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Abstract

As an abundant post-translational modification, reversible phosphorylation is critical for the

dynamic regulation of various biological processes. prkC, a critical serine/threonine-protein

kinase in bacteria, plays important roles in regulation of signaling transduction. Identification

of prkC-specific phosphorylation sites is fundamental for understanding the molecular

mechanism of phosphorylation-mediated signaling. However, experimental identification of

substrates for prkC is time-consuming and labor-intensive, and computational methods for

kinase-specific phosphorylation prediction in bacteria have yet to be developed. In this

study, we manually curated the experimentally identified substrates and phosphorylation

sites of prkC from the published literature. The analyses of the sequence preferences

showed that the substrate recognition pattern for prkC might be miscellaneous, and a com-

plex strategy should be employed to predict potential prkC-specific phosphorylation sites.

To develop the predictor, the amino acid location feature extraction method and the support

vector machine algorithm were employed, and the methods achieved promising perfor-

mance. Through 10-fold cross validation, the predictor reached a sensitivity of 91.67% at

the specificity of 95.12%. Then, we developed freely accessible software, which is provided

at http://free.cancerbio.info/prkc/. Based on the predictor, hundreds of potential prkC-spe-

cific phosphorylation sites were annotated based on the known bacterial phosphorylation

sites. prkC-PSP was the first predictor for prkC-specific phosphorylation sites, and its pre-

diction performance was promising. We anticipated that these analyses and the predictor

could be helpful for further studies of prkC-mediated phosphorylation.

Introduction

In 1992, the Nobel Prize in Physiology or Medicine was award to Edmond H. Fischer and Edwin

G. Krebs for their discovery that reversible protein phosphorylation is a critical biological regula-

tory mechanism in biology [1]. Many studies in recent decades have been carried out to
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characterize the molecular mechanisms and functions of phosphorylation, and most were carried

out in eukaryotes [2–4]. A number of recent studies identified that phosphorylation is also critical

for signaling transduction in bacteria [5–9], while the regulation of phosphorylation in bacteria is

complicated. For example, the phosphorylation of histidine and aspartate was found to play criti-

cal roles in two-components systems for signal transduction [8,9]. Recently, a number of studies

discovered that serine/threonine phosphorylation played important roles in cellular signaling and

might be critical for the bacterial pathogenicity [5,7]; however, the regulators of serine/threonine

phosphorylation, serine/threonine kinases, could play critical roles in bacteria. As an important

kinase in bacteria, prkC was first characterized as membrane-linked serine/threonine protein

kinase, which is important for sporulation and biofilm formation in Bacillus subtilis [10]. Serine/

threonine protein in bacteria show homology in their catalytic domains [11], and it has been

implicated that prkC is homologous in S. pyogenes adherence, invasion and in E. faecalis persis-

tence [12]. Further studies showed that prkC was implicated in various biological processes such

as antimicrobial resistance and intestinal persistence [12], bacterial resuscitation [13] and gliding

motility [14]. However, the detailed substrates of prkC needed further dissection.

To understand the detailed biological functions and molecular mechanisms of prkC, identi-

fication of its substrates and sites is fundamental. Although the development of state-of-art

proteomics technologies such as high-throughput mass spectrometry enabled leading scien-

tists to carry out large-scale profiling of serine/threonine phosphorylation events in bacteria

[15,16], the kinase-substrate regulatory relationships are still unknown. Experimental studies

with conventional methods to identify substrates and sites for prkC are complicated. Recently,

a number of state-of-art computational methods such as Scansite, PPSP, PKIS and GPS were

developed to predict kinase-specific phosphorylation in eukaryotes [17–20], while NetPhosBac

and cPhosBac were constructed for serine/threonine phosphorylation in bacteria [21,22].

However, the predictor for kinase-specific phosphorylation in bacteria is still absent. Since

there are limited experimental studies for kinase-specific phosphorylation in prokaryotes,

more efforts should be made in this area to provide helpful information for further studies.

In this study, we developed a novel predictor for prkC-specific phosphorylation. According

to the 5-step rule defined by Chou et al. [23,24], we carried out the study and organized the

manuscript with the following 5 steps: (1) benchmark dataset construction, (2) protein sample

formulation, (3) algorithm classification, (4) cross validations and (5) web-server implementa-

tion. The experimentally identified substrates and prkC-specific phosphorylation sites were

manually collected from the literature. A dataset of 36 phosphorylation sites in 14 substrates

were constructed. The sequence preferences of these sites were analyzed, while the result

showed that prkC has complicated specificity of the sequence. The amino acid location feature

extraction method was used to predict the sequence encoding, and the support vector machine

(SVM) was employed to distinguish potential prkC-specific phosphorylation sites from the

background. 4-, 6-, 8- and 10-fold cross validations were employed to evaluate the perfor-

mance and the results shows the prediction power is promising. Based on the predictor, hun-

dreds of potential prkC-specific phosphorylation sites were annotated based on the known

phosphorylation sites in bacteria. Taken together, it was anticipated that the computational

prediction of prkC-specific phosphorylation might generate helpful information for further

studies of phosphorylation regulation in bacteria.

Materials and methods

Data preparation and analysis

Since no prkC-specific phosphorylation sites are currently available in public databases, we

manually curated the experimentally identified prkC-specific phosphorylation sites from the
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literature in PubMed. We used ‘prkC’ and ‘phosphorylation’ as the key words to search the

PubMed database and manually read the retrieved articles to curate the experimentally identi-

fied phosphorylated by prkC in Bacillus subtilis. Only the identified prkC-specific phosphory-

lation sites clearly described in the full text were reserved. In total, 36 phosphorylation sites in

14 substrates were obtained (Table 1). In this study, the 512 non-phosphorylated serine/threo-

nine residues were regarded as negative. To analyze the sequence preferences of prkC-specific

phosphorylation, WebLogo 3 software [25] was used to present the amino acid preference of

the phosphorylation sites, and Two Sample Logo software [26] was employed to compare the

adjacent around the phosphorylation sites and non-phosphorylated serine/threonine residues.

The amino acid location feature extraction method

To perform the prediction, the amino acid location feature extraction method, which was

developed previously and widely used to predict various protein post-translational modifica-

tions [27], was employed to encode the sequence.

According to peptide fragment encoding equation,

P ¼ R� 15R� 14 � � �R� 1 S=T R1R2� � �R15 ð1Þ

Eq 1 and the concept of the amino acid location feature extraction, the peptide sequences in

the training dataset can be formulated as Eq 2

Px¼31ðS=TÞ ¼ ½C1 C2 � � � Cu � � � CO�
T

ð2Þ

where the components Cu (u = 1,2,� � �,O) are defined to extract useful features from the rele-

vant training sequences. Since the length of peptides in the benchmark dataset is 31, Eq 1 can

be simplified as

P ¼ R1R2 � � � R15R16R17 � � � R30R31 ð3Þ

where R16 = S/T, and Ri(i = 1,2,� � �,31,i 6¼ 16) can be any of the twenty native amino acids.

Thus, the 31 components in its amino acid location feature vector are defined as follows.

For each position of the fragment, we have

c1 ¼ pðR1Þ

c2 ¼ pðR2Þ

..

. ..
.

c31 ¼ pðR31Þ

c32 ¼ nðR1Þ

c33 ¼ nðR2Þ

..

. ..
.

c62 ¼ nðR31Þ

ð4Þ

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

In Eq 4, p(R1) is the occurrence frequency of R1 at position 1 for the positive peptide

sequence of Eq 2 in the training dataset, and p(R2) is the occurrence frequency of R2 at position

2. n(R1) is the occurrence frequency of R1 at position 1 for the negative peptide sequence of Eq

2 in the training dataset, n(R2) is the occurrence frequency of R2 at position 2, and so forth.

After deriving these amino acid location feature values from the training data, we use the

SVM classifier LibSVM [28] to build the classifier for prediction. The extracted features were
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the input and the best parameters were adjusted to perform better prediction. The most impor-

tant parameters are the gamma (g) and cost (C), where the g parameter is used to configure

the kernel function, and the C parameter is the penalty factor of the support vectors when the

prediction is wrong. The steps of this process are as follows: (a) feature extraction, (b) data

standardization, (c) cross validation and (d) best parameters combination selection. Finally,

we constructed the prkC-PSP with the parameters of g = 0.5 and C = 32.0.

Performance evaluation

As previously described, four measurements of sensitivity (Sn), specificity (Sp), accuracy (Ac),

and Mathew’s Correlation Coefficient (MCC) were employed to evaluate the prediction

Table 1. Experimentally identified prkC-specific phosphorylation sites.

Acc Position Gene Organism PMID(s)

P16263 182 odhB Bacillus subtilis 24390483

P38494 365 ypfD Bacillus subtilis 24390483

P37561 88 yabS Bacillus subtilis 24390483

P37561 90 yabS Bacillus subtilis 24390483

P45740 565 thiC Bacillus subtilis 24390483

P42974 49 ahpF Bacillus subtilis 24390483

O34948 281 ykwC Bacillus subtilis 24390483

O34507 162 prkC Bacillus subtilis 12842463

O34507 163 prkC Bacillus subtilis 12842463

O34507 165 prkC Bacillus subtilis 12842463

O34507 167 prkC Bacillus subtilis 12842463

O34507 214 prkC Bacillus subtilis 20389117;12842463

O34507 290 prkC Bacillus subtilis 20389117;12842463

O34507 313 prkC Bacillus subtilis 20389117;12842463

O34507 320 prkC Bacillus subtilis 20389117;12842463

O34507 417 prkC Bacillus subtilis 20389117

O34507 498 prkC Bacillus subtilis 20389117

P19669 26 tal Bacillus subtilis 20389117

P19669 54 tal Bacillus subtilis 20389117

P19669 82 tal Bacillus subtilis 20389117

P19669 125 tal Bacillus subtilis 20389117

P19669 159 tal Bacillus subtilis 20389117

P19669 184 tal Bacillus subtilis 20389117

P12425 26 glnA Bacillus subtilis 20389117

P12425 147 glnA Bacillus subtilis 20389117

P12425 207 glnA Bacillus subtilis 20389117

P12425 286 glnA Bacillus subtilis 20389117

P39126 138 icd Bacillus subtilis 20389117

P39126 147 icd Bacillus subtilis 20389117

P39126 396 icd Bacillus subtilis 20389117

Q04777 88 alsD Bacillus subtilis 20389117

P08877 12 ptsH Bacillus subtilis 20389117

O34530 166 rsgA Bacillus subtilis 22544754

O34530 192 rsgA Bacillus subtilis 19246764

O34530 226 rsgA Bacillus subtilis 19246764

P33166 385 tuf Bacillus subtilis 19246764

https://doi.org/10.1371/journal.pone.0203840.t001
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performance. The four measurements were defined as follows:

Sn ¼
TP

TPþ FN
; Sp ¼

TN
TN þ FP

; Ac ¼
TPþ TN

TPþ FPþ TN þ FN
; and

MCC ¼
ðTP � TNÞ � ðFN � FPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTN þ FPÞ � ðTPþ FPÞ � ðTN þ FNÞ

p :

To evaluate the prediction performance and robustness of prkC-PSP, the training data set

was used to perform the n-fold cross-validations. That is, the data set is split into n parts ran-

domly and evenly. A candidate model will be built based on n-1 parts of the data set, and pre-

diction accuracy of this model will be evaluated on the validation data set, the holdout part of

the data set. In this study, the 4-, 6-, 8- and 10-fold cross-validations were performed; the

receiver operating characteristic (ROC) curves and AROCs (area under ROCs) were analyzed.

Implementation of the online service

The online service of the prkC-specific phosphorylation sites prediction (prkC-PSP) software

was implemented in Python and is freely available at http://free.cancerbio.info/prkc/.

Results

Sequence preferences of prkC-specific phosphorylation sites

Although a number of studies were carried out for prkC and its substrates, the sequence fea-

tures and motifs for prkC substrate recognition are still to be dissected. With the collected

prkC-specific phosphorylation sites (Table 1), the sequence features were analyzed with

WebLogo 3 [25] and two sample logo software packages [26]. The amino acid preferences are

shown in Fig 1A, while the enriched and depleted amino acid types around the prkC-specific

phosphorylation sites are presented in Fig 1B. It was observed that, in the current stage, most

prkC-specific phosphorylation sites were threonine residues. Among the residues around the

prkC-specific phosphorylation sites, lysine was enriched at the -10, -4, +7 and +11 positions

(Fig 1). Another positive charge residue arginine was enriched at the -9 and -1 positions, while

histidine was also enriched in the -13 and +12 positions (Fig 1). Interestingly, none of the neg-

ative residues such as aspartic acid and glutamic acid were enriched around the prkC-specific

phosphorylation sites. Taken together, it was indicated that the positive charge residues around

the recognition site were preferred by prkC. Furthermore, small residues including alanine

and glycine were enriched in the upstream positions including -10, -9, -5, -3 and -2 (Fig 1).

Aromatic residue phenylalanine was enriched near the recognition site including -4 and +3

positions (Fig 1).

Since the sequence preferences seemed to be evident, we tried to identify the potential

motif for prkC-specific phosphorylation. The motif analysis for the dataset was carried out

with the Motif-All software [29]. However, no significant motif was observed with a p-value

lower than 0.0001. This observation indicated that the prediction of the prkC-specific phos-

phorylation might be difficult.

Performance evaluation

To develop an accurate predictor for prkC-specific phosphorylation, several widely used

computational models, including amino acid location feature extraction (location) [27],

PseAAC [30] and CKSAAP [22], were tested. These models were combined with LibSVM to

perform the prediction, while the 10-fold cross validation was employed for accuracy

Predict phosphorylation sites in bacteria
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evaluation. The ROC curves were shown in S1 Fig, which indicated that the location-based

model was much better than the others. Since the PseAAC and CKSAAP models achieved

great success in prediction of other PTMs with a relatively huge dataset [22,30], we anticipated

that the location-based model might be more suitable for small datasets such as prkC-specific

phosphorylation. Thus, we employed the location-based model in this study.

To evaluate the performance of our prediction, the 4-, 6-, 8-, 10-fold cross validations were

carried out. The ROC curves for these validations are presented in Fig 2, while Table 2 presents

the detailed values of the performance. Since the 4-, 6-, 8-, and 10-fold cross validations perfor-

mances were consistent, it was indicated that the prediction was robust. Since the n-fold cross

validations could represent the prediction of new or unknown sites, the results show that our

prediction achieved promising performance. For the 4-fold cross validation, the prediction

achieved an accuracy of 94.89%, sensitivity of 91.67%, specificity of 95.12%, MCC of 0.6989

and AROC (area under ROC) of 0.9798. For the 6-fold cross validation, the performance was

an accuracy of 95.07%, sensitivity of 94.44%, specificity of 95.12%, MCC of 0.7159 and AROC

of 0.9778. For the 8-fold cross validation, the prediction achieved an accuracy of 94.71%, sensi-

tivity of 88.89%, specificity of 95.12%, MCC of 0.6817 and AROC of 0.9823. For the 10-fold

cross validation, the performance was an accuracy of 94.89%, sensitivity of 91.67%, specificity

of 95.12%, MCC of 0.6989 and AROC of 0.9770. From the results, it was observed that the per-

formance was promising.

Development of the prkC-PSP online prediction service

With performance taken into consideration, we developed a novel predictor of prkC-PSP

(prkC-specific Phosphorylation Sites Prediction) software for online prediction service. The

prkC-PSP was implemented in PHP and Python, and the prediction page was as shown in Fig

Fig 1. Preferences (A) and comparisons (B) of amino acids around the prkC-specific phosphorylation sites.

https://doi.org/10.1371/journal.pone.0203840.g001
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3. The example button presented the format for the input, which should be entered in the text

box. Three specificity levels in the 10-fold cross validation were provided to set the cut-off val-

ues for prediction. The high threshold indicated a sensitivity of 91.67%, specificity of 95.12%

and cut-off value of -0.6442. The medium threshold indicated a sensitivity of 94.44%, specific-

ity of 90.04% and cut-off value of -0.9774. The low threshold indicated a sensitivity of 94.44%,

specificity of 85.16% and cut-off value of -0.6442. Thus, the low, medium and high thresholds

Fig 2. Cross-validation performance of prkC-PSP. The ROC curves of the 4-, 6-, 8-, and 10-fold cross validations. The

AROC values were calculated and shown.

https://doi.org/10.1371/journal.pone.0203840.g002

Table 2. Cross-validation (CV) performances of prkC-PSP.

n-fold CV Threshold Sn (%) Sp (%) Ac (%) MCC AROC
4-fold 91.67 95.12 94.89 0.6989 0.9798

6-fold 94.44 95.12 95.07 0.7159 0.9778

8-fold 88.89 95.12 94.71 0.6817 0.9823

10-fold High 91.67 95.12 94.89 0.6989 0.9770

Medium 94.44 90.04 90.33 0.5782 0.9770

Low 94.44 85.16 85.77 0.4923 0.9770

https://doi.org/10.1371/journal.pone.0203840.t002
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indicated that the false discovery rates of the prediction were approximately 15%, 10% and 5%.

Users could choose the cut-off by themselves to perform prediction of the prkC-specific phos-

phorylation sites.

Fig 3. Prediction page of prkC-PSP predictor.

https://doi.org/10.1371/journal.pone.0203840.g003

Fig 4. Prediction results from prkC-PSP predictor for the example sequences with high threshold. There are 8

predicted hits (S182 in odhB, S365 in ypfD, T26, S54, T82, T125, T159 and T184 in tal).

https://doi.org/10.1371/journal.pone.0203840.g004
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Here, we presented the Bacillus subtilis odhB, ypfD and tal proteins (UniProt accessions:

P16263, P38494 and P12425) as examples to demonstrate the simplicity and precision of the

prkC-PSP. These sequences were pasted into the text box, and the high threshold was chosen;

then, we clicked the ‘Submit’ button, and the results were shown on the result page (Fig 4).

There were 8 predicted hits (S182 in odhB, S365 in ypfD, T26, S54, T82, T125, T159 and T184

in tal), which meant these sites would be phosphorylated by prkC specifically.

Large-scale prediction of prkC-specific phosphorylation sites in bacteria

Although the development of state-of-art proteomics technologies, such as high-throughput

mass spectrometry, enabled leading scientists to carry out large-scale identification of serine/

threonine phosphorylation in bacteria, the kinase-substrate regulatory relationships were still

unknown. Experimental studies with conventional methods to identify substrates and sites for

prkC were complicated. The homology of the bacterial serine/threonine protein is hypothe-

sized to have similar substrates as with prkC. Here, we applied the prkC-PSP predictor to iden-

tify potential prkC-specific phosphorylation sites. To perform the large-scale prediction, we

downloaded the dbPSP dataset [31], which curated massive phosphorylation data in 96 pro-

karyotes. However, only 38 bacteria species had the prkC kinase, and only 1,513 phosphory-

lated sites in these organisms were reserved. With the prkC-PSP predictor, we found that

approximately 8.5% of the sites could be phosphorylated by prkC with the high threshold,

while the medium threshold is of 13.2% and the low threshold is of 19.4% (Fig 5, S1 Table).

The prediction results should be useful for further experimental investigations. Several pro-

teins were picked as examples, and their prediction results were visualized in Fig 6 with IBS

software [22].

The serine/threonine-protein kinase pknL (P9WI62) could phosphorylate the DNA-bind-

ing protein MT2231 in Mycobacterium tuberculosis and was predicted to be involved in tran-

scriptional regulation and cell division [27]. We predicted that prkC might phosphorylate

pknL at T32, T173 and T175 (Fig 6A). Site T173 was required for autophosphorylation and

transphosphorylation activities, and T175 was critical for full kinase activity. These results

indicated that prkC might be the upstream kinase of pknL. As an important role in tricarbox-

ylic acid cycle (TAC), malate dehydrogenase mdh (P61889) catalyzed the reversible oxidation

of malate to oxaloacetate [31]. Here, we predicted that prkC phosphorylated malate dehydro-

genase at T211 and S193 in the lactate dehydrogenase/glycoside hydrolase domain, which

meant the T211 and S193 phosphorylation by prkC might regulate the malate dehydrogenase

activity in TAC (Fig 6B). Deletion of pyruvate kinase pyk (P80885) activity was a possible

route for elimination of acid formation in Bacillus subtilis grown on glucose minimal media,

while metabolic analysis indicated a dramatic increase in intracellular pools of phosphoenol-

pyruvate (PEP) and glucose-6-P in the pyk mutant [32]. Previous studies showed that pyk

could be phosphorylated at S36, S538 and S546 [33]. We predicted that prkC phosphorylated

pyk at S538 and S546 (Fig 6C). Since the two sites located in the PEP-utilizing enzyme domain,

pyk phosphorylation by prkC might be relevant to PEP accumulation. Elongation factor Tu 1

tufA (P0CE47) in Escherichia coli played a stimulatory role in trans-translation through bind-

ing to tmRNA [34] and could be phosphorylated at T383 in vitro by several kinases such as

HipA and doc [35,36]. Here, we predicted that T383 could be phosphorylated by prkC as well

(Fig 6D).

Discussion

As a dynamic regulatory mechanism, protein phosphorylation played important roles in regu-

lation of various cellular processes in prokaryotes [5–9]. Identifying the phosphorylation
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events and their upstream kinases was critical for dissecting the molecular details of phosphor-

ylation signaling [5–9]. Since experimental methods to detect kinase-specific phosphorylation

were time-consuming and labor-intensive, convenient computational prediction could pro-

vide great help to narrow down the candidate sites for experiments. Since all the computa-

tional prediction methods were based on known datasets, the accumulation of known kinase-

specific phosphorylation sites should be enough for the construction of prediction models.

However, the currently known substrates and sites for most kinases among prokaryotes were

limited. As one of the most important kinase in bacteria, prkC could phosphorylate serine and

threonine and regulate various biological functions [13,26,37]. Through careful curation, we

found that prkC had many known substrates and sites. Thus, we predicted prkC-specific

Fig 5. Counts and coverage ratios of phosphorylation sites predicted by prkC-PSP at three different thresholds.

The ratio ranges from high to low threshold is 8.5% to 19.4%.

https://doi.org/10.1371/journal.pone.0203840.g005

Fig 6. Examples of large-scale prediction by prkC-PSP. Here, we predicted the potential prkC-specific phosphorylation sites among the experimentally identified

protein phosphorylation sites with a high threshold. (A) M. tuberculosis pknL (P9WI62); (B) E. coli mdh (P61889); (C) B. subtilis pyk (P80885); (D) E. coli tufA

(P0CE47).

https://doi.org/10.1371/journal.pone.0203840.g006
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phosphorylation as the initial step for further kinome-wide prediction of kinase-specific phos-

phorylation in bacteria.

In this study, we carried out computational prediction for prkC-specific phosphorylation

sites. The experimentally identified prkC-specific phosphorylation sites were manually col-

lected, and the sequence preferences were analyzed. There are many feature extraction meth-

ods and algorithms developed for predicting biological features. For example, Butt et al used

statistical moments to extract features and Multilayer Neural Network (MNN) to predict

membrane proteins [38], Akmal et al extracted the protein feature with multiple methods and

combined with MNN to identify glycosylation sites [39], and Ehsan et al used neuro network

for classification of signal peptides [40]. With our dataset, the amino acid location feature

extraction method and the SVM algorithm were employed to perform prediction. These stud-

ies could serve as a promising start while a number of improvements could be implemented in

the future. For example, a complex feature selection method could be developed to provide

better prediction, while introducing other features such as secondary structure and solvent-

accessible surface areas might provide better prediction. Furthermore, since there are a large

number of known kinase-specific phosphorylation sites in eukaryotes, the kinase-substrate

recognition patterns might be used to perform predictions in prokaryotes.

Taken together, this study provides a start for kinase-specific prediction of phosphorylation

sites in prokaryotes. Computational prediction will help advancing studies of serine/threonine

phosphorylation in bacteria.

Supporting information

S1 Fig. Comparison of different feature extraction methods. The ROC curves of the 10-fold

cross validation for different algorithms including the location model used in this study and

other models such as PseAAC and CKSAAP. The AROC values were calculated and are

shown.

(TIF)

S1 Table. The annotation of potential prkC-specific phosphorylation sites from dbPSP

database. (a) The phosphorylation sites in bacteria species that have prkC kinase. (b) The sites

that were potentially phosphorylated by prkC kinase were annotated by the predictor

prkC-PSP.

(XLSX)
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