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Abstract: (1) Background: Odontogenic keratocysts (OKCs) are enigmatic developmental cysts that
deserve special attention due to their heterogeneous appearance in histopathological characteristics
and high recurrence rate. Despite several nomenclatures for classification, clinicians still confront
challenges in its diagnosis and predicting its recurrence. This paper proposes an ensemble deep-
learning-based prognostic and prediction algorithm, for the recurrence of sporadic odontogenic
keratocysts, on hematoxylin and eosin stained pathological images of incisional biopsies before treat-
ment. (2) Materials and Methods: In this study, we applied a deep-learning algorithm to an ensemble
approach integrated with DenseNet-121, Inception-V3, and Inception-Resnet-V3 classifiers. Around
1660 hematoxylin and eosin stained pathologically annotated digital images of OKC-diagnosed
(60) patients were supplied to train and predict recurrent OKCs. (3) Results: The presence of SEH
(p = 0.004), an incomplete epithelial lining, (p = 0.023), and a corrugated surface (p = 0.049) were the
most significant histological parameters distinguishing recurrent and non-recurrent OKCs. Amongst
the classifiers, DenseNet-121 showed 93% accuracy in predicting recurrent OKCs. Furthermore,
integrating and training the traditional ensemble model showed an accuracy of 95% and an AUC of
0.9872, with an execution time of 192.9 s. In comparison, our proposed model showed 97% accuracy
with an execution time of 154.6 s. (4) Conclusions: Considering the outcome of our novel ensemble
model, based on accuracy and execution time, the presented design could be embedded into a
computer-aided design system for automation of risk stratification of odontogenic keratocysts.

J. Pers. Med. 2022, 12, 1220. https://doi.org/10.3390/jpm12081220 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm12081220
https://doi.org/10.3390/jpm12081220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0002-5775-2938
https://orcid.org/0000-0002-6688-0106
https://orcid.org/0000-0002-8156-2069
https://orcid.org/0000-0003-1532-6524
https://orcid.org/0000-0001-7246-5497
https://orcid.org/0000-0003-3904-3000
https://doi.org/10.3390/jpm12081220
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm12081220?type=check_update&version=1


J. Pers. Med. 2022, 12, 1220 2 of 13

Keywords: deep learning; machine learning; microscopy; odontogenic keratocysts; oral; pathology;
prognosis; sporadic form

1. Introduction

Odontogenic cysts are one of the most prevalent lesions that make up a significant
portion of all biopsies received by any pathology facility. This diverse group of lesions
can exhibit a variety of presentations, ranging from a small innocuous lesion that may be
discovered by chance, to a highly aggressive and destructive lesion that can even turn
malignant. Among the various odontogenic cysts, the odontogenic keratocyst (OKC) in the
maxillofacial region is known for its varied biological behaviors and recurrence patterns [1].
Despite advances in research, no consensus has yet been reached on the biological behaviors
of this uncertain entity [2]. According to a recent study, OKCs are the third most common
odontogenic cyst among Indians [3]. The diagnosis of OKC is based on histological criteria
proposed by Pindborg and Hansen in 1962, with an epithelial characterization of tall
columnar basal cells with focal reverse polarity [4,5].

Several studies report the chances of OKC recurrence due to the following factors:
(a) the partial removal of a cystic lining; (b) the thin and friable nature of the epithelium;
(c) the increased proliferation rate of the epithelium with basal layer budding; (d) infil-
trative behaviors, along with bony perforations; (e) the adhesion to soft tissues in the
vicinity; (f) splitting of the supra- and subepithelial lining; (g) parakeratinized variants
of OKC; (h) the presence of satellite cysts/dental lamina remnants; and (i) the presence
of subepithelial hyalinization [3,6–8]. The recurrence rates have been recorded, ranging
from 0 to 100%, when patients with nevoid basal cell carcinoma syndrome are included
(NBBCS) [1]. In addition to these, a few other variables were suggested for OKC recurrence,
including: age, location, size, type, significant disparities in surgical procedures, and length
of follow-up [7]. Several studies employing biopsy specimens have been undertaken to
examine the relationship between OKC histological traits and biological potential, using im-
munohistochemical proliferative and anti-proliferative markers, such as p53, Ki-67, PCNA,
Bcl-2, and Bax. However, no prognostic indicators, based on clinicopathological and im-
munohistochemical findings to predict OKC recurrence after surgical treatment, have been
identified [1,3,7,9]. Despite several clinical, surgical, and other hidden factors influencing
recurrence, there is a need to develop an accurate method to predict the recurrence of OKC.

With the fast growth of computer-aided techniques in recent years, the machine
learning approach plays an essential role in the detection and characterization of complex
clinical conditions by exploring novel prediction algorithms. Many attempts have been
made to apply automated machine vision systems using mathematical formulas, image
processing, and computational algorithms, to diagnose OKCs [10]. The application of
deep-learning techniques has shown promising results in the diagnosis, prognostication of
disease grading, and survival prediction of oral squamous cell carcinoma [11–18]. To the
best of our knowledge, the prediction model for recurrence of OKCs appears to be the first
of its kind. This work aimed to develop an ensemble deep-learning-based prognostic and
prediction algorithm that can detect the recurrence of sporadic odontogenic keratocysts on
hematoxylin and eosin stained pathological images of incisional biopsies before treatment.

In this study, we employed deep neural networks in an ensemble with three clas-
sification models: Inception-V3, Inception-Resnet-V3, and DenseNet-121, on incisional
biopsies of hematoxylin and eosin stained digitalized histopathology images to predict
OKC recurrence. (Figure 1). In the ensemble model, multiple learners were combined,
and a final prediction was made to determine the accuracy. We tested the efficiency of our
approach over the traditional method and proved that our ensemble technique was more
accurate and rapid in the detection of OKC recurrence.
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  Figure 1. A block diagram describing the workflow of the study.

2. Materials and Methods
2.1. Selection of Participants

This is a retrospective study. The protocol for this study was approved by the ethics
committee of Ramaiah University of Applied Sciences (Registry Number EC-20211/F/058).
Following the inclusion and exclusion criteria, all data relevant to the study objectives
were gathered from a single center (Department of Oral Pathology and Microbiology,
Ramaiah University of Applied Sciences, Bengaluru, India). The inclusion criteria were:
(a) sporadic cases of ortho and parakeratinized variants with a minimum follow-up of five
years; (b) patients with no prior treatment history, apart from being treated by the same
team of surgeons with a conservative treatment protocol; and (c) a proven biopsy test of
primary and recurrent OKCs of the same patient reporting in our center. The exclusion
criteria included: (a) syndromic OKCs; (b) cases that underwent radical procedures; and
(c) cases that lacked the required year of follow-up data. Overall, 60 participants with OKC
were diagnosed and treated using a conservative manner in the facility, between the years
2009 and 2019, with a minimum 5-year post-treatment follow-up.

2.2. Classification of the Dataset

1660 digital slide images of OKC formalin-fixed paraffin-embedded (FFPE) tissue
sectioned from 60 patient archives to five microns thickness and stained with hematoxylin
and eosin were collected. The stained slides were thoroughly analyzed for histopathology
features, based on the sequelae of our previous study [4]. The most reliable histological
characteristics of OKCs (subepithelial hyalinization (p = 0.004), deficient epithelial lining
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(p = 0.023), and corrugated surface (p = 0.049)) as well as continuous follow-ups, were used
to differentiate data status into recurrent and non-recurrent OKC (Tables 1 and 2). The
model was trained and validated on all histologically classified image data.

Table 1. Histopathological features noted in recurrent and non-recurrent OKCs.

Histopathological Features
Recurrent OKCs Non-Recurrent OKCs

Present (%) Absent (%) Present (%) Absent (%)

Subepithelial hyalinization 75 25 35 65

Lining (complete) 0 100 25 75

Lining (incomplete) 100 0 75 25

Keratinization
(orthokeratinized) 50 50 35 65

Keratinization
(parakeratinized) 50 50 62.5 37.5

Keratinization (mixed) 0 100 2.5 97.5

Keratin layer (thin) 45 55 50 50

Keratin layer (thick) 45 55 50 50

Keratin layer (mixed) 10 90 0 100

Corrugated surface 70 30 92.5 7.5

Folding of epithelium 60 40 60 40

Intracellular edema 35 65 40 60

Reversed polarity 30 70 25 75

Basilar hyperplasia 50 50 35 65

Rete pegs 20 80 10 90

Palisading 90 10 95 5

EPI/CT separation 90 10 85 15

Basal off-shoots 30 70 17.5 82.5

Daughter cysts 35 65 20 80

Inflammation (nil) 45 55 32.5 67.5

Inflammation (mild) 20 80 42.5 57.5

Inflammation (severe) 35 65 25 75

Table 2. Comparison of correlation of histologic parameters with recurrent OKCs.

Histologic Parameters
Recurrence

χ2 p-Value
Present Absent

Subepithelial hyalinization
Present 51.7% 48.3%

8.543 0.004
Absent 16.1% 83.9%

Lining
Complete 0.0% 100%

6.000 0.023
Incomplete 40.0% 60.0%

Keratinization

Ortho 41.7% 58.3%
1.607 0.448Para 28.6% 71.4%

Mixed 0.0% 100.0%
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Table 2. Cont.

Histologic Parameters
Recurrence

χ2 p-Value
Present Absent

Thickness of lining
Thin 31.0% 69.0%

4.138 0.126Thick 31.0% 69.0%

Mixed 100.0% 0.0%

Folding of epithelium
Present 33.3% 66.7%

0.0 1.000
Absent 33.3% 66.7%

Corrugated surface
Present 27.5% 72.5%

5.294 0.049
Absent 66.7% 33.3%

Intercellular edema
Present 30.4% 69.6%

0.141 0.783
Absent 35.1% 64.9%

Reversed polarity
Present 37.5% 62.5%

0.170 0.760
Absent 31.8% 68.2%

Basilar hyperplasia
Present 41.7% 58.3%

1.250 0.280
Absent 27.8% 72.2%

Rete pegs
Present 50.0% 50.0%

1.154 0.422
Absent 30.8% 69.2%

Palisading
Present 32.1% 67.9%

0.536 0.595
Absent 50.0% 50.0%

EPI/CT separation
Present 34.6% 65.4%

0.288 0.707
Absent 25.0% 75.0%

Basal offshoots
Present 46.2% 53.8%

1.227 0.326
Absent 29.8% 70.2%

Daughter cysts
Present 46.7% 53.3%

1.600 0.223
Absent 28.9% 71.1%

Inflammation

Absent 40.9% 59.1%

2.967 0.227Mild 19.0% 81.0%

Severe 41.2% 58.8%
Chi-squared test, p-value < 0.05 is statistically significant.

2.3. Image Characteristics

Each stained slide was magnified at 40X and captured, covering the areas of interest,
using an Olympus BX53 Research Microscope (Olympus, Tokyo, Japan), with a digital
Jenoptik camera and GRYPHAX imaging software (V1.1.10.6, Jena, Germany). The total
dataset comprised 1660 digitalized histopathology images with 3840 × 2160 dimensions in
jpg format. Among the 1660 images, 1216 belonged to non-recurring OKC and 444 to the
recurring OKC group. Representative sample images of non-recurrent and recurrent OKC
are shown in Figure 2.
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  Figure 2. The representative samples of histopathological slides of recurrent ((b) subepithelial hyalin-

ization & (d) corrugated surface) and non-recurrent OKC ((a) absence of subepithelial hyalinization
& (c) absence of corrugated surface).

2.4. Deep Learning Classifiers and Computation

The convolutional neural network (CNN) deep-learning model proved to be the best
in image pattern classification. In addition to the requirement of a huge dataset, there
were a few challenges in training the CNN: balancing an imbalanced dataset; and secondly,
choosing the hyperparameters such as learning rate, batch size, network architecture, and
exploding gradients. Pre-trained models could solve these issues to some extent, along
with taking less time for training. We used pre-trained CNN models such as Inception-V3,
DenseNet-121, and Inception-Resnet-V2, and experimented on our OKC dataset to reduce
the training time. To construct the novel ensemble model, these three potential classifiers
were adopted following the systematic procedure shown in Figure 3. The computations
were performed using a cloud computing environment Google Colab, GPU—Tesla K80,
RAM 12 GB, a personal computer (Intel(R) Core (TM) i3-4030U CPU @ 1.90 GHz), and the
CNN was built with Keras. 

3 

 
  Figure 3. Strategy to construct a novel ensemble model.

2.5. Data Pre-Processing and Training

For deep-learning models, a huge dataset is typically mandatory, but was 444 and
1216 respectively. The considered dataset was imbalanced and may pose a bias on the
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results; to handle this, a class weight dictionary in the Keras library was utilized. This
allowed the model to assign more valued weights to the class which has fewer samples
than the other class. This creates more attention for the underrepresented class. The
data augmentation techniques (rotation, width/height shift, shear, vertical, and horizontal
flip) were implemented using the Keras ‘image data generator‘ to increase the size of the
dataset. The following hyperparameters were chosen: number of dense layers, batch size,
number of epochs, and learning rate (Table 3). The dataset was split into training, testing,
and validation sets, where 70% of the samples were used for training, and 15% of the
samples were used as a test set; the remaining samples were kept for validation. The
trainable parameter for each of these derived layers was set to false before the training.
The Adam optimizer was used, and the loss function was set as binary cross-entropy.
The model checkpoint was used for each model training to ensure the best model had
the minimum loss. Finally, the performance of each model was evaluated based on the
confusion matrix, accuracy, receiver operator characteristic curve (ROC), and area under
the ROC curve (AUC).

Table 3. Hyperparameters used in the models.

Hyperparameter Classifier 1 Classifier 2 Classifier 3

Number of dense layers 3 1 4

Batch size 72 64 84

Number of epochs 82 35 57

Learning rate 0.001 0.001 0.001

2.6. Deep Learning Model Classifiers

DenseNet-121 had one layer with a 7 × 7 filter mask, 58 layers with a 3 × 3 filter
mask, and 61 layers with a 1 × 1 filter mask. For dimensionality reduction, four average
pooling layers were used for classification. Similarly, Inception-V3 had 48 layers with
3 × 3 convolution layers. These convolution layers fetched the histopathology features,
and fully connected layers were used to classify the images. Likewise, the Inception-
ResNet-V2 was the combination of the Inception architecture and residual connections with
164 layers used for classification.

2.7. The Traditional Ensemble Models

Traditional ensemble rules were adopted by the fusion function using the sum and
product rule. The sum rule takes the average of the predictions given by the classifiers
(DenseNet-121, Inception-V3, and Inception-Resnet-V2) in the ensemble as an outcome of
the final prediction. However, in the product rule, the product of the predictions from the
classifiers was the final prediction to determine the performance. Notably, the traditional
ensembles mentioned here can be computationally expensive while performing predictions
on simple data. This could be experienced when these models are incorporated into a
real-time application, where the prediction time increases with the number of classifiers in
the ensemble.

2.8. Novel Ensemble Model

In this model, two of the three classifiers in the ensemble were initially loaded. At each
input data point, they were checked for diverse opinions. If the predictions of the two clas-
sifiers were different, the third classifier was loaded and its decision was considered final,
or else, the mean of the predictions was considered. The strategy describing this process is
given in the Algorithm 1, and Figure 3 shows the flowchart of the novel ensemble model.
The advantages of the novel model were that it was comparatively less computationally
expensive than the traditional ensemble models, and at the same time, the ensemble effect
increased the performance of the model.
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Algorithm 1 A novel ensemble model

Function ensemble_model (X_test):
load classifier_1
load classifier_2

for each sample in X_test:
p1 = prediction from classfier_1
p2 = prediction from classifier_2

if p1 and p2 predict different classes:
load classifier_3 if not already loaded
final_prediction = prediction from classifier_3

else
final_prediction = mean of p1, p2

3. Results
3.1. Evaluating the Model’s Performance

The performance of the models was computed based on a confusion matrix, accuracy,
and area under the ROC curve. All the classifiers well-performed showing an accuracy of
more than 80%. Particularly, DenseNet-121 and Inception-V3 outperformed the Inception-
ResNet-V2 models (Table 4). Both the DenseNet-121 and Inception-V3 models showed
almost equal accuracies in the validation set, at 93% and 92%, respectively. Inception-
ResNet-V2 achieved 90% accuracy in identifying recurrent (OKC_rec) and non-recurrent
OKCs (OKC_Nrec) from images. The detailed performances of the base classifiers are
shown in Figure 4A–C. In addition to the major performance characteristics, the plots in
Figure 4A–C show: (1) model accuracy (accuracy vs. epochs), and (2) model loss (loss
vs. epochs). Model losses were assessed, which report the behavior of the models during
training and validation.

Table 4. Comparative performance of the models.

Parameter DenseNet-121 Inception-Resnet-V2 Inception-V3

Performance of the base classifier

Accuracy (%) 93 88 92

AUC 0.9452 0.9602 0.9653

Performance of Ensemble Models

Traditional ensemble
model (Sum rule)

Traditional ensemble
model (Product rule) Novel ensemble model

Accuracy (%) 95 88 96

Average computational time (in seconds) 192.9 198.5 154.6
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1 
 

 
  

Figure 4. Performances of the deep-learning classifiers: (A) DenseNet-121, (B) Inception-ResNet-V2, and (C) Inception-V3 were demonstrated using confusion
matrix, classification report for accuracy, area under ROC curve, model accuracy (accuracy vs. epochs), and loss (loss vs. epochs) plots.
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3.2. Ensemble Models

Considering the performances of the base classifiers, a novel ensemble model was
developed and compared with the traditional ensemble models. The performance of the
traditional ensemble models was computed for the sum rule and product rule, based on
the confusion matrix, accuracy, and ROC curve. The ensemble model based on the sum
rule showed better performance, with an accuracy of 95%, compared with the product
rule with an accuracy of 88% (Figure 5A,B). Simultaneously, the novel ensemble model
followed the strategy mentioned in the methodology section. Initially, Inception-V3 and
Inception-Resnet-V2 were loaded, and later, DenseNet-121 was loaded. The performance
had an accuracy of 97% (Figure 4C), which was more efficient than the base classifiers and
traditional ensemble models, and took relatively less time (Table 4).

 

2 

 
Figure 5. Performances of the ensemble models: (A) traditional ensemble sum rule, (B) traditional
ensemble product rule, and (C) novel ensemble model was demonstrated using confusion matrix,
classification report for accuracy, and area under ROC curve.

4. Discussion

Based on this investigation, we observed that our proposed deep-learning-based
multi-model ensemble technique produces satisfactory results in the classification of OKC
into recurrent and non-recurrent statuses. Additionally, the predictions based on the
single classifiers, as well as the traditional ensemble, were efficient, producing an accuracy
between 85% and 93% in the classification of the dataset. However, our novel ensemble
model was outperformed by other analyzed models, including the traditional ensemble.
Due to the variability in histopathology across the patients and the high recurrence of OKC,
a timely and more accurate method is needed to predict the chance of OKC recurrence
from the histopathological images. The possibility of predicting the invasive nature of
a lesion can prevent both permanent damage to nerve structures and repeated surgical
interventions [19].
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With the fast development of computer-aided techniques in recent years, machine
learning methods are playing an increasingly essential role in disease detection. Several re-
searchers are constantly exploring new prediction algorithms. To the best of our knowledge,
there is no artificial intelligence (AI)-based predictive model for classifying histopatholog-
ical H&E-stained specimens of recurring OKC and non-recurring OKC. However, there
are other AI-based predictive models that are available for oral cancer. In this study, we
made a comparison between multiple model ensemble methods. We incorporated three
different deep-learning classifiers, which were previously proven to be efficient. Among the
three deep-learning classifiers, DenseNet-121 showed the highest accuracy at 93%, when
compared with Inception-V3 and Inception-ResNet-V2. The architecture of DenseNet was
inspired by a study that showed that convolutional neural networks with short connections
between the layers, near the input and output layers, are efficient and accurate [18]. Addi-
tionally, within each layer of the DenseNet-121 model, the current layer′s feature maps are
concatenated with those from all the previous levels [20]. Therefore, the convolutional lay-
ers contain fewer channels, the number of trainable parameters is reduced, and the model is
computationally efficient. Likewise, the Inception-V3 model showed 92% accuracy, which
is a relatively similar outcome to the DenseNet-121 model. Although all three models were
efficient, based on their solo outcomes, we looked to improve the accuracy by intergrading
these classifiers to develop an ensemble with the novel strategy, and then compared it with
the traditional ensemble model.

The traditional ensemble models such as the sum, product, and median rules are
popular and have the potential for use in classification problems. Herein, three deep-
learning models were trained and loaded in the initial stage itself, which has a longer
execution time and greater memory [17]. Finally, the prediction accuracy was obtained
based on the sum and product rules, respectively. Improved accuracy of 95% was noticed
using the sum rule, compared with the product rule model, and it had an execution time
of ~192 s. However, adopting the novel strategy of the ensemble model showed the best
performance at 97% accuracy, with an AUC of 0.98 and a significantly quicker time of
154.6 s. Compared to the traditional model, the presented novel model gave a good trade-
off between accuracy and execution-time reduction, because it loads only two trained
models in the initial stage. Compared with the traditional model, for the proposed models,
the order of the classifiers was crucial to ensure the best accuracy and low computational
cost. In this study, the classifier with the highest accuracy was chosen as the third classifier,
following the given algorithm for better prediction.

Overall, the novel ensemble model took significantly less time (154.6 s) and gave an
accuracy of 96% and an AUC of 0.98. This model has shown a good trade-off between
the computation time and other evaluation parameters, such as memory utilization and
accuracy of all the models. For future investigations, researchers may use whole slide
images and validate a larger sample size to improve the accuracy and execution time.

This study provides a significant contribution to predicting the recurrence of OKC that
facilitates mass screening, low-cost, and fast second opinions for critical cases; however, it
is a challenging task to design and develop an histopathology image classification system
that imitates the performance of human experts in H&E-stained tissues for detection of
risk stratification.

Furthermore, the study is limited by the small sample size and the non-usage of whole
slide images.

5. Conclusions

The application of machine learning methods showed significant clinical benefits in
predicting OKC recurrence on a small chunk of biopsy, which not only helps doctors with
detection but also supports them in following and predicting the prognosis and treatment
outcomes of their patients. Considering the outcome of our novel ensemble model, based
on accuracy and execution time, the presented design could be embedded into a computer-
aided design system for automation of risk stratification for odontogenic keratocysts. In
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the future, to eliminate bias, the present study could be validated on a larger sample size of
OKCs, and at different modes of treatment.
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