to be immu-
notherapy resistant because of immune depletion features in the
Candia et al.16 cohort (PD-1 inhibitor, p = 0.008; CTLA-4 inhibitor,
p = 0.045) (Figure 9B).

TACE is a widely used treatment for HCC.20,21 We analyzed the po-
tential TACE response status in the three HCC subtypes and found
that the GEP of C3 was significantly correlated with the TACE
response group (Candia et al.16 cohort, p = 0.001; Yoon et al.17 cohort,
p = 0.004) (Figures 9C and 9F), indicating that C3 tends to benefit
from TACE treatment.

Construction and validation of a 51-eRNA classifier for eRNA

subtype identification

For subtype prediction, we performed differential expression analysis
to construct a subtype-specific eRNA classifier. After integrating sub-
type-specific eRNAs in the Candia et al.16 and Yoon et al.17 cohorts, a
Molecular Therapy: Oncolytics Vol. 26 September 15 2022 231
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Figure 5. Functional enrichment analyses of three HCC subtypes

(A and B) Heatmaps of biological properties enriched in three subtypes in the Candia et al.16 (A) and Yoon et al.17 (B) cohorts, analyzed by ssGSEA. High and low ssGESA

scores are represented in red and blue, respectively. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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total of 51 eRNAs, called the 51-eRNA classifier, were screened out
(Figure S2C; Table S5). High accordance was observed between sub-
types predicted by the 51-eRNA classifier based on NTP and original
classification based on NMF, with concordance of 80.77% in C1,
72.72% in C2, and 95.45% in C3 in the Candia et al.16 cohort and
88.24% in C1, 100% in C2, and 73.68% in C3 in the Yoon et al.17

cohort (Figure 10A).

To test the efficacy of the subtype-specific eRNA classifier, we divided
the samples in the two validation cohorts into three subtypes based on
the 51-eRNA classifier using the NTP algorithm. The prognosis, im-
mune infiltration, biological properties, genomic features, and drug
responses among the three subgroups were analyzed. As expected,
C1-predicted displayed the highest levels of immune cell infiltration
and most active immune-related pathways. C2-predicted was still
characterized by least immune cell infiltration, high proliferation,
and poor prognosis. C2-predicted showed a higher copy number
alteration (CNA) burden than the C1- and C3-predicted subtypes
in the TCGA-LIHC cohort. C3-predicted presented moderate im-
mune cell infiltration and metabolism signatures (Figures 10B–10F,
S3, and S4). Similar results were observed in the SYSUCC cohort.
Immunohistochemistry (IHC) staining demonstrated the highest
CD8+ T cell infiltration in the C1 subtype (Figure 10G). C2 displayed
the most abundant ki67-positive cells, consistent with high prolifera-
tion in C2 (Figure 10G). These results showed that our eRNA sub-
types were highly reproducible and that the 51-eRNA classifier was
reliable.

In accordance with the result of the Kaplan-Meier analysis (Fig-
ure 10B), univariate Cox regression revealed that C3 had a lower
232 Molecular Therapy: Oncolytics Vol. 26 September 15 2022
survival risk than C2 in the TCGA-LIHC cohort (Figure S5A).
The AUC of the 51-eRNA classifier for 1-, 3-, and 5-year OS was
0.64, 0.60, and 0.57 in the TCGA-LIHC cohort (Figure S5B). The
efficacy of the eRNA subtyping system was shown to be superior
to the TNM staging system and vascular invasion in prognosis eval-
uation (Figure S5C).

The efficacy of the classifier in prediction treatment responses was
also validated in the TCGA-LIHC and SYSUCC cohorts. C1-pre-
dicted was sensitive to ICIs (TCGA-LIHC cohort, PD1 inhibitor,
p = 0.003, CTLA4 inhibitor, p = 0.049 [Figure 11B]; SYSUCC
cohort, PD1 inhibitor, p = 0.001 [Figure 11E]). C2-predicted still
showed a significant correlation with the sorafenib- and cabozanti-
nib-response group (TCGA-LIHC cohort, sorafenib, p = 0.001, ca-
bozantinib, p = 0.001 [Figure 11A]; SYSUCC cohort, sorafenib, p =
0.003, cabozantinib, p = 0.040 [Figure 11D]). C3-predicted was
likely to benefit from TACE (TCGA-LIHC cohort, p = 0.001 [Fig-
ure 11C]; SYSUCC cohort, p = 0.002 [Figure 11F]). The 51-eRNA
classifier is highly valuable for predicting therapeutic responses of
individuals with HCC.

A summary of the three immune-related HCC subtypes is shown in
Figure 12.

DISCUSSION
HCC is a highly heterogeneous disease. Several staging systems for
HCC (e.g., TNM and the Barcelona clinic liver cancer staging system)
are generally based on clinical information and lack a systemic over-
view of molecular features, which is insufficient for guiding individu-
alized therapy, such as immunotherapy and target therapy.22,23 Most
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molecular models of HCC are based on gene expression and muta-
tion.18,19,24–26 Few studies have been performed to explore epigenetic
signatures during tumorigenesis.

eRNAs are important parts of the epigenetic regulation system tran-
scribed by activated enhancers.27,28 Accumulated evidence indicates
that eRNAs are strongly associated with cancer development.29 In
this study, we characterized the eRNA landscape of HCC and un-
covered its important role in the cell cycle, extracellular matrix
(ECM)-receptor interaction, DNA replication, mismatch repair,
and metabolism. We constructed a novel three-subtype molecular
classification system for HCC based on eRNA expression profiles.
The prognosis, immune signature, clinical features, biological prop-
erties, and drug responses were distinct among the three subtypes.
C1 was distinguished by enriched immune infiltration and high
expression of immune-checkpoint-related genes, which implied
that C1 samples were “hot” tumors and sensitive to ICIs. C2 ex-
hibited a lack of immune infiltration, high proliferation activity,
and poor prognosis. C2 might benefit from targeted therapy. C3
was defined as a moderate immune subtype with metabolism-
related signatures, low AFP level, and good prognosis. TACE was
predicted to be effective for C3.

The tumor immune microenvironment has been recognized as a
key factor in HCC biological behavior and drug response.30 Im-
mune classification has the potential to predict prognosis and
treatment responses for individuals with HCC.31 In recent years,
immunotherapy has achieved inspiring outcomes for individuals
with HCC.32–34 In this study, we found that C1 represented a small
group of individuals with HCC who might be suitable for immu-
notherapy. The high immune score and enriched immune infiltra-
tion of C1 are in line with the notion that tumors with abundant
immune cell infiltration are more likely to respond to immuno-
therapy. C1 accounts for about 30% of individuals in every HCC
cohort, which is in agreement with the objective response rate of
ICIs in clinical trials.33,35,36 C2 presented deficiency in immune
infiltration cells, suggesting that immunotherapy may be ineffective
for C2. The enrichment of TP53 mutations and high proliferation
of C2 may contribute to its resistance to ICIs.37 Previous studies
have revealed that sorafenib responders were more likely to be
highly proliferative and ICI resistant, which is consist with the
C2 subtype in this study.38

Previous research has identified several HCC subgroups associated
with recurrence or OS.18,19,24–26 In our study, C1 showed great
enrichment of metastasis-related pathways, which is associated with
the Roessler et al.19 high-risk subgroup. Notch and transforming
Figure 6. Correlation of the HCC subtypes with immune infiltration

(A and B) The immune scores and stromal scores of HCC subtypes in the Candia et al.1

Candia et al.16 and Yoon et al.17 cohorts. (D) Expression level of 15 immune checkpoint

cells in three HCC subtypes in two cohorts, analyzed by TIMER, MCP-counter, and xC

data. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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growth factor b (TGF-b) signaling were aberrantly activated in C1,
which indicates a strong correlation with the Hoshida et al. S1 sub-
group. C2 was distinguished by high proliferation and poor prog-
nosis, which is similar to Boyault et al.18 subtype G2. Individuals in
C2 had the highest frequency of TP53 mutation. The TP53 mutation
is strongly associated with cell proliferation and chromosome insta-
bility, which may partially result in the malignant features of C2.
The high AFP level of C2 is in concordance with the “progenitor”-like
feature of the Hoshida et al. S2 subgroup.39 However, a controversial
result was observed in the correlation analyses between the Lee et al.
subtype and eRNA subtype in different HCC cohorts, which may
result from different genetic background and etiology. C3 is strongly
linked to the Hoshida et al. S3 subgroup. The good prognosis of C3 is
also concordant with Lee et al. subtype B and the Roessler et al.19 low-
risk subgroup. eRNA-based subtyping showed high consistency with
published HCC subgroups, which implied that eRNAs were involved
in HCC heterogeneity. Dissecting tumor heterogeneity from the
perspective of eRNA expression is effective.

Development of HCC is in part due tomultiple complex mutation pro-
cesses. Aberrant Wnt/b-catenin signaling pathway activation because
of CTNNB1 mutation has been observed in more than 20% of individ-
uals with HCC.40,41 The highest mutant frequency of CTNNB1 was
observed in the C3 subgroup (39%) compared with C1 (11.1%) and
C2 (10%), suggesting dysregulation of the Wnt/b-catenin pathway in
C3. It has been reported that activation of b-catenin signaling can
lead to reduced immune infiltration and resistance to ICIs,42 which is
consistent with our results showing that individuals in C3 may not
benefit from immunotherapy. However, Wnt signaling pathway-tar-
geted inhibitors may be effective for individuals in C3. A large propor-
tion of C3 individuals carried ALB and APOB mutations, implying a
highly differentiated status of C3, which may partially account for
the good prognosis.43 Generally, a low tumor mutation burden
(TMB) is associated with a poor response to ICIs.44–46 However,
although the TMB of C1 was lower than those of the other two sub-
types, C1 tended to respond to ICIs. C2 and C3 turned out to be insen-
sitive to ICIs, partially because chronic antigen exposure because of
high TMB may lead to dysfunction and exhaustion of T cells in C2
and C3.47 There is no significant difference in neoantigens among three
subtypes in the TCGA cohort, suggesting that TMB is not the best pre-
dictor of immune infiltration and immunotherapy efficacy in HCC.48

Reduced immune-mediated cytotoxic and proinflammatory activity
in high broad CNA-burden tumors had been observed before and
was further proven in the C2 subtype.49 This finding was likely due
to alterations in antigen-presenting machinery and decreased rates of
neoantigenic mutations.36 High CNA burden was also linked to high
proliferation, TP53 dysfunction, and DNA repair.36
6 and Yoon et al.17 cohorts. (C) The cytolytic activity scores of HCC subtypes in the

genes in three HCC subtypes in two cohorts. (E) Enrichment of immune and stromal

ell, respectively. Boxplot “boxes” indicate the first, second, and third quartiles of the
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Figure 8. Genomic features of three HCC subtypes

(A) Gene mutation landscape of HCC subtypes in the Candia et al.16 cohort. (B) Mutation frequency of genes in the Candia et al.16 cohort. (C) Total TMB of HCC subtypes in

the Candia et al.16 cohort. Boxplot “boxes” indicate the first, second, and third quartiles of the data.*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Targeted therapy and immune checkpoint blockade therapy epito-
mize new precision treatments for HCC. Sorafenib is a multitargeted
kinase inhibitor and currently recommended as the first-line therapy
of advanced HCC.50–53 Another inhibitor of multiple receptor tyro-
sine kinases, cabozantinib, is a treatment option for individuals
with HCC previously treated with sorafenib.54 As for immuno-
therapy, PD-1 inhibitors and CTLA-4 inhibitors also have promising
applications in HCC.33,35,55 However, the low response rate and lack
of efficacy predictor of ICIs still remain huge challenges. Here we in-
tegrated subtype-specific eRNAs into the Candia et al.16 and Yoon
et al.17 cohorts to obtain a 51-eRNA classifier with the aim of classi-
fying HCC subgroups and predicting responses to different therapies.
The validation result showed that the C1, C2, and C3 subtypes were
sensitive to ICIs, targeted therapy, and TACE, respectively. The
high concordance of classifiers among different cohorts indicated
that the eRNA classifier could reproducibly determine HCC classifi-
cation and guide individualized therapy.
Figure 7. Clinical characteristics of HCC subtypes in two cohorts

(A and B) Clinical characteristics of HCC subtypes in the Candia et al.16 and Yoon et

classifications in the Candia et al.16 and Yoon et al.17 cohorts. *p < 0.05, **p < 0.01, **
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Our study has the following strengths. First, our study provides a
new approach for HCC classification based on the expression pro-
file of eRNAs. We utilized total RNA sequencing data to reveal the
eRNA landscape in HCC, which is more credible than poly(A)
enrichment sequencing. Most importantly, we established and
validated a 51-eRNA classifier to predicting prognosis and treat-
ment responses. Nevertheless, the study has some limitations.
First, the sample size was relatively small because of the limited
numbers of available total RNA sequencing cohorts. Second,
comprehensive analyses together with other omics (e.g., prote-
omics and metabolomics) are needed in the future. Third, the bio-
logical roles of eRNAs in HCC carcinogenesis need further
exploration.

Our results provide a novel method for immune classification of
HCC, shed new light on tumor heterogeneity, and may aid in HCC
immunotherapy.
al.17 cohorts. (C and D) Association of eRNA-based subtypes with previous HCC

*p < 0.001, ****p < 0.0001.



Figure 9. Correlation of the HCC subtypes with the response to targeted therapy, immunotherapy, and TACE

(A–C) SubMap correlation analysis between HCC subtypes in the Candia et al.16 cohort and samples with different sensitivities to targeted therapy (A), ICIs (B), and TACE (C).

(D–F) SubMap correlation analysis between HCC subtypes in the Yoon et al.17 cohort and samples with different sensitivities to targeted therapy (D), ICIs (E), and TACE (F).
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Materials and methods

RNA sequencing of HCC samples

The institutional review board of SYSUCC approved this study, and
written informed consent was obtained from all individuals. Baseline
information of individuals in the SYSUCC cohort is shown in
Table S1. A total of 14 fresh HCC tumor tissue samples were collected
immediately after liver biopsy and stored in RNA stabilization solution
(Invitrogen, USA) at �80�C. For preparing the transcriptome library,
total RNAwas extracted and treated with a rRNA removal kit (Invitro-
gen). After RNA integrity detection, cDNA synthesis, end repair,
A-base addition, and ligation of index adapters were performed.
Paired-end libraries were sequenced using the HiSeq X Ten platform.

Data collection and RNA sequencing analysis

Two groups of total RNA sequencing (RNA-seq) data from the Yoon
et al.17 (GSE148355) and Candia et al.16 cohorts (GSE144269) were
included inour study. Baseline information of individuals in the two co-
horts is shown in Table S1. Raw reads in fastq format were fetched from
the European Nucleotide Archive (ENA) database using Aspera soft-
ware. Clinical data of individuals with HCC were obtained from two
previous studies by Yoon et al.17 and Candia et al.16 For preprocessing,
the sequencing adapters were first removed, and the sequencing quality
of the reads was checked using fastp.56 Then the filtered RNA-seq reads
were aligned to the human reference genome hg38 using STAR.57 Raw
gene counts were quantified using featureCounts from the Subread
toolkit and then transformed into transcripts per kilobase of exon
model permillionmapped reads (TPM) using an in-house R script.58,59

GEP and somatic mutation data of the TCGA-LIHC cohort were ob-
tained using the R TCGAbiolinks and TCGAmutations package,
respectively.60,61 Somatic copynumber variationdata and clinical infor-
mation for the TCGA-LIHC cohort were downloaded from the Fire-
browse database (http://firebrowse.org/) and University of California,
Santa Cruz (UCSC) Xeno (https://xena.ucsc.edu/public).

For drug sensitivity analyses, the raw microarray data (GSE104580) of
individualswithHCCwho receivedTACE therapywere analyzed using
the R affy package.62 Additionally, 34 HCC cell lines with gene expres-
sion as well as drug sensitivity data (AUC values) were acquired from
the Liver Cancer Cell Lines Database (http://lccl.zucmanlab.com).63
Molecular Therapy: Oncolytics Vol. 26 September 15 2022 237

http://firebrowse.org/
https://xena.ucsc.edu/public
http://lccl.zucmanlab.com
http://www.moleculartherapy.org


(legend on next page)

Molecular Therapy: Oncolytics

238 Molecular Therapy: Oncolytics Vol. 26 September 15 2022



Figure 11. Predictive value of the 51-eRNA classifier in response to targeted therapy, immunotherapy, and TACE

(A–C) SubMap correlation analysis between HCC subtypes in the TCGA-LIHC cohort and samples with different sensitivities to targeted therapy (A), ICIs (B), and TACE (C).

(D–F) SubMap correlation analysis between HCC subtypes in the SYSUCC cohort and samples with different sensitivities to targeted therapy (D), ICIs (E), and TACE (F).
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eRNA quantification

A previously published pipeline, Pipeline for Enhancer Transcription
(PET) (http://fun-science.club/PET/), was adopted for eRNA identi-
fication and quantification in our study.64 Briefly, the trimmed fastq
reads were aligned to the hg19 reference genome using STAR, fol-
lowed by quantification of eRNA using featureCounts with an
eRNA annotation file from PET. We calculated reads per kilobase
of transcript per million mapped reads (RPKM) values from raw
count data and filtered out eRNAs whose length was less than
50 bp to avoid mismatches andmulti-mapped transcripts, as reported
previously.64 The detected eRNAs were defined as RPKM > 0 in more
than 10% of tumor or normal samples and subjected to analyses. The
Figure 10. Construction and validation of the subtype-specific eRNA classifier

(A) Concordance of HCC subtypes between the prediction based on the 51-eRNA clas

subtypes predicted by the 51-eRNA classifier in the TCGA-LIHC cohort.

(C and D) The immune scores, stromal scores, and cytolytic activity scores of HCC subty

cohort (D). (E and F) Enrichment of immune and stromal cells in three HCC subtypes pred

analyzed by TIMER, MCP, and Xcell, respectively. (G) Representative images of IHC-sta

Scale bars, 100 mm. Boxplot “boxes” indicate the first, second, and third quartiles of th
coordinate distribution of eRNAs was illustrated by the R circlize
package.65

eRNA differential expression analysis and functional annotation

As reported in a previous study, we estimated the difference of
eRNA expression at the single and global level.15 Global eRNA
expression was evaluated by aggregating the expression level
of single eRNAs in each sample and then averaged by the
number of detected eRNAs. For single-eRNA-level analysis, the
difference in log2-transformed RPKM value of each eRNA
between two groups was evaluated by Wilcoxon test, and the
p value was corrected by false discovery rate (FDR) using the
sifier and original classification based on NMF in two cohorts. (B) OS of three HCC

pes predicted by the 51-eRNA classifier in the TCGA-LIHC cohort (C) and SYSUCC

icted by the 51-eRNA classifier in the TCGA-LIHC cohort (E) and SYSUCC cohort (F),

ined slides with CD8 and ki67 antibodies in three subtypes in the SYSUCC cohort.

e data. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 12. Overview of three HCC subtypes based on eRNA expression profile
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Benjamini-Hochberg method for multiple-sample tests.66 A
single eRNA with an absolute log2FC (fold change) value greater
than 1 and FDR less than 0.05 was defined as differentially
expressed.

To annotate the biological functions of the upregulated eRNAs
(log2FC > 1 and FDR < 0.05) in tumors, we first performed Spearman
co-expression analysis between eRNAs and PCGs. PCGs with a corre-
lation coefficient greater than0.6 andp value less than0.05were consid-
ered positively co-expressed. Then we estimated the enriched KEGG
pathways (adjusted p < 0.05) of the co-expressed genes with the R clus-
terProfiler package.67

Identification of eRNA-associated HCC subtypes

NMF subtyping was conducted to subtype the eRNA-related HCC
subclasses in both cohorts by the R NMF package.68 We first
screened out eRNAs that were detected in over 50% of individuals
and then chose the first 50% of eRNAs (n = 1,244) with a higher me-
dian absolute deviation value in the Candia et al.16 cohort to perform
the NMF analysis. The subtyping procedure was also applied to the
Yoon et al.17 cohort with most of the same candidate eRNAs as in the
Candia et al.16 cohort, except for 9 eRNAs that were not detected in
the Yoon et al.17 cohort. The eRNAs used in the NMF analysis are
shown in Table S3. In the NMF subtyping procedure with 30 itera-
tions, the optimal number of subtypes was determined by deter-
mining the cophenetic score (reproducibility of a model) from 2 to
7 subtypes where the value of the cophenetic score started to fall
sharply.69 PCA was conducted to validate the subtype assignments.
Based on the eRNA expression profile, subclass mapping analysis
(Submap) was carried out to evaluate the similarity of eRNA sub-
types from the two cohorts.70
240 Molecular Therapy: Oncolytics Vol. 26 September 15 2022
Molecular characterization and immune infiltration estimation

of HCC subtypes

Single-sample gene set enrichment analysis (ssGSEA), based on 50
cancer hallmark gene sets and 186 KEGG gene sets, was performed
to evaluate the biological properties of HCC subtypes with the R
GSVA package.71 Previously published HCC molecular subtypes
were predicted by the MS.liverK algorithm.72

To illustrate the immune infiltration of HCC subtypes, we first
compared the immune score and stromal score among different
HCC subtypes by applying the R estimate package.73 Then
the TME landscape was characterized by inferring the abundance
of immune and stromal (endothelial and fibroblast) cells from
the transcriptome data via the TIMER2 online tool.74–76 We
calculated the cytolytic activity score using the MCP-counter
algorithm.75

Prediction of the response to immunotherapy, targeted therapy,

and TACE for HCC subtypes

Based on SubMap analysis, we first evaluated the similarity of gene
expression patterns between HCC subtypes and previously re-
ported individuals with melanoma77 who received CTLA-4
blockade or PD-1 blockade immunotherapy to infer the probabil-
ity of benefits from ICIs. Similarly, the sensitivity to two targeted
drugs, sorafenib and cabozantinib, was evaluated according to the
data of HCC cell lines.63 To be more specific, the HCC cell lines
were arranged from low to high according to the drug AUC value,
and cell lines in the first one-third were regarded as drug sensitive,
whereas the last one-third were drug resistant. TACE therapeutic
efficacy was also estimated for the identified subtypes based on
our microarray data.
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Identification of eRNA signature for HCC subtype prediction

For HCC subtype prediction, we first performed differential expres-
sion analyses between one subtype and the other two subtypes in
every cohort to identify the subtype-specific eRNAs. Only eRNAs
with a significant difference (log2FC > 1, FDR < 0.05) were defined
as subtype-specific eRNAs. We also identified subtype-specific eR-
NAs that were shared by two associated subtypes from the two co-
horts as the classifier eRNAs. As a result, a 51-eRNA classifier was
established. To test the reliability of the classifier, the concordance
of predictive subtype, through nearest template prediction (NTP)
analysis,78 was compared with previously identified subtypes
based on NMF in the Yoon et al.17 and Candia et al.16 cohorts,
respectively.

Validation of the eRNA subtypes in the TCGA and SYSUCC HCC

cohorts

Using the NTP algorithm, we classified individuals withHCC from the
TCGA-LIHC and SYSUCCHCC cohorts into three subtypes based on
the 51-eRNA classifier. The eRNA expression profile of the TCGA-
LIHC cohort was downloaded from the Cancer eRNA Atlas (https://
bioinformatics.mdanderson.org/public-software/tcea).79 Survival dif-
ference, molecular characterization, immune infiltration, and drug
sensitivity analyses were also performed as described above.

Correlation of eRNA subtypes with clinical features, CNA

burden, gene mutations, and neoantigens

Correlations between clinical features and HCC subtypes were
analyzed in the Candia et al.16 and Yoon et al.17 cohorts. For
gene somatic mutation data analysis in the Candia et al.16 and
TCGA-LIHC cohorts, TMB was calculated with the R Maftools
package. The mutation frequency of several HCC-related genes
was compared.80 The neoantigens data for individuals with HCC
in the TCGA-LIHC cohort were acquired from a previous study.81

CNA burden was quantified by CNApp (https://tools.idibaps.org/
CNApp/).82

IHC

HCC samples were fixed in 4% formaldehyde for 24 h at room
temperature, moved into 70% ethanol for 12 h, and then embedded
in paraffin. After cutting and baking at 60�C for 60 min for de-par-
affinization, the samples were incubated in graded alcohol and then
treated for antigen unmasking. For IHC staining, endogenous per-
oxidases were inactivated by 3% hydrogen peroxide at room tem-
perature (RT) for 15 min. The slides were treated with Tris-EDTA
buffer (10 mM, pH 8.0) at 121�C for 10 min for antigen retrieval.
Tissues were stained with primary antibodies for 12 h at 4�C. After
washing with PBS-Tween, tissues were stained with horseradish
peroxidase (HRP)-conjugated secondary antibodies against mouse
or rabbit for 30 min at 37�C. Then the samples were co-stained
with hematoxylin, followed by washing with PBS. The dilution
ratios for IHC were 1:500 for CD8 antibodies (ZSGB-BIO, ZA-
0508), 1:500 for ki67 antibodies (Invitrogen, PA5-114437), and
1:500 for HRP-conjugated secondary antibodies (ZSGB-BIO, DS-
0003).
Statistical analysis

All statistical analyses and data illustrations were conducted using
R software (v.4.0.0). Kaplan-Meier survival analysis and log rank
test between different subtypes were performed by utilizing the
pairwise_survdiff() function in the R survival package. Cox propor-
tional hazards modeling and ROC curve analyses were conducted
using the R survminer and timeROC packages, respectively. Chi-
square test or Fisher’s exact test was used to test the difference
in categorical data. For differences in continuous data between
two or multiple groups, Wilcoxon test or Kruskal-Wallis test was
performed. The p values were corrected by FDR using the Benja-
mini-Hochberg method when multiple comparisons occurred. A
two-tailed p value od less than 0.05 was regarded as statistically
significant.
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