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Voltage-driven motion of nitrogen ions: a new
paradigm for magneto-ionics
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Magneto-ionics, understood as voltage-driven ion transport in magnetic materials, has largely
relied on controlled migration of oxygen ions. Here, we demonstrate room-temperature
voltage-driven nitrogen transport (i.e., nitrogen magneto-ionics) by electrolyte-gating of a
CoN film. Nitrogen magneto-ionics in CoN is compared to oxygen magneto-ionics in Coz0,.
Both materials are nanocrystalline (face-centered cubic structure) and show reversible
voltage-driven ON-OFF ferromagnetism. In contrast to oxygen, nitrogen transport occurs
uniformly creating a plane-wave-like migration front, without assistance of diffusion channels.
Remarkably, nitrogen magneto-ionics requires lower threshold voltages and exhibits
enhanced rates and cyclability. This is due to the lower activation energy for ion diffusion and
the lower electronegativity of nitrogen compared to oxygen. These results may open new
avenues in applications such as brain-inspired computing or iontronics in general.
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agneto-ionics!~17, ie., the change in the magnetic

properties of materials due to electric field-induced ion

motion, is acquiring a leading role, among other mag-
netoelectric mechanisms (intrinsic!® or extrinsic!® multiferroicity,
electric charge accumulation?9-22), to control magnetism with
voltage?3%4. This is triggered by its capability to largely modulate
magnetic properties in a permanent and energy-efficient way>2°.
Usually, magneto-ionic systems comprise layered hetero-
structures built around a ferromagnetic target material, such as
Co or Fe, grown adjacent to solid-state electrolyte films (e.g.,
GdO,2 or Hf0,2%). Depending on the voltage polarity, these
electrolytes accept or donate oxygen, acting as ion reservoirs. In
this way, for instance, the effective magnetic easy axis of ferro-
magnetic layers can be precisely controlled?. However, room-
temperature ionic response is slow (~10%2-103s)2. Therefore,
since ion migration is a thermally activated process?’, ion diffu-
sion is commonly assisted with heat?, which is detrimental in
terms of energy efficiency. Sometimes cyclability is limited due to
cumulative irreversible changes that the target materials undergo
from structural/compositional viewpoints?. Recently, through a
proton-based route, 10~! s ionic motion has been demonstrated at
room-temperature, with good endurance, despite restricted
hydrogen retention®. Hydrogen is mainly adsorbed rather than
absorbed, which imposes stringent limitations on the thickness of
the ferromagnet. Other approaches relying on the insertion/
removal of ions, such as Lil1-1328 or F14, into a ferromagnet are
promising in terms of reversibility. However, due to incompat-
ibilities with complementary metal-oxide semiconductor (CMOS)
architectures, applications in electronics in these cases are
limited®.

An alternative approach is to use target materials, which are
already oxidized. Magneto-ionics using structural oxygen (ie.,
oxygen incorporated in the crystallographic structure of the
actuated material) exhibits outstanding stability and
reversibility”8. This has been demonstrated in electrolyte-
gated?%-29-33, thick (=100 nm) paramagnetic Co;0, films, in
which room-temperature voltage-controlled ON-OFF ferro-
magnetism has been achieved, benefiting from defect-assisted
voltage-driven transport of structural oxygen. Nevertheless, there
is an inherent voltage trade-off between induced magnetization,
speed and cyclability. Specifically, the generated magnetization
increases with voltage, whereas cyclability degrades for exceed-
ingly high voltages due to irreversible losses of oxygen (ie.,
bubbling)”:8.

Here, nitrogen magneto-ionics is demonstrated as an improved
alternative to oxygen magneto-ionics. CoN and Co;0y single-layer
films are voltage-actuated to compare nitrogen vs. oxygen magneto-
ionic performances. These materials were selected since they both
exhibit voltage-induced ON-OFF ferromagnetic transitions. Both
films were grown by sputtering, have the same thickness and exhibit
a similar (nanocrystalline, face-centered cubic) microstructure.
Remarkably, voltage-driven transport of structural nitrogen is
energetically more favorable than oxygen, resulting in lower oper-
ating voltages and enhanced cyclability. This together with the
lower electronegativity (i.e., weaker bonds with Co) of nitrogen with
respect to oxygen leads to overall enhanced magneto-ionic effects.
Controlled motion of nitrogen ions with voltage might enable the
use of magneto-ionics in new technological areas that require
endurance and moderate operation speeds (e.g., neuromorphic
computing®* or micro-electro-mechanical systems3?).

Results

Oxygen vs. nitrogen magneto-ionics: magnetoelectric char-
acterization. Structural and magnetic characterization of the as-
deposited films reveals that both Co;0, and CoN films are

polycrystalline (with cubic structure) and non-ferromagnetic
(Supplementary Information, Figs. S1-S4). The voltage actuation
is carried out via electrolyte-gating using an electrochemical
capacitor configuration® (Fig. 1a). In this way, the overall film area
exposed to the liquid electrolyte?®30 is activated, establishing a
well-defined out-of-plane electric field®. To investigate magneto-
ionic motion, the films were electrolyte-gated at -50V for 12h
and, during this time, consecutive magnetic hysteresis loops
(25 min duration each) were sequentially recorded. In Fig. 1b, c,
the red loops correspond to the first measurement under voltage
and the black arrows indicate the first sweeping leg of the cycle. In
this timeframe (during the descending branch of the loop), the
magnetization (M) of the CoN film significantly increases, whereas
Co30, still remains paramagnetic, evidencing that nitrogen motion
is significantly faster than oxygen transport. This is demonstrated
in Fig. 1d, which shows the saturation magnetization, Ms, as a
function of time (Supplementary Fig. S5 shows details on Mg
quantification). Mg evolves with time for both films, reaching, after
the magneto-ionic motion has stabilized, maximum values of 588
and 637 emu cm~3 for Cos0, and CoN, respectively (Table 1). By
linearly fitting Mg vs. t during the first minutes of voltage appli-
cation (wherein Mg in CoN fully saturates), magneto-ionic rates of
467 and 2602 emu cm— h~! are obtained for oxygen in Co;0, and
nitrogen in CoN, respectively (Table 1), i.e.,, a five-fold enhance-
ment for the latter. For both systems, when gating at -50V,
bubbling occurs. Oxygen (in Co3;0,) and nitrogen (in CoN) gas
evolution is most likely the major source of bubbling. When a large
negative voltage is applied, high concentrations of oxygen and
nitrogen anions accumulate near the counter-electrode. If their
concentration is high enough, bubbles form when the oxygen (or
nitrogen) solubility limits3®37 are exceeded. When this happens,
these elements are irreversibly lost from the system (sample +
electrolyte) and this is the main reason causing the lack of rever-
sibility of magneto-ionic effects when positive voltage is applied.
Partial decomposition of electrolyte gate (i.e., propylene carbonate)
at high voltages cannot be completely ruled out®, although no
electron-transfer reactions can be observed in the cyclic voltam-
metry curve when using Pt as working electrode (Supplementary
Fig. $6) and no bubbling was observed in this case. Bubbling is, in
fact, more pronounced for CoN than for Co;0O4 where the
magneto-ionic response is stronger. The hysteresis cycles from
electrolyte-gated CoN are more square-shaped than for Co;O4
(Fig. 1b, c). They exhibit larger squareness [defined as the ratio
between the remnant magnetization (Mg) and Mg (My/Ms)], and
larger slopes at the coercivity (Hc) normalized to Mg [dM/dH(H =
Hc) Mg than the loops of CosO, throughout the time the voltage
was applied (Fig. 1e).

Additionally, the Hc corresponding to Co;O, scales mono-
tonically with time, while in CoN Hc shows a maximum at the
initial stages of gating and decreases afterwards (Supplementary
Fig. S7). The case of CoN bears a resemblance to the characteristic
dependence of Hc with particle size in magnetic systems,
consistent with a homogeneous generation of ferromagnetic
regions, uniformly evolving in size, starting from a super-
paramagnetic behavior (zero Hc), followed by a single domain
state (maximum Hc) and, afterwards, reaching a multi-domain
state with reduced Hc3. The squareness of the loops and the rather
small Hc for CoN indicate an in-plane anisotropy and likely a
reversal by domain wall motion, which hints at the uniformity of
the generated metallic Co phase (Table 1). Such low coercivities
might be also associated with a highly nanostructured or even
amorphous-like Co%0. In contrast, the generated ferromagnetism in
Co30, shows much larger H¢, which results from the formation of
isolated Co clusters immersed in a residual Co;O, matrix’3.

The onset voltage for magneto-ionic motion was determined in
as-prepared films by monotonically increasing the absolute value
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Fig. 1 Oxygen vs. nitrogen magneto-ionics: magnetoelectric characterization. a Schematic representation of the electrolyte-gating process in the Coz0,4
and CoN films. b, ¢ Hysteresis loops (each of 25 min of duration) of the as-prepared film (black) and under -50 V gating (the first (0-25 min) and the third
(50-75 min) cycles are shown only) for the Co30,4 and CoN films, respectively, obtained by in-plane vibrating sample magnetometry. d Time evolution of
the saturation magnetization (Ms vs. t) and e squareness (Mg/Ms) and slope of hysteresis loop at Hc normalized to Ms (dM/dHLH = Hcl Ms™) for each
film. f, g Time evolution of Ms when the gating is monotonically increased in steps of -2 V to determine the onset voltage required to display
ferromagnetism for Co30,4 and CoN, respectively.

Table 1 Oxygen vs. nitrogen magneto-ionics by magnetoelectric measurements.

Film Onset voltage (V)  Recovery voltage (V) dM/dt @ -50V Ms Mgp/Ms (%) dM/dH Mg @ Hc Hc (Oe)
(emu cm3 h) (emu cm™3) (kOe™ 1)

Co30, -6 +20 467 588 62 7.4 185

CoN -4 +4 2602 637 96 97.4 17

Onset and recovery voltages, magneto-ionic speed and magnetic properties of the generated ferromagnetic phases. Note that Ms has been obtained by normalizing the magnetic moment to the nominal
film thickness, without taking into consideration the formation of vacancies or eventual nanoporosity.
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of the negative gating in steps of -2 V to observe when the films
started to display ferromagnetism (Fig. 1f, g and Supplementary
Fig. S3). Interestingly, the onset voltage for CoN (-4 V) is lower
than for Co3;O, (-6V). To investigate reversibility of the
magneto-ionic process, both systems were kept at their respective
onset voltages for one hour and, then, the polarity was inverted
(i.e., +4 and +6V). Remarkably, while Co3;0, recovers only
partially at +6 V, CoN fully recuperates the pristine paramagnetic
state at +4 V. These results anticipate a higher activation energy
for oxygen transport than for nitrogen. In fact, to recover the
paramagnetic state in Co;O4 + 20V are required (Table 1). The
need to actuate at a higher voltage induces irreversible losses of
oxygen since the liquid electrolyte has a limited solubility of
oxygen®!. Note that if -50 V are applied, none of the treated films
is recoverable in agreement with the irreversible loss of oxygen
and nitrogen through bubbling.

Magneto-ionic cyclability. To investigate the cyclability, the CoN
and Co;0, films were subjected to -4 V/+4V and -8 V/ +8V
pulses of relatively short duration (=8.5 min/cycle). The duration
of the onset negative voltage pulse was selected in each material to
give a AM of approximately 1 emucm™ in the first cycle. This
resulted in times of approximately 4.1 min for CoN and 6.2 min
for Co;0, (evidencing that the response of Co;0; is delayed with
respect to that of CoN). As seen in Fig. 2, cycling at -/+4V
results in a very stable periodic response for CoN. Conversely, at
this voltage, no traces of magneto-ionic effects are observed in
Co30,4, corroborating the need of a higher onset voltage. Good
cyclability is observed for Co;O4 at -8 V/ +8 V. Note that, in
contrast to Fig. 1f, short pulses at -/4+-8 V allow recovering the
initial state in Co;O, after each cycle. Both materials show no
progressive irreversible gain/loss of magnetic signal upon suc-
cessive cycling. However, while the AM amplitude in each cycle
remains stable for CoN, a loss of about 25% is observed in Co30,
after the first cycle. As a first approach, a simple calculation
considering the overall magnetization induced in CoN when
applying - 50V (i.e, 637 emucm™3, Table 1, when the whole
CoN is affected, as will be shown in the forthcoming section)
suggests that during this reversible cycling (1 emu cm™3, Fig. 2),
only the uppermost 0.1-0.2 nm of the CoN layer are involved in
the observed reversible effect. If the threshold negative voltage is
applied for longer times (Fig. 1g), the induced magnetization
from nitrogen ion migration leads to an equivalent CoN

T T T T T T T

12 | |—+—Co,0,—4/+4V Pulses
—— Co,0,-8/+8V Pulses
10 | |—=—CoN -4/+4V Pulses

time (min)

Fig. 2 Cyclability. Magneto-ionic cyclability of the Co304 and CoN films
subjected to -4 V/+4V and -8 V/+8V, and to -4 V/+4V, respectively,
with pulses of short duration (x8.5 min/cycle). The pale yellow lines
represent the average curves. Horizontal lines (red, green) are guides to the
eye and span Temucm~3. The data are shifted in AM-axis to make them
distinguishable. Cyclability was carried out under the application of 5 kOe
to ensure being above the anisotropy field and, thus, in saturation.

thickness of 2-3 nm. Similar affected thicknesses during rever-
sible voltage-driven magnetization cycling can be estimated for
Co;0,. In any case, overall, Fig. 2 corroborates that magneto-
ionic rates, onset voltages and endurance are better when using
nitrogen than oxygen migration.

Ion transport mechanisms. Cross-section lamellae of the as-
prepared and electrolyte-gated samples treated at -50 V for 75
min were studied by transmission electron microscopy (TEM)
(Fig. 3). The as-prepared Co;0,4 shows regular, columnar-shaped
grains (Fig. 3a and Supplementary Fig. S8a). Co (red) and O
(blue) are homogeneously distributed in the as-grown film
(Fig. 3b). Conversely, upon gating at -50 V, this morphology
drastically changes redistributing the elements into O-rich
channels in agreement with previously reported results”-8
(Fig. 3¢, d and Supplementary Fig. S7c). This confirms that
oxygen transport takes place via a two-fold mechanism: (i) uni-
form oxygen transport towards the electrolyte and (ii) localized
oxygen migration along diffusion channels. High-resolution TEM
(Fig. S9) shows remaining Co30, after applying -50 V. Electric-
field induced oxygen ions exchange with the liquid electrolyte is
the main reason of the increased current densities observed in the
cycling voltammetry curves (Supplementary Fig. S10).

The as-prepared CoN film shows an isotropic and highly
nanostructured morphology with homogeneous composition
(Fig. 3e, f and Supplementary Fig. S7b). Remarkably, upon gating
at =50V for 75min, a well-defined interface (resembling a
diffusion front) parallel to the surface is distinguished, dividing
the film in two sublayers with different microstructures
(Supplementary Figs. S8d and S11). No traces of nitrogen are
detected in either of the two sublayers, evidencing a full
denitriding process, consistent with the magnetoelectric char-
acterization. While sublayer 2 is nanocrystalline, sublayer 1 (in
contact with the electrolyte during magnetoelectric measure-
ments) is amorphous-like and exhibits lower density (decrease of
Co signal in Fig. 3h), possibly due to free volume or nanoporosity.
This suggests a complex denitriding process in which, under large
negative voltages, not only does nitrogen migrate from the sample
to the electrolyte, but also Co is redistributed across the film
thickness. Similar to Co;0,, these processes are essentially non-
Faradaic and do not cause pronounced peaks in the cyclic
voltammetry curves (Supplementary Fig. S10).

To further asses the microstructure of the films upon magneto-
ionic actuation, variable energy positron annihilation lifetime
spectroscopy experiments#243 were performed (Methods). In the
as-prepared CoN sample, only 7; and 7, lifetime components are
observed, indicating the absence of void-like structures (no 7;) in
the pre-biasing state (Fig. 4). 7; is around 0.28 ns in the top half of
the film, which could correspond to a cluster of more than 4
vacancies’. For the bottom half, 7, is slightly lower, indicating
clusters with less than 4 vacancies. The second lifetime 7,
represents a mixture of signals from surface states and grain
boundaries. In the first tens of nm, 7, is larger than 0.5ns,
indicating the presence of small voids. As seen in Fig. 4b, the
relative intensity I; decreases, while I, increases reaching similar
intensities at the interface with the buffer layer, reflecting the
influence of the buffer polycrystallinity in the CoN growth, whose
extent decreases with film thickness.

Negative biasing of -20 V and -50 V increases 7; and 7, and
this increase scales with voltage, indicating that the initial open
volumes become larger. Already for -20V, 75 emerges, showing
the presence of large voids as it happens in Cos0,’. However, for
Co;04, a monotonic increase of relative intensity I, across the
film thickness is observed’, whereas relative maxima (marked
with arrows in Fig. 4b) are found for CoN. The depth position of
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Fig. 3 Compositional characterization by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and electron
energy loss spectroscopy (EELS). a-b, c-d, e-f, and g-h are the HAADF-STEM images and corresponding elemental EELS mappings of the areas marked in
orange, respectively, of the as-prepared Co30,4 film, Co304 film subjected to a —50 V for 75 min, as-prepared CoN film and CoN film subjected to a —50 V
for 75 min, respectively. The colors corresponding to each element for the EELS analyses are depicted at the bottom of the figure.

these relative maxima increases with the applied voltage,
suggesting the occurrence of an interface migration front, in
agreement with TEM observations. For -50V, the migration
front moves deeper into the film in agreement with a more
intense denitriding/amorphization process. I3 tends to decrease
and vanishes with thickness, evidencing that larger voids are only
present at the top surface (as hinted by the TEM-EELS analysis;
Fig. 3h). The ionic transport upon electrolyte-gating in CoN is
thus consistent with a uniform nitrogen migration through
vacancies and grain boundaries (r; and 7, increase), leaving
behind larger grain boundaries and voids.

Co-O vs. Co-N formation energy. Neither Co;0, nor CoN are
ferromagnetic at room-temperature. The magnetic properties of
these systems are strongly correlated to the amount of either oxygen
or nitrogen in the films. According to the virtual crystal approx-
imation, for CoN, beyond 50 at. % of nitrogen in the unit cell, the
magnetic moment becomes negligible (Fig. 5a). This explains why
the as-prepared CoN film is not magnetic and it also sets a limit for
irreversible losses of nitrogen beyond which successive voltage-
driven ON-OFF-ON ferromagnetism would be compromised.

To simulate the Co-O and Co-N formation energy (which
occurs when the dissolved oxygen and nitrogen ions are

re-introduced to the films with positive voltage), the insertion
of an atom of either oxygen or nitrogen into a cobalt slab, with
either (0001) HCP or (111) FCC orientation, has been considered.
Minimum energy paths were calculated by the nudged elastic
band method (Methods). The obtained total energies per atom
normalized to the global minimum value are plotted in Fig. 5b as
a function of the displacement z of the oxygen or nitrogen atom
from the cobalt reference layer. The reference z=0 A is assigned
to the position of the outermost cobalt layer. The global energy
minimum is found at z=1.14 A for both oxygen and nitrogen
cases. Another local minimum is located around z = -0.75 A for
oxygen and z = -1 A for nitrogen. In turn, the calculated energy
barriers between the two minima are 1.54 (1.85) and 1.14 (1.37)
eV/atom for oxygen and nitrogen displacement into HCP (FCC)
Co surface, respectively. Thus, inserting nitrogen into cobalt is
energetically more favorable (i.e., less energy required) compared
to inserting oxygen. Using the calculated energy barrier values,
one can infer the critical electric fields, Ec, needed to overcome
the energy barrier by oxygen and nitrogen atoms. These electric
fields can be estimated as E. = 4L where AV and Az represent,
respectively, the electric potential per atom to overcome the
energy barrier and the distance between minima that an
atom must migrate?®. E¢ is found to be 8.1 (8.5)V nm~! and
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Fig. 4 Defect characterization by variable energy positron annihilation
lifetime spectroscopy (VEPALS). a Positron lifetime components 7;__3 and
b their relative intensities /,_;_3 as a function of positron implantation
energy E, for as-prepared and -20 V and -50 V biased CoN films. The non-
monotonic change of intensity /I, with depth is linked to the position of the
interface between Co sublayers reminiscent of an ionic migration front as
highlighted in b.

5.3 (6.3) Vam™! for oxygen and nitrogen migration into HCP
(FCC) Co, respectively, in good agreement with the onset voltages
from magnetoelectric measurements (Fig. 1f, g) (thickness of the
electric double layer <1 nm). It is important to point out that due
to the limitations of the applied density-functional theory and in
particular the nudged elastic band method, the CoN and Co;0,4
crystallographic structures were not reproduced, starting initially
from the Co film while calculating the presented energy
considerations. However, with the chosen method we were able
to provide both a good explanation of the ionic energetics and
reasonable agreement with the experiment. More importantly, the
calculations allowed estimating the critical electric field needed to
overcome the barrier. It is worth noting that the same method
was efficiently used to describe the voltage control of the magnetic
anisotropy by O migration at Fe/MgO?®°. Therefore, we believe
that the applied approach is plausible to compare O vs. N
magneto-ionics.

Since the ionic radii of nitrogen ions are larger than the ionic
radius of O2-, once the energy barrier for ion diffusion is
overcome ionic motion would be, in first approximation,
expected to be larger for oxygen than for nitrogen. However,
the simulation results indicate the opposite, revealing that other
parameters, such as electronegativity, might play a more
dominant role than ion size in ionic motion. In fact, the Pauling
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Fig. 5 Ab initio calculations: magnetism in the Co-N system and Co-O vs.
Co-N formation energy. a Variation of magnetic moment in Bohr
magneton, pg, per Co atom as a function of increasing the N percentage in
the CoN unit cell, shown in the inset, calculated within Virtual Crystal
Approximation (VCA). b Calculated total energy per atom, normalized to
the minimum energy value, as a function of the displacement between the
reference Co outermost surface atom and the inserted O or N atom. Both
HCP (0001) and FCC (111) surfaces are considered represented by

filled and open symbols, respectively. The black squares (red circles)
correspond to the O (N) energetic path, respectively. The five-monolayer-
thick Co slab is shown in the right panel, where the dashed line indicates
the reference z position, which is the outermost Co surface monolayer.

electronegativity of nitrogen is lower than that of oxygen,
resulting in weaker bonds with cobalt, allowing for an enhanced
ionic motion.

Discussion

Our work demonstrates robust room-temperature nitrogen
magneto-ionics in CoN. Nitrogen magneto-ionics shows reduced
activation energies for ionic transport, thus requiring lower vol-
tage actuation. Moreover, the magneto-ionic rates are faster than
for oxygen magneto-ionics. This is linked to the conjugation of a
lower critical electric field to overcome the energy barrier for ion
diffusion and a lower electronegativity of nitrogen with respect to
oxygen. The dissimilar electric properties of CoN and Co30, are
also likely to play a role in the way ions diffuse in the two layers.
Thus, nitrogen magneto-ionics represents a robust alternative for
efficient voltage-driven effects and may enable the use of
magneto-ionics in devices that require endurance and moderate
speeds of operation, such as brain-inspired/stochastic computing
or magnetic micro-electro-mechanical systems. The reported
effects are also appealing to extend the use of nitride semi-
conductors in diverse applications such as electrochemical sen-
sors, catalysis, batteries, spintronics, or iontronics.
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Methods

Sample preparation. Eighty-five nanometer thick Co;04 and CoN films were
grown by reactive sputtering on B-doped, highly conducting [100]-oriented Si
wafers (0.5 mm thick), previously coated with 20 nm of Ti and 60 nm of Cu.
Depositions were carried always out while partly masking the Cu layer to serve as
working electrode.

The Co3;0, films were grown at room-temperature in an AJA International
ATC 2400 Sputtering System with a base pressure in the 10-8 Torr range. High
purity Ar and O, gases were used. The target to substrate distance was around 8 cm
and the sputtering rate of about 5 A s~1. CosO4 was grown in a 7% 0,/93% Ar
atmosphere at a total pressure of 2.5 x 1073 Torr.

The CoN films were grown in a homemade triode sputtering system with a base
pressure in the 10-8 Torr range. Ultra-high vacuum was ensured to minimize oxygen
contamination and, thus, to rule out traces of oxygen magneto-ionics. The target to
substrate distance was around 10 cm and the sputtering rate about 1 A s~1. CoN was
grown in a 50% N,/50% Ar atmosphere at a total pressure of 8 x 10-3 Torr.

Magnetoelectric characterization. Magnetoelectric measurements were carried
out by performing vibrating sample magnetometry while electrolyte gating the
films in a capacitor configuration at room-temperature. A magnetometer from
Micro Sense (LOT-Quantum Design), with a maximum applied magnetic field of
2T, was used. The samples are mounted in a homemade electrolytic cell filled with
anhydrous propylene carbonate with Na* solvated species (5-25 ppm). The
magnetic properties were measured along the film plane upon applying different
voltages, using an external Agilent B2902A power supply, between the Cu working
electrode and the counter-electrode (Pt wire). The sign of voltage was such that
negative charges accumulate at the working electrode when negative voltage was
applied (and vice versa for positive voltages). The Nat solvated species in the
electrolyte are aimed at reacting with any traces of water?’. The magnetic signal is
normalized to the volume of the sample exposed to the electrolyte. Note that the
hysteresis loops were background-corrected using the signal at high fields (i.e.,
fields always far above saturation fields) to eliminate linear contributions.

Structural and compositional measurements. 6/26 X-ray diffraction (XRD) pat-
terns were recorded on a Materials Research Diffractometer (MRD) from Malvern
PANalytical company, equipped with a PIXcellP detector, using Cu K,, radiation. The
patterns were analyzed using a full-pattern Rietveld refinement method.

High-resolution transmission electron microscopy (HRTEM), high-angle annular
dark-field scanning transmission electron microscopy (HAADF-STEM), and electron
energy loss spectroscopy (EELS) were performed on a TECNAI F20 HRTEM/STEM
microscope operated at 200 kV. Cross sectional lamellae were prepared by focused ion
beam and placed onto a Cu transmission electron microscopy grid.

Transport measurements. To determine electric properties, both films (Co;0,4

and CoN) were deposited onto high resistivity Si substrates. To assess the semi-

conducting/metallic behavior of CoN, resistivity values were acquired from 30 to
300 K. In all cases, the van der Pauw configuration was used.

Variable energy positron annihilation lifetime spectroscopy. Variable energy
positron annihilation lifetime spectroscopy (VEPALS) measurements were con-
ducted at the mono-energetic positron source (MePS) beamline, which is an end
station of the radiation source ELBE (Electron Linac for beams with high Brilliance
and low Emittance) at Helmholtz-Zentrum Dresden-Rossendorf (Germany)*2
using a digital lifetime CeBr; scintillator detector with a homemade software
employing a SPDevices ADQ14DC-2X with 14 bit vertical resolution and 2GS s~!
(GigaSamples per second) horizontal resolution and with a time resolution func-
tion down to about 0.205 ns. The resolution function required for spectrum ana-
lysis uses two Gaussian functions with distinct intensities depending on the
positron implantation energy, E,, and appropriate relative shifts. All spectra con-
tained at least 1 x 107 counts. The spectra were deconvoluted using the non-linearly
least-squared-based package PALSHit fitting software*3 into discrete lifetime com-
ponents, which directly confirm different defect types—i.e., sizes—(Fig. 4).

The corresponding relative intensities (I;) reflect to a large extent the
concentration of each defect type. In general, positron lifetime (7;) is directly
proportional to defect size, i.e., the larger the open volume, the lower the probability
and the longer it takes for positrons to be annihilated with electrons*>~%”. The
positron lifetime and its intensity are probed as a function of positron implantation
energy E, or, in other words, implantation depth (thickness). The shortest lifetime
component (7; < 0.32 ns) represents positron annihilation inside vacancy clusters
(likely within grains). The intermediate lifetime (0.35 < 7, < 0.90 ns) accounts for
annihilation at larger vacancy clusters (linked to grain boundaries), surface states,
and small voids/pores (0.28—0.37 nm in diameter, calculated based on the shape-
free model for pore-size estimation of Wada et al.*3). The longest lifetime
component (2.3 < 73 < 3.3 ns) indicates contributions of larger voids (0.58-0.74 nm
in diameter).

Ab initio calculations. The first-principles calculations were based on the projector-
augmented wave (PAW) method*’ as implemented in the VASP package®0-52 using
the generalized gradient approximation®3. We used cubic unit cell with a F43 m space

group for CoN. The full structural relaxation was performed until the forces became
smaller than 1 meV A~1, yielding a lattice constant of 4.41 A. The virtual crystal
approximation®* was used to model the variation of nitrogen per unit cell. To
compare the Co-O and Co-N formation energy, the nudged elastic band method
(NEB)*>°¢ was employed on the oxygen and nitrogen pathway into a five-monolayer
thick (0001) hexagonal close-packed Co slab. At each step, the atomic coordinates
were relaxed until the forces became smaller than 1 meV A~1. A kinetic energy cut-off
of 500 eV was used for the plane-wave basis set and 25 x 25 x 25 and 25 x 25 x 1 k-
point meshes were used to construct the first Brillouin zone in CoN unit cell and the
Co slab in the NEB calculations, respectively.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data used in this article are available from the corresponding authors upon request.
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