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Abstract

Scaffolds for osteochondral tissue engineering should provide mechanical stability, while offering specific signals for
chondral and bone regeneration with a completely interconnected porous network for cell migration, attachment, and
proliferation. Composites of polymers and ceramics are often considered to satisfy these requirements. As such methods
largely rely on interfacial bonding between the ceramic and polymer phase, they may often compromise the use of the
interface as an instrument to direct cell fate. Alternatively, here, we have designed hybrid 3D scaffolds using a novel concept
based on biomaterial assembly, thereby omitting the drawbacks of interfacial bonding. Rapid prototyped ceramic particles
were integrated into the pores of polymeric 3D fiber-deposited (3DF) matrices and infused with demineralized bone matrix
(DBM) to obtain constructs that display the mechanical robustness of ceramics and the flexibility of polymers, mimicking
bone tissue properties. Ostechondral scaffolds were then fabricated by directly depositing a 3DF structure optimized for
cartilage regeneration adjacent to the bone scaffold. Stem cell seeded scaffolds regenerated both cartilage and bone in vivo.
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Introduction

Osteochondral defects are typically derived from congenital

diseases or traumatic events in young patients and from osteoarthritis

in old individuals. This results in associated pain, joint stiffness and

instability, and often leads to the replacement of joint functionality

with prosthesis. Although bone tissue has the capacity to regenerate,

bone repair is impaired in many pathological situations. Further-

more, cartilage has a poor capacity to regenerate itself due to its

avascular nature and to its intrinsic composition. Immobilization of

patients is often the last stage of these degenerative and painful

processes. Therefore, there is a critical need to develop technologies

to promote bone and chondral healing. Autografts–tissues trans-

planted from one part of the body to another in the same patient,

namely here bones or osteochondral plugs–are the most common

treatments for osteochondral defects. However, clinical use involves

some difficulties including septic complications, viral transmission,

and morbidity in the location where tissue is harvested [1,2]. A

possible solution in terms of availability would be the use of

allografts–tissues transplanted from one part of a donor’s body to the

same or another part of a recipient patient. Yet, these may be

associated to risks of disease transmission, and complications in

shaping. Other significant additional limitations of allografts are

delay in remodeling of the bony part by the host and a lack of

integration with the surrounding chondral tissue. Furthermore, in

the case of very large defects the allograft may remain in the implant

site throughout the patient’s life, creating an area more prone to

fracture or infection [3–5].

These issues have justified the development of 3D scaffolds

employed for tissue regeneration, which are an attractive

alternative when used alone or in combination with cells to

restore the joint functionality [5–7]. Osteochondral scaffolds

typically comprise a cartilage and a bone compartment. Chondral

scaffolds are generally formed by polymeric foams or textile

meshes [8–12], while bone substitutes include either biomaterials

mimicking the composition of bone, i.e. calcium phosphate

ceramics simulating the bone mineral composition [13–15], or

demineralized bone matrices (DBMs) matching the organic

composition [16–18]. Despite the fact that these materials have

demonstrated satisfying cartilage and bone forming capacities,

their mechanical properties may not always be optimal for

implanting in load bearing sites. In particular, for the bony site

under high loads, ceramics are often too brittle and can be subject

to fracture, whereas DBMs are very flexible and may require the

patient to be temporarily immobilized. A possible solution to

overcome the mechanical drawbacks displayed by ceramics and

DBMs is to combine and integrate them with a polymeric matrix.

Studies to date have focused on the incorporation of ceramics and

polymers by interspersing the polymeric phase into the ceramic

phase–and vice versa–to finally obtain a homogeneous composite

scaffold [19–22]. However, this often results in scaffolds with poor

polymeric-ceramic bonding, limited control over composite

processability and mechanical properties, and loss of interface

properties. Furthermore, during the interspersion of the two

phases some of the pores can be blocked, typically due to the use of

solvents, resulting in a reduction of interconnected pores and lack
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of cell migration [4,19,23]. In this respect, rapid prototyping

techniques can offer an optimal solution in terms of mechanical

properties modulation as they demonstrated to effectively control

the structural parameters of 3D scaffolds [23–25]. These

technologies can process different biomaterials and require

minimal or no use of solvents. In addition, they allow the creation

of custom-made scaffolds based on patients’ image datasets of the

damaged area. These characteristics make rapid prototyping a

unique tool to develop readily available products in the clinics.

Here, we propose a novel concept to design hybrid scaffolds where

the biomaterials are not chemically or physically bonded, but

assembled in a single three-dimensional (3D) construct with

preserved pore network interconnectivity and interfacial properties.

By integrating different rapid prototyping technologies, it was

possible to create scaffolds for osteochondral tissue engineering

where the chondral scaffold was directly connected to the bone

compartment by 3D fiber-deposition (3DF). The bone construct was

formed by ceramic particles of designed shapes captured into a

flexible polymeric 3DF matrix (3DFM). A DBM gel was infused and

the scaffolds freeze-dried resulting in a foamy interspersed phase that

acted as a mechanical cushion while providing further bone

regeneration properties. The bone scaffold was finally interlocked

to an optimized 3DF scaffold for cartilage regeneration [26,27]

through intertwined concentric polymeric fibers mimicking the

tidemark area–region delimiting hyaline cartilage from subchondral

bone–of the osteochondral natural architecture. The resulting hybrid

constructs combined the flexibility of polymers and DBMs with the

mechanical strength of ceramics while maintaining the individual

osteochondral formation capacities of the single biomaterials

assembled. These polymer-ceramic scaffolds were evaluated for

their bone and cartilage regeneration potential and were shown to

support in vivo osteochondral formation. Poly(ethylene oxide2ter-

ephthalate)/poly(butylene terephtalate) - (PEOT/PBT) copolymers -

were used to fabricate the polymeric matrices. These polyether-esters

are biodegradable thermoplastic elastomers, which have favorable

physical properties [28–30], and a suitable biocompatibility both in

vitro and in vivo [31–35]. Biphasic calcium phosphate (BCP) was

chosen as a ceramic due to its osteoconductive and osteoinductive

properties depending on its physicochemical and microstructural

properties [36–39].

Results

The composition of BCP particles was analyzed by X-ray

diffraction (XRD) (figure 1c) and was comprised of 24.6% tricalcium

phosphate (TCP) and 75.4% hydroxyapatite (HA). Fourier trans-

form infrared spectroscopy (FTIR) confirmed BCP composition, as

described elsewhere [38]. DBMs were obtained by acid extraction of

the mineralized component of bone, while maintaining the collagen

and non-collagenous proteins. Among these proteins, the presence of

morphogenic factors is known to confer DBMs osteoinductivity,

which contributes to direct the differentiation of local mesenchymal

stem cells into the osteogenic lineage [40–42].

Two different design strategies (designs A and B) were

considered for the bone compartment of osteochondral scaffolds

(figure 1). In the bone compartment of design A, designed particles

were captured in the pores of a 3DF polymer matrix (PEOT/PBT

1000/70/30) while in design B a BCP core was surrounded by

such a matrix. In both designs the cartilage compartment consisted

of the same polymer matrix, but of different composition (300/55/

45). The assembled scaffolds were analyzed by scanning electron

microscopy (SEM) and evaluated in terms of ceramic-polymer

fitting, DBM infusion, and overall construct integrity (figure 2).

The weight and volume percentage of BCP included in the 3D

PEOT/PBT matrix depended on the particles geometry (support-

ing information, table S1). Pillar particles were found to better fit

in the pores of 3DFM (figure 2a), resulting in the highest BCP

weight percentage of 6163.15% (n = 3). This corresponded to a

volume fraction of 27.9860.81%. SEM revealed a complete

infusion of the BCP macro porous structure with DBM (figure 2c).

For both the designs, a final infusion in a DBM gel was performed

to further integrate the different components assembled in the

scaffolds (figure 2d). The final constructs had a pore distribution

from 1.4361.25 mm in the ceramic phase to 135162.4 mm in the

polymeric matrix and a total porosity of 79.3561.9% in design A,

while a pore distribution from respectively 1.4361.25 mm to

5316237 mm and a total porosity of 88.9561.26% in design B

(supporting information, table S2).

Osteochondral constructs with or without an interlocking

system were then fabricated by directly depositing the chondral

compartment onto the bone scaffold with 3DF (figure 3). Due to

the different swelling properties of the two PEOT/PBT compo-

sitions (bone = 1000/70/T30–cartilage = 300/55/45), instability

at the interface of the two compartments might occur (figure 3a).

Therefore, an interlocking system made of intertwined concentric

1000/70/30 and 300/55/45 fibers was deposited at the interface

between the bone and the chondral parts of the construct (figure 3b

and 3c). SEM analysis revealed a fiber diameter of 170615 mm, a

fiber spacing of 605612 mm, and a layer thickness of 148610 mm

for the cartilage compartment scaffolds. This corresponded to a

porosity of 7462% and, consequently, to a dynamic stiffness of

approximately 13 MPa, as calculated from previous studies [26].

The 3D hybrid scaffolds fabricated for the bone compartment of

the osteochondral construct were mechanically characterized by

measuring the bending and compressive storage modulus (or

dynamic stiffness E9) and the breaking stress and strain. In design

A (n = 3), the bending dynamic stiffness of the bare 3DFM scaffold

was 0.13460.035 MPa (figure 3d). When the custom-made BCP

particles were press-fitted into the pores of the 3DFM scaffolds the

bending stiffness significantly increased to a maximum of

18.9960.14 MPa for pillar particles (p,0.05), depending on the

shape of the particles. Similarly in compression (figure 3e), the

dynamic stiffness significantly increased from 0.69260.16 MPa for

bare matrices to 0.93560.165 MPa for irregular particles, to

37.9666.14 MPa for truncated conical particles. In design B

(figure 3f), the compressive stiffness of the hollow 3DFM cylinder

was 1.160.34 MPa, while the stiffness of the whole construct was

7.861.68 MPa (n = 3, p,0.05). The stress at break was also

dependent on the hybrid scaffold design and varied from

0.5260.14 MPa for irregular particles to 14.0161.19 MPa for

pillar particles. The strain at breaking varied from 9.9261.78% to

33.7460.49%, but did not appear to depend on the particle design

(figure 3g). DBM and 3DFM alone did not break under

compression.

As a preliminary study, 3DF polymeric matrices were infused

with DBM and assessed in vivo for their osteoinductive and

osteoconductive properties (figure 4). In an intramuscular rat

model (n = 3), new bone formation was observed after 4 weeks in

apposition with DBM (figure 4a). In contrast, no bone apposition

was detected in polymeric matrices alone, thus highlighting the

osteoinductive properties of DBM. To evaluate the full potential of

polymeric-DBM biomaterial assembly, scaffolds were implanted in

an ulna defect in rabbits (n = 4) for 6 weeks. The bone defect was

repaired within this time frame and consistently filled with new

bone and marrow (figure 4b). In further efforts to regenerate both

cartilage and bone, osteochondral scaffolds as in design A with no

DBM infusion were seeded with mesenchymal stem cells (MSC)

and evaluated for their cartilage and bone forming capacities

Integrating & Regenerating
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subcutaneously in (n = 5) nude mice (figure 5). MSCs were

aggregated in chondrogenic medium 2–3 days before seeding

and resuspended in the cartilage compartment with MatrigelH,

while maintaining a rounded morphology. In the osseous part cells

were seeded undifferentiated. Here, they were homogeneously

distributed and attached throughout the scaffolds displaying a flat

and spread morphology (figures 5a and b). After 25 days of

subcutaneous implantation, the two components maintained their

structural integrity. Histological analysis revealed de novo bone

formation in the bone part (figure 5c).

Tissue generation took place in direct apposition to the ceramic

surface. Osseous tissue was composed of a mineralized matrix.

Osteocytes could be detected embedded in the matrix and layers

of osteoblasts were seen lining the outer edges of the newly formed

bone. Bone marrow like tissue characterized by haematopoietic

cells, blood vessels and fat could also be observed in most of the

implants. In few cases, hyaline cartilage-like islands appeared

within the pores of the BCP (figure 5d). In the chondral part

histological staining revealed the presence of cartilage like tissue.

Cells exhibited a round morphology and were located in lacunae

(figure 5e). Mineralized matrix within the chondral part was also

noticed. Clearly, hypertrophic cells were still distinguishable in the

center of the mineralized nodules suggesting endochondral

ossification (figure 5f). Control grafts implanted without cells did

not show any evidence of osseous or chondral structures.

Discussion

In this study, we have shown a novel concept based on biomaterial

assembly to design and fabricate 3D osteochondral scaffolds that

posses the mechanical flexibility of polymers and DBMs, and the

strength of ceramics. The rapid prototyping approach used in the

design allowed the creation of scaffolds with a completely

interconnected and accessible porous network. Whereas ceramics

and DBMs have different mechanical drawbacks, the hybrid

composite of these two bone graft substitutes with polymeric matrix

has variable stiffness depending on the ceramic particles and on the

overall construct design. Strain didn’t depend on scaffold design and

showed approximately a 3-fold increase with respect to BCP

scaffolds, while stress varied from a 14-fold decrease for irregular

particles to a 2-fold increase for pillar particles as compared to BCP

(figure 3g). The variable increase in stiffness and breaking stress

might be linked to the different packing degree of the ceramic in the

polymeric matrix, resulting in a progressively higher coupling of the

two materials. The increasing fit in the polymer, thus, resulted in a

more efficient strengthening of the construct increasing the overall

stiffness and the stress at break. At the same time, the presence of

DBM and of the polymer introduced a higher flexibility in the

constructs due to their intrinsic mechanical properties, causing an

increase in the deformation at break. With increasing BCP volume

percentage in the hybrid 3D scaffolds, the bending stiffness increased

Figure 1. Schematic draw of the scaffold process fabrication for (a) design A and (b) design B. (a) P = Pillar; TC = Truncated Cone;
S = Spherical. (b) an optical micrograph of the porous structure of the 3DF hollow cylinder is shown; scale bar: 400 mm. (c) X-ray diffraction pattern
and (d) FTIR spectrum of rapid prototyped BCP particles where characteristic peaks are highlighted. Shrinkage following sintering of BCP particles
varied from 760.7% to 1861.9%.
doi:10.1371/journal.pone.0003032.g001
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accordingly (figure 4d). This was expected, since BCP is the stiffest

component in the assembly. A similar trend was seen for the

compressive stiffness, the highest value measured when truncated

conical ceramic particles were incorporated in the polymeric matrix

(figure 3e). The experimental measured values of the bending

stiffness were also in the same range of the calculated stiffness from

the Reuss-Voigt model for dispersed particle composites. This might

suggest that the assembly of the different biomaterials proposed here

can be considered close to a composite when subjected to a flexion

load, although it cannot be strictly defined as such. It is clear that the

hybrid scaffolds do not mechanically respond as real composites

when their mechanical behavior in compression is considered. In this

case the theoretical and experimental values do not follow the same

power law (supporting information, Figure S1 and Table S3).

As reviewed by Athanasiou et al. [3], cancellous bone has a

bending modulus varying between 49 MPa and 336 MPa, and a

compressive modulus varying between 12 MPa and 900 MPa.

Cortical bone has a bending modulus ranging from 5.44 GPa to

15.8 GPa, and a compressive modulus ranging from 4.9 GPa to

27.6 GPa. The variations are related to different bone sources,

locations within those sources, and mechanical testing conditions.

Cancellous bone has a strength varying between 0.15 MPa and

10.2 MPa, while cortical bone has a strength ranging from

90 MPa to 193 MPa. If the stiffness and stress/deformation at

break of the hybrid 3D assembled scaffolds are compared to those

of cortical and cancellous bone, constructs with pillar or conical-

cylindrical ceramic particles better approach the mechanical

behavior of cancellous bone. Yet, the modulation in mechanical

properties associated to different ceramic particle geometry in the

hybrid 3D scaffolds gives a further degree of freedom to these

constructs while maintaining the biological properties of the

assembled biomaterials. For example, the use of specific ceramic

particles can be envisioned to fit the cancellous bone mechanical

properties of each patient in customized applications. Cortical

bone still has a much greater stiffness and strength as compared to

the scaffolds here presented.

For these reasons, osteochondral scaffolds with pillar BCP

particles were selected for in vivo studies and seeded with MSCs,

known to be able to differentiate into musculoskeletal tissues under

the appropriate stimuli. The use of MSCs is also advantageous

regarding clinical applications, since they can be easily isolated by

bone marrow aspiration from the iliac crest under partial anesthesia.

In this study design, osteogenic differentiation was successfully

induced. Noteworthy, cells were not pre-differentiated, but formed

bone in vivo due to the osteoinductive properties of the BCP particles.

Cartilage like tissue within the pores of BCP was also observed. We

hypothesize that the enclosure of MSCs supported the regeneration

of cartilage-like tissue. Factors such as high cell density, condensation

and low oxygen concentration that favor the chondrogenic

differentiation of mesenchymal stem cells might have occurred

[43–47]. It has been shown that PEOT/PBT polymers favor

chondrocyte redifferentiation in vitro [48,49]. However, no chon-

droinductive properties could be detected so far. Therefore, unlike

for bone, MSCs intended for cartilage regeneration were pre-

cultured in chondrogenic medium for 48–72 hours. Not only

cartilaginous tissue was observed, but also mineralized matrix with

embedded osteocytes was found in the chondral part. Whereas the

presence of cartilage in the bone compartment may be explained

Figure 2. SEM micrographs of designs A (a, b) and B (c, d) integrated 3D hybrid scaffolds. (a) BCP particles inserted in the pores of a 3DF
1000PEOT70PBT30 matrix. (b) microstructure of ceramic particles sintered at T = 1150uC. (c) BCP cylinder infused with DBM after freeze drying. (d)
Particular of the whole construct after insertion of the two DBM foamy discs, the infused BCP cylinder in the hollow 3DFM scaffold, and final
lyophilization shows the integration of all the components. Scale bar: (a) 500 mm; (b) 10 mm; (c, d) 1 mm. Pillar particles (arrows) are shown here as an
exemplification. P = polymer.
doi:10.1371/journal.pone.0003032.g002
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Figure 3. Optical microscopy images of the osteochondral 3D scaffolds. Without the interlocking concentric fiber system (a) both
compartments could be separated easily. With the intertwined fibers (c) the osteochondral construct maintained its integrity (b) under mechanical
stress. Scale bar: 1 mm. Influence of the scaffold design on the bending (d) and compressive (e, f) storage modulus in designs A (d, e) and B (f). The
dynamic stiffness of the single components comprising the hybrid scaffold was also measured for comparison. (g) Stress and strain at break for
design A (influence of particle design), design B, and BCP. (*) Strength values for bone are taken from Athanasiou et al.[3]. All groups were
significantly different from each other (p,0.05). Particle shape legend: I = Irregular; S = Spherical; P = Pillar; TC = Truncated Cone.
doi:10.1371/journal.pone.0003032.g003

Figure 4. New bone formation in (a) rats and (b) rabbits. (a) Polymeric-DBM 3D scaffolds were implanted for 4 weeks intramuscularly in rats
and new bone (arrows) was formed in direct apposition of DBM. (b) When implatend in ulna defects, these scaffolds repaired the defect in 6 weeks
with re-establishment of bone marrow (thin black arrows). Polymer degradation was also visible at this time (yellow arrows). NB = new bone;
PA = polymeric 3DF scaffold; DBM = demineralized bone matrix.
doi:10.1371/journal.pone.0003032.g004
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through endochondral ossification, it is not yet clear why mineralized

matrix was formed in the chondral part of the scaffold. We

hypothesize that the presence of blood vessel subcutaneously in mice

and their possible ingrowth in the tissue-engineered constructs

creates a microenvironment favoring osteogenesis. In an orthotopic

location, where an osteochondral scaffold would ultimately be used,

the lack of vascular network in the articular cartilage plateau and the

proper mechanical loading environment may favor mature cartilage

formation with no mineralized matrix in the chondral compartment.

The proposed biomaterial assembly approach to fabricate

osteochondral scaffolds through the integration of rapid prototyp-

ing technologies brings its novelty as it combines cartilage and

bone compartments mechanically matching the natural tissues to

be restored with biomaterials that singularly showed to support

cartilage and bone tissue formation. The mechanical properties of

these constructs could be modulated depending on the assembly

design and matched both cartilage and cancellous bone stiffness

and strength, while maintaining interface properties. Bone and

cartilage were successfully regenerated in the two respective

compartments with a single stem cell source. Although further

light needs to be shed on the mechanism that brings mineralized

matrix formation in chondral scaffolds, these hybrid constructs

hold promises as candidates for osteochondral regeneration in

one-step surgery procedures.

Materials and Methods

Materials Characterization
Poly(ethylene oxide2terephthalate)/poly(butylene terephtalate)

(PEOT/PBT) copolymers, solubilized demineralized bone matrix

Figure 5. Osteochondral Scaffolds seeded with MSCs before (a, b) and after (c–f) subcutaneous implantation in nude mice. (a) Cell
aggregates in the chondral compartment maintained a rounded morphology typical of chondrocytes; insert shows stable aggregate formation after
48–72 hours in chondrogenic media. (b) Cell attached and spread on the BCP particles in the bone part; insert shows methylene blue staining of
attached cells on porous pillars. (c) Bone part of the osteochondral construct.: pores were filled with de novo bone (fuchsin red staining). Note the
embedded osteocytes and the osteoblasts laying at the outer edge of the mineralized matrix. (d) Occasionally, hypertrophic cells with positive
stained matrix could be seen in the pores (thionine). (e) Cartilage part of the osteochondral construct: Cartilage tissue could be observed in the
chondral part. Cells exhibit a round, chondrocyte-like morphology, locate din lacunae and surrounded by positive extracellular matrix (thionine
staining). (f) Hypertrophic cells in the center of mineralized matrix (fuchsin red staining) and embedded osteocytes could be also occasionally found.
Scale bar: (a, b) 50 mm; (c–f) 200 mm; Insert in (a): 250 mm; (b) 600 mm.
doi:10.1371/journal.pone.0003032.g005
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(DBM), and biphasic calcium phosphate (BCP) powder were

obtained from IsoTis Orthopaedics S.A. (Bilthoven, The Nether-

lands). The copolymer composition used in this study were

1000PEOT70PBT30 for the 3DF matrix (3DFM) of the bone

compartment and 300PEOT55PBT45 for the cartilage compart-

ment of the osteochondral scaffold where, following an

aPEOTbPBTc nomenclature, a is the molecular weight in g/mol

of the starting PEG blocks used in the copolymerization, while b and

c are the weight ratios of the PEOT and PBT blocks, respectively.

Design of the Bone Compartment Scaffolds
Tri-phasic scaffolds were fabricated by assembling BCP,

1000PEOT70PBT30, and DBM into monolithic constructs for

the bone compartment of the osteochondral scaffold. Two

different design schemes (A and B) were chosen for the scaffolds.

Design A consisted of fabricating a PEOT/PBT 3DFM that was

used as a carrier for BCP rapid prototyped particles, which were

press fitted into the scaffold pores. BCP particles were of pillar

(side: 1.6 mm; height: 4.3 mm), truncated cone (large base

diameter: 2 mm; small base diameter: 1.6 mm; height: 4 mm),

spherical (diameter: 1.8 mm) and irregular (between 1.4 mm and

2 mm in their maximum dimension) shapes (figure 1a). More

spherical and irregular particles were press fitted in the pores of the

3DFM scaffolds until covering the total thickness of the polymeric

matrix. Different ceramic particle shapes were considered to assess

the optimal amount of included BCP and the influence of the

particle geometry on mechanical properties, while maintaining the

flexibility of the construct. The 3DFM scaffold had a block shape,

with a square base of 10 mm, and a height of 3.15 mm. Since

1000PEOT70PBT30 is known to swell in an aqueous environment

[28–30], the scaffolds were under dimensioned to match exactly

the BCP designed particles in a wet milieu.

In design B, a BCP cylinder (5 mm in diameter by 3 mm in

height) was pre-soaked in a DBM gel (2.6% w/v in a 4.75% v/v

methanol in demineralized water solution) and subsequently

lyophilized. The cylinder was ‘‘sandwiched’’ by two discs of DBM

foam (5 mm in diameter by 1 mm in height) and the construct was

inserted in a hollow cylindric container of PEOT/PBT made by

three-dimensional fiber deposition (figure 1b). The polymeric hollow

cylinder had an outer diameter of 6 mm, a wall thickness of 1 mm

and a height of 6 mm. In both design A and B, the whole constructs

were immersed again in the DBM gel and freeze-dried. Figure 1

illustrates the principle of the assembling procedure.

Fabrication of the Bone Compartment Scaffolds
Polymeric 3DFM Matrix. 1000PEOT70PBT30 3DFM

scaffolds were manufactured with a Bioplotter device (Envisiontec

GmbH, Germany), essentially an XYZ plotter device as previously

described [30]. The device was modified to extrude highly viscous

polymeric fibers. The polymer was put in a stainless steel syringe and

heated at a temperature T = 190uC through a thermoset cartridge

unit, fixed on the ‘‘X’’-mobile arm of the apparatus. When the

molten phase was achieved, a nitrogen pressure of 5 bars was applied

to the syringe through a pressurized cap. The scaffold models were

loaded on the Bioplotter computer aided manufacturing (CAM,

PrimCAM, Switzerland) software and deposited layer by layer,

through the extrusion of the polymer on a stage as a fiber. The

deposition speed was set to 300 mm/min. Scaffolds were then

characterized by the fiber diameter (through the nozzle diameter),

the spacing between fibers in the same layer, the layer thickness and

the configuration of the deposited fibers within the whole

architecture. In design A, the nozzle used was a stainless steel Luer

Lock needle with internal diameter (ID) of 400 mm, shortened to a

length of 16.2 mm. The fiber spacing was set to 1650 mm, while the

layer thickness to 225 mm. A 0-90 scaffold architecture was chosen,

where fibers were deposited with 90u orientation steps between

successive layers. In design B, the hollow cylindrical scaffold was

fabricated with a similar nozzle with respect than design A, but with

a smaller ID of 250 mm. The fiber spacing was decreased to 600 mm,

and the layer thickness to 150 mm, while the fiber deposition

architecture was maintained as a 0-90 architecture.

Ceramic Particles. Porous BCP designed particles were

fabricated by an indirect rapid prototyping technique. First

negative masks were designed with computer aided design

(CAD) software (RhinocerosH) and fabricated with an acrylic

photopolymerizable resin by photolithography (PreFAB,

Envisiontec, Germany). The masks were then filled with a BCP

slurry made by adding 32.8 grams of calcinated BCP powder

(20 hours in an oven at 1000uC), 14.2 grams of not calcinated

BCP powder, 20 grams of demineralized water, 1.2 grams of

methylcellulose solution (2% w/v methylcellulose in demineralized

water), 2.2 grams of ammonia, and 14.1 grams of 300–500 mm

sieved naphthalene particles, resulting in a 30% macro porosity of

the BCP particles. The components were blended and vigorously

stirred with a mixer for approximately 30 minutes, until a

homogeneous slurry was obtained. The BCP particles were then

obtained by debonding and sintering in a furnace (Nabertherm,

Germany) at T = 1150uC. Irregular BCP particles with an average

size between 1.4 mm and 2 mm were also used. These latter

particles were fabricated by hydrogen peroxide foaming, as

described elsewhere [14]. BCP particles were press fitted in the

pores of the 3DF matrix by exploiting the swelling behavior of

1000PEOT70PBT30. The polymeric matrix was left in

demineralized water for 24 hours to allow swelling prior to

insertion of the BCP particles.

3D Hybrid Scaffold Assembly. DBM gel was obtained by

mixing 2 grams of DBM powder into 80 grams of methanol

solution (4.75% volume/volume in demineralized water). DBM

foams were fabricated by placing the gel in square molds and

freeze-drying (Virtis 25 SRC, The Netherlands). The scaffolds

were finally immersed in the DBM gel and placed for 1 hour

under vacuum (0.01 mbar) to let the gel impregnate the porous

polymeric matrix and the BCP particles. After infiltration the final

construct was freeze-dried to obtain a porous DBM matrix

infiltrating and surrounding the scaffolds. This resulted in a final

hybrid scaffold thickness of approximately 6 mm for each design.

3D Osteochondral Scaffolds Fabrication. The

300PEOT55PBT45 cartilage compartment of the osteochondral

scaffold was deposited directly on top of the bone assembled 3D

hybrid scaffold by 3DF. In a similar process to what previously

explained, the polymer was placed in the extrusion syringe and

heated through the thermoset cartridge to reach its molten state at

T = 210uC. A nitrogen pressure of 5 bars was applied to extrude

the polymeric fibers from a nozzle with an ID of 250 mm and a

length of 16.2 mm. The fiber spacing was set to 600 mm, and the

layer thickness to 150 mm, while the fiber deposition architec-

ture was maintained as a 0-90 architecture. The fibers were

deposited at a speed of 230 mm/min. Having the two PEOT/

PBT compositions (bone = 1000PEOT70PBT30–cartilage =

300PEOT55PBT45) different swelling properties, osteochondral

scaffolds with and without an interlocking fibrous system were

fabricated to assess the interface resistance of the construct. The

interlocking system was made of intertwined concentric

1000PEOT70PBT30 and 300PEOT55PBT45 fibers at the

interface between the bone and the chondral parts of the

construct. The concentric fibers were extruded from needles

with ID and length as above described. The fiber spacing was set

to 800 mm, and the layer thickness to 135 mm. The fiber spacing
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was chosen to obtain a precise interlock of the fibers after swelling.

The resulting osteochondral scaffolds had a diameter of 6 mm and

a height of approximately 8 mm.
Scaffolds Characterization. Cylindrical plugs of 6 mm in

diameter by 6 mm in height were taken as samples for

characterization (n = 3). The constructs were analyzed with an

optical microscope (OM) to assess their integrity over time and by

scanning electron microscopy (SEM) analysis with a Philips XL 30

ESEM-FEG. Samples were gold sputter coated (Carringdon)

before SEM analysis. The porosity of the 3DF cartilage scaffold

and of the bone scaffold in its separated components and as a final

whole construct was experimentally measured by analyzing the

mass and the volume of each structure, as:

P~1{
M

V
: 1

r
ð1Þ

where M and V are the measured mass and volume of the scaffolds

components, while r is the specific density of the materials

(1.25 g/cm3 for 1000PEOT70PBT30, 3.15 g/cm3 for BCP, and

assumed to be 1 g/cm3 for DBM, since the mineral component

was extracted). The composition of BCP particles was analyzed by

x-ray diffraction (XRD) (Rigaku Miniflex, China) and Fourier

Transform Infrared analysis (FTIR) (Spectrum 1000, Perkin

Elmer, USA).

For the bone hybrid construct, the weight and volume

percentage of BCP included in each scaffold was also measured

as the ratio between the BCP particles weight and volume and the

weight and volume of the final construct, respectively (Supporting

Information, Table S1).
Mechanical Characterization of the Bone Hybrid

Scaffolds. A DMA instrument (Perkin Elmer 7e) was used to

evaluate the bending and compressive dynamic stiffness of the 3D

assembled scaffolds of the bone compartment and of the single

biomaterials used (n = 3). In the dynamic bending test, three slabs

of 15 mm in length by 5 mm in width by 6 mm in height were

used as samples. In the case of the hybrid constructs, only scaffolds

from design A were tested in the bending configuration as the

intrinsic construction of scaffolds in design B did not allow for their

bending characterization. A 3-point bending test was chosen for

the characterization. Scaffolds were loaded with a dynamic force

varying from 350 mN to 450 mN. A ramp of 5 mN/min at a

constant frequency of 1Hz was applied. A lower range of forces

was applied with respect to the compressive dynamic test to

prevent sample deformation that impinged with the test setting.

In the compressive dynamic test, for each hybrid design and for

each single biomaterial used three cylindrical samples of 6 mm in

diameter by approximately 6 mm in height were tested.

Cylindrical fixtures were chosen to test the specimens and evaluate

their behavior as a whole structure along their compression axis, in

the ‘‘z-direction’’. Scaffolds were loaded with a dynamic force

varying from 3.5N to 4.5N. A ramp of 50 mN/min at a constant

frequency of 1Hz was used. In the two test configurations, the

dynamic stiffness, or storage modulus E9, was calculated in the

elastic region of the composites. The theoretical modulus as

proposed by the Reuss-Voigt model for a composite was also

calculated [50]. In this case we assumed the ceramic particles as

mainly oriented along the longitudinal direction where compres-

sion occurs. The modulus can then be calculated as:

E~EiVizEmVm ð2Þ

where E is the modulus of the final construct, Ei and Vi are the

modulus and the volume fraction of the inclusions (here considered

as the BCP particles), while Em and Vm are the modulus and the

volume fraction of the polymeric matrix.

The stress and deformation at break were measured with a Zwick

Z050 mechanical testing apparatus (Zwick, Germany), in a failure

test under compression with a crosshead speed of 1 mm/min.

Bone marrow isolation and cell expansion. Goat bone

marrow cells (gBMCs) were isolated and culture expanded as

described previously [51]. Briefly, bone marrow aspirates from the

iliac wing of Dutch milk goats were plated in tissue culture flasks

(56105 nucleated cells/cm2) and cultured in expansion medium

containing a-Modified eagle medium supplemented with 15%

fetal bovine serum (FBS), 1% Penicillin/Streptomycin, 0.1 mM

ascobate-2- phosphate acid and 2 mM L-Glutamine until reaching

80% confluence. gBMCs were harvested using 0.25% trypsin-

EDTA, counted and replated at 1000 cells/cm2. Cells were

cultured in monolayer in a humidified atmosphere with 5%CO2 at

37uC. Medium was changed every 2–3 days. When reaching 80%

confluence again, cells were trypsinated, washed twice in

phosphate buffer saline (PBS) solution and counted using a

Burker turk counting chamber.

Cell seeding. Osteochondral grafts were incubated in

expansion medium 48 h prior to the implantation. Four samples

without cells served as controls. For the cell-based constructs two

different methods were used to seed the two different parts of the

osteochondral graft. For the osseous part, gBMCs were seeded at a

density of 2.56106 cells/graft onto the BCP component 4 h prior

to the implantation. For the chondral component 48 h prior to the

implantation cells were incubated in a 24-well plate at a cell

density of 16106 cells/well in Dulbecco’s modified eagle medium

supplemented with 1% penicillin/streptomycin, 1% ITS+ (insulin,

transferring, selenious acid), 100 nM dexamethasone, 50 mg/ml

ascorbic acid-2-phosphate, 100 mg/ml sodium pyruvate, 40 mg/

ml proline and 10ng/ml transforming growth factor (TGF) b1

(R&D Systems, Abington, UK). Prior to implantation cells of five

wells were collected, spun down at 300g for 30 seconds and

supernatant was removed. Cells were resuspended in 50 ml

MatrigelH (BD Bioscience, Alphen aan den Rijn, The

Netherlands) and placed into the pores of the chondral part of

the graft (total of 56106 cells/graft). Samples were incubated for

20 minutes at 37uC in order to let a gel be formed.

Implantation. Animals were housed at the Central Laboratory

Animal Institute (Utrecht University, The Netherlands). All animal

experiments have been approved by the local Animal Care and Use

committee (DEC) and performed in adherence to the local and

national ethics guidelines. The animals were acclimated for a

minimum of 5 days under the same conditions as the actual test. The

animals were housed in micro isolation polycarbonate cages with

sterile contact bedding, supplied with irradiated, certified

commercial feed and autoclaved, potable water.

To assess osteoinductivity, hybrid scaffolds were implanted

intramuscularly in (n = 3) 2–3 months old male rats (Wistar,

Charles River). Each rat received one intramuscular implants in

the leg. The animals were anesthesized and prepared for surgery.

With sharp and blunt dissection, a pocket was created in the femur

bicep (hamstring) muscle. The scaffold was placed into the pocket

and the muscle pocket and skin was suture closed. The animals

were recovered from the anesthesia and retuned to their cages. All

animals were observed daily for abnormal clinical signs. After 4

weeks the animals were sacrificed and the implants removed.

To assess osteoconductivity, hybrid scaffolds were implanted in an

ulna defect in (n = 4) of six-month-old female New Zealand White

rabbits. Animals were kept in separate cages, fed a standard diet, and

allowed to move freely during the study. At surgery, the right

forearms were shaved and draped in a sterile fashion under general
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anesthesia with intravenous sodium pentobarbital (30 mg/kg of

body weight). An antibiotic (netilmicin 4 mg/kg of body weight) was

administered perioperatively. A 1.5 cm segmental bone defect was

created in the diaphysis of the right ulna using an oscillating saw

under irrigation with sterile saline solution. The periosteum attached

to the resected bone segment was removed, and the defect site was

irrigated with sterile PBS. After press-fit insertion of the implants the

fascia, subcutaneous tissues and skin were closed using absorbable

sutures and non-absorbable sutures, respectively. Animals were

allowed full weight-bearing activity immediately following the

surgery. Implants were evaluated after 6 weeks.

Tissue engineered osteochondral grafts and controls were

implanted into six weeks old male immunosufficient mice

(HdCpb:NMRI-nu, Harlan). Animals (n = 5) were operated under

aseptic conditions. After subcutaneous injection of 0,05 mg/kg

Temgesic for analgesia the mice were put under general inhalation

anesthesia using Isoflurane. Two subcutaneous pockets were

created on the dorsum of each mouse by blunt dissection. One

osteochondral graft was inserted per pocket. Evaluation was

assessed after 25 days.
Histological analysis. In rat and rabbit studies, scaffolds

were removed from the implantation site, fixed in 10% formalin

and dehydrated in a graded ethanol series. Samples were then

embedded in polymethylmethacrylate (Sigma, The Netherlands).

Histological sections of 7 mm were cut using a sawing microtome

(Leica, Germany) and stained with haematoxylin and eosin.

In the mice study, 25 days after implantation mice were

euthanized by CO2 asphyxiation. The implants were carefully

removed and fixed in 1,5% glutaraldehyde in 0,14 M sodium

cacodylate buffer for 24 h at 4uC. Following dehydration by

graded ethanol series specimens were embedded in polymethyl-

methacrylate. Histological sections of 10 mm were made using the

same microtome and stained with 1% methylene blue and 0,3%

basic fuchsin to visualize bone formation or 0,04% thionine to

distinguish cartilage like tissue formation.

Statistical Analysis
Statistical Analysis was performed using a Student’s t-test, where

the confidence level was set to 0.05 for statistical significance.

Values in this study are reported as mean and standard deviation.

Supporting Information

Table S1 BCP weight percentage included in the assembled

scaffolds depending on particle design.

Found at: doi:10.1371/journal.pone.0003032.s001 (0.28 MB TIF)

Table S2 Pore size and porosity distribution of the single

components and of the final scaffold constructs.

Found at: doi:10.1371/journal.pone.0003032.s002 (0.32 MB TIF)

Table S3 Comparison between the experimental and the

theoretical (Reuss-Voigt model) values of the storage moduli of

3D scaffolds with custom-designed assembled BCP particles.

Found at: doi:10.1371/journal.pone.0003032.s003 (0.33 MB TIF)

Figure S1 Influence of the BCP volume fraction on the bending,

compressive, and Reuss-Voigt moduli. Bending modulus:

r2 = 0.96; Reuss-Voigt modulus: r2 = 0.99; compressive modulus:

r2 = 0.87.

Found at: doi:10.1371/journal.pone.0003032.s004 (0.66 MB TIF)
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