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Abstract

Background: To date, liver biopsy is the only means of reliable diagnosis for fatty liver disease (FLD). Owing to the
inevitable biopsy-associated health risks, however, the development of valid noninvasive diagnostic tools for FLD is
well warranted.
Aim: We evaluated a particular metabolic profile with regard to its ability to diagnose FLD and compared its
performance to that of established phenotypes, conventional biomarkers and disease-associated genotypes.
Methods: The study population comprised 115 patients with ultrasound-diagnosed FLD and 115 sex- and age-
matched controls for whom the serum concentration was measured of 138 different metabolites, including
acylcarnitines, amino acids, biogenic amines, hexose, phosphatidylcholines (PCs), lyso-PCs and sphingomyelins.
Established phenotypes, biomarkers, disease-associated genotypes and metabolite data were included in diagnostic
models for FLD using logistic regression and partial least-squares discriminant analysis. The discriminative power of
the ensuing models was compared with respect to area under curve (AUC), integrated discrimination improvement
(IDI) and by way of cross-validation (CV).
Results: Use of metabolic markers for predicting FLD showed the best performance among all considered types of
markers, yielding an AUC of 0.8993. Additional information on phenotypes, conventional biomarkers or genotypes did
not significantly improve this performance. Phospholipids and branched-chain amino acids were most informative for
predicting FLD.
Conclusion: We show that the inclusion of metabolite data may substantially increase the power to diagnose FLD
over that of models based solely upon phenotypes and conventional biomarkers.

Citation: Siegert S, Yu Z, Wang-Sattler R, Illig T, Adamski J, et al. (2013) Diagnosing Fatty Liver Disease: A Comparative Evaluation of Metabolic Markers,
Phenotypes, Genotypes and Established Biomarkers. PLoS ONE 8(10): e76813. doi:10.1371/journal.pone.0076813

Editor: Erica Villa, University of Modena & Reggio Emilia, Italy

Received April 24, 2013; Accepted August 27, 2013; Published October 9, 2013

Copyright: © 2013 Siegert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the German Research Foundation (DFG) through Excellence Cluster ’Inflammation at Interfaces’ [EXC 306/2]. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: sabine.siegert@uni-koeln.de

☯ These authors contributed equally to this work.

Introduction

Fatty liver disease (FLD) is a complex disease ranging from
simple fat accumulation in the liver (steatosis) to fatty liver
associated with inflammation (steatohepatitis). Non-alcoholic
fatty liver disease (NAFLD), a sub-phenotype that is

characterized by fat accumulation in the liver (>5% of the liver
weight) in the absence of excessive alcohol intake (<20g per
day), represents the most common form of chronic liver
disease [1]. This notwithstanding, its etiology is not yet fully
understood. NAFLD has been estimated to affect 20–30% of
adults in Western societies [1,2], including Germany where the
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prevalence was reported to be as high as 30% [3]. Owing to
different diagnostic criteria and different characteristics of the
respective study populations (partially small samples and
highly selected subjects), however, published estimates of
NAFLD prevalence vary widely [1,4-8]. Alcoholic fatty liver
disease (AFLD) as another sub-phenotype is associated with
excessive alcohol consumption, and the prevalence of AFLD
has recently been estimated to be three times lower than that
of NAFLD. Nevertheless, despite their different etiologies, it is
generally difficult to distinguish AFLD from NAFLD on the basis
of morphological features alone [9]. To date, histological
examination of liver tissue obtained at biopsy is the only
reliable means to diagnose FLD, but its invasiveness and
associated health risks as well as the high cost of the
procedure [10] render liver biopsy unsuitable as a screening
tool. On the other hand, currently available noninvasive
imaging techniques such as ultrasound, magnetic resonance
imaging or computer tomography have been criticized for a
lack of sensitivity, high costs or high radiation exposure [1,11].
Routine laboratory analysis of biomarkers has also been
proposed as a noninvasive alternative for FLD screening [12].
Alanine transaminase (ALT), known to be elevated in FLD
patients, is the most commonly used biomarker in medical
practice but has been criticized for poor sensitivity and
specificity, too [1,7,11,12].

Extensive research on FLD diagnosis has been conducted in
the past, and several prediction models based upon physical
examination (particularly body mass index (BMI), waist and hip
circumference) and biomarkers (triglycerides (TG), gamma
glutamyl transpeptidase (GGT), ALT, aspartate transaminase
(AST), glucose) have been proposed [13-18]. However, only
Bedogni’s Fatty Liver Index (FLI), which combines BMI, waist
circumference, GGT and TG, has become widely used in FLD
diagnosis [19-24], although it has been criticized recently for
yielding only fair agreement with ultrasonographic results [25]
and yet has to be validated in external populations.

Since the liver is a metabolically active organ, metabolite
concentrations are likely to change under FLD. We therefore
set out to explore the potential benefit of using metabolite
profiles to predict ultrasound-diagnosed FLD. We developed
different models to predict the disease status based either
upon phenotypes (e.g. anthropometric measures), conventional
biomarkers (blood parameters), metabolic profiles or disease-
associated genotypes, or upon combinations thereof and
compared their diagnostic power against a model solely based
on parameters included in Bedogni’s FLI [13].

Materials and Methods

Study design and study population
The present study was carried out in the PopGen control

cohort, a population-based sample drawn from the city of Kiel,
Northern Germany, between June 2005 and February 2006
[26]. Briefly, potential participants were selected at random
from the local population registry and invited to visit the study
center at the local university hospital. At baseline, participants
donated a venous blood sample, completed a general
questionnaire and underwent brief physical examination [27]. A

total of 747 North German individuals (392 males, 355 females)
were recruited. Participants were excluded from the present
study if no serum sample was available (n=17), the participant
could not be contacted for future studies (n=3) or information
was missing on abdominal ultrasound (n=238), blood lipids
(n=22), glycated hemoglobin (n=6), glucose (n=1), liver
enzymes (n=3), waist or hip circumference (n=12),
hypertension (n=7), physical strength (n=14) or medication use
(n=1). A total of 116 individuals with, and 307 individuals
without, ultrasound-diagnosed FLD were available for the
study. For practicability reasons, 115 FLD patients were
randomly chosen and complemented by 115 control individuals
matched for sex and 5-year age groups (50 to 55, 56 to 60, …,
76 to 80).

Ethics statement
All PopGen cohort members were of German descent and

gave written informed consent prior to the study. All study
procedures were approved by the ethics committee of the
Medical Faculty of the Christian-Albrechts University, Kiel,
Germany.

Parameter assessment
Venous blood samples were collected at baseline and fasting

serum samples were stored under quality-controlled conditions.
All cohort members completed a self-administrated
questionnaire on personal and family medical history,
medication use, height and current weight, and on lifestyle
factors such as smoking. At baseline, all PopGen participants
underwent physical examination by a trained physician,
including abdominal ultrasound, test of physical strength and
measurement of waist and hip circumference and blood
pressure. Information on alcohol consumption (C2-units per
day) was obtained during an interview carried out by a
physician. BMI and waist-to-hip ratio (WHR) were calculated
from self-reported weight and height data, and from measured
waist and hip circumference, respectively. Hypertension was
defined either as systolic/diastolic blood pressure greater than
140/90 mm Hg or as previously diagnosed hypertension.
Conventional biomarkers were determined either by an ad hoc
analysis of plasma samples (total cholesterol, high-density
lipoprotein (HDL), low-density lipoprotein (LDL), TG, glucose,
hemoglobin, glycated hemoglobin, alkaline phosphatase,
cholinesterase, GGT, ALT, AST) or in subsequent analyses of
frozen serum aliquots (fetuin-A).

Measurement of metabolites and quality control
The serum concentration of 186 metabolites was measured

using the AbsoluteIDQTM p180 Kit (BIOCRATES Life Sciences
AG, Innsbruck, Austria), as previously described [28]. Detailed
information on the assays and reagents used can be found in
the AbsoluteIDQTM p180 Kit manual (available at
www.biocrates.com). Metabolite concentrations were
measured on three different plates, each time with the same kit
and the same set of three negative controls. Five additional
positive controls (‘QC samples’) were included on each plate
for further quality control. Only metabolites that had an average
coefficient of variation <25% across the 15 QC samples, and a
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detection rate >90% in all 230 serum samples combined, were
analyzed further. Detection thresholds (‘Limits of Detection’,
LODs) for single metabolites were taken from the Analytical
Specifications AbsoluteIDQTM p180 Kit manual (AS-p180;
available upon request at www.biocrates.com). After quality
control, 138 metabolites remained for further analysis, including
14 acylcarnitines, 21 amino acids, 11 biogenic amines, 1
hexose, 68 phosphatidylcholines (PCs), 9 lyso-PCs and 14
sphingomyelins. The average coefficient of variation for those
138 metabolites was 9%. See Table S1 for detailed results of
the performed quality control.

Outcome assessment
The endpoint of interest in our primary analysis, FLD, was

diagnosed by abdominal ultrasound with a GE Logiq3
sonographic instrument (General Electric Healthcare, Bedford,
UK). In particular, imaging the liver and kidney by a
longitudinal- or cross-sectional view was carried out by one of
three trained physicians. The presence of FLD was defined as
increased hyperechogenic ultrasound pattern of the liver to that
of the kidney (bright liver). Since FLD is a complex disease,
ranging from steatosis to steatohepatitis, and in view of the
allegedly low sensitivity of ultrasound for FLD, we also
employed sharper endpoint definitions in a sensitivity analysis.
As previously reported, FLD is associated with increased ALT
levels [7,11], obesity, type 2 diabetes and dyslipidemia (low
levels of HDL and high levels of TG), rendering FLD the
hepatic representation of the metabolic syndrome (MetS)
[4,29]. More specifically, previous studies revealed the
presence of at least one MetS feature in approximately 90% of
NAFLD patients, and of three or more features in
approximately one third of them [4,29]. A similarly increased
prevalence of MetS and type 2 diabetes was also noted among
patients with AFLD [30]. Therefore, more stringent endpoint
definitions of FLD included an elevated ALT level (defined as
exceeding the 75th sex-specific percentile of the PopGen
cohort, i.e. >30U/l in men and >25U/l in women) [31] and the
presence of MetS features as defined by the International
Diabetes Federation (IDF) (www.idf.org).

The genetic risk score (GRS).  Potential FLD susceptibility
loci have been identified through candidate-gene studies and
GWAS in the past [32-35]. Many of these studies focused upon
FLD-related secondary end points such as increased ALT or
AST levels, severity of steatosis, or fibrosis. Therefore, we
considered only those genetic loci as suitable for further
analysis that were identified in studies using NAFLD or
nonalcoholic steatohepatitis (NASH) as the primary end point
and that had their disease association confirmed in studies with
the same endpoint. In total, we selected 14 single-nucleotide
polymorphisms (SNPs) for inclusion in our study (Table S2).
Genotype information was either available from public sources
[36,37] or was obtained by imputation with Beagle (v. 3.3) [38].
Quality control was performed using R (v. 2.14.1) [39] and
PLINK (v. 1.07) [40] (see Material S1 for details). After quality
control, 187 samples (91 cases, 96 controls) and 10 SNPs (see
Table S2) were available for further analysis. Instead of
including each SNP individually in a given diagnostic model, we
used a genetic risk score (GRS), calculated as the total number

of risk alleles (‘allele dosage’) at the 10 SNPs. Note that, due to
imputation of some genotypes, the allele dosage per SNP and
therefore the GRS assumed fractional values for some
samples and markers.

Statistical analysis.  Group differences in non-metabolic
characteristics were tested for statistical significance using a
χ2 test for categorical variables and a Student’s t test for
continuous variables. FLD status was predicted using logistic
regression models based either upon phenotypes, conventional
biomarkers, metabolic profiles or genotypes, or upon
combinations thereof. Given partially strong correlations
between some metabolites (Figure S1), instead of including
each of those 138 markers separately metabolic profiles as
obtained from partial least-squares discriminant analysis (PLS-
DA) [41] were used in logistic regression models to avoid
collinearity among predictors. In brief, PLS-DA focuses upon
covariance maximization between predictors (metabolites) and
response (FLD) when estimating the parameters of a linear
regression model, not upon variance maximization of the
predictors alone, and thus represents a regression extension of
principal component analysis. Missing data for leucine (n=1),
histamine (n=11), SDMA (n=9) and taurine (n=16) were
imputed using the respective sample means of either cases or
controls, as appropriate. For PLS-DA, all predictors were
standardized to unit variance and zero mean. Leave-one-out
cross-validation (CV) of a preliminary PLS-DA model, including
all 138 metabolites and the whole study population (n=230),
identified the first five PLS components as providing optimal
discriminatory power (minimal root mean squared error of
prediction: 46.6%). In subsequent comparative analyses, all
logistic regression models based on metabolic profile
information therefore included the first five PLS components
derived from a PLS-DA model for all metabolic markers or a
subset of them and the whole study population or a subset of it,
as appropriate. The reference model in our analyses included
those parameters that had already been combined in Bedogni’s
FLI [13]. However, to allow for comparability to fuller diagnostic
models, the prediction was based on regression coefficient
estimates specific for the underlying study population instead of
implementation of the crude FLI (i.e. equation with proposed
regression coefficients). Since cases and controls were
matched for sex and age, no adjustment for these covariates
was necessary in the initial data analysis. However, matching
was no longer ensured in subsequent subgroup analyses,
stratified by genotype, alcohol consumption or more stringent
endpoint definitions. For comparability with the initial analysis,
we report only the results of the unadjusted subgroup analyses
here. Subgroup analyses adjusted for sex and age gave similar
results and did not change our conclusions (data not shown).

The area under curve (AUC) was calculated for each
diagnostic model. P values were obtained by DeLong’s
approach, comparing the AUC of potentially related predictive
models [42]. Change in prediction performance was also
quantified by the integrated discrimination improvement (IDI)
measure [43]. This measure uses the difference, or
‘discrimination slope’, between the average probability among
cases of being affected, as predicted by the model, and the
average probability among controls of being affected, again
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following the model’s prediction. The difference (‘absolute IDI’)
in as well as the ratio (‘relative IDI’) of the discrimination slopes
of two models then serve as measures of discrimination
improvement. We used 10-fold CV, with an equal number of
cases and controls in each partition and a fixed classification
threshold of 50%, to protect against an upward bias in AUC
estimates that is likely to occur when using the same data set
for both training and testing of prediction models [44].
Discriminative power of the PLS-DA was visualized as scatter
plot of the first two PLS components for each metabolic profile.
Moreover, the contribution of individual predictors to the PLS-
DA model and, thus, to the derived PLS components was
quantified by the ‘Variable Importance in the Projection (VIP)’
score [45]. With this approach, the average of the squared VIP
scores equals unity, and predictors with a VIP score >1 are
considered more important than others for discriminating
between cases and controls.

Single metabolite concentrations were also analyzed by
linear regression of log-transformed values, treating FLD status
as the independent variable (0 unaffected, 1 affected) and
adjusting for sex, age, BMI, MetS, TG, GGT, ALT and AST/ALT
ratio. Metabolite concentrations were log-transformed to ensure
a better fit to a Gaussian distribution because most metabolite
distributions were right-skewed. In view of the strong
correlation between metabolites, we used the Westfall and
Young Step-Down MaxT procedure [46] to allow for multiple
testing. P values below 0.05 were considered statistically
significant.

All analyses were performed using the R statistical software
(v. 2.14.1) [39]. For PLS-DA, we used R package pls (v. 2.3.0)
[47]. ROC analysis was carried out using package pROC [48]
and reclassification analysis was done using package
PredictABEL [49].

Results

Study population
The present study comprised 115 FLD patients (44 female,

71 male) and 115 sex- and age-matched controls (Table 1).
The mean age at the time of recruitment was 60 years in cases
(range: 50-76 years) and 61 years in controls (50-77 years). As
was to be expected, cases had significantly higher BMI
(p=7.5×10-11) and WHR (p=1.5×10-4), higher levels of TG
(p=0.005), GGT (p=0.002) and ALT (p=0.022), and
substantially lower levels of HDL cholesterol (p=2.4×10-5) than
controls. Likewise, significantly more cases than controls were
also diagnosed with MetS (p=8.0×10-4). Information on alcohol
use was available for 167 subjects only, and a significantly
higher self-reported alcohol intake was observed among FLD
patients (p=0.028).

Improved diagnostic accuracy when using the
metabolic marker set, but little gain with genotype
information

Prediction of FLD status in the baseline model based upon
parameters included in Bedogni’s FLI (BMI, GGT, TG, waist
circumference) achieved an AUC of 0.8060 (95% CI:
[0.7503; 0.8616]; Table 2). Consideration of neither liver

Table 1. Study population characteristics.

  Cases Controls p
Participant characteristics    
 N 115 115  
 Men (n (%)) 71 (62) 71 (62)  

 Age, years 60 (7) 61 (7) 0.800
  Range 50-76 50-77  

Phenotypes    
 Body mass index, kg/m2 28.64 (4.61) 24.92 (3.59) 7.52×10-11

  < 25 (n (%)) 22 (19) 66 (57)  

  [25, 30) (n (%)) 61 (53)
3
9 (34)

 

  ≥ 30 (n (%)) 32 (28) 10 (9)  
 Waist circumference, cm 99.16 (12.81) 89.71 (12.36) 3.91×10-8

 Hip circumference, cm 107.42 (10.59) 101.89 (7.52) 8.52×10-6

 Waist-to-hip ratio 0.92 (0.08) 0.88 (0.09) 1.54×10-4

 Ever smokers (n (%)) 73 (63) 62 (54) 0.181

 Alcohol consumption1 (n (%)) 46 (40) 36 (31) 0.311

  Alcohol intake, C2-units 0.77 (1.08) 0.46 (0.65) 0.028

 Hypertension (n (%)) 80 (70) 64 (56) 0.041

 Type 2 diabetes (n (%)) 6 (5) 3 (3) 0.355

 Co-morbitities2 (n (%))    
  0 36 (31) 45 (39) 0.576
  1 45 (39) 46 (40)  
  2 24 (21) 18 (16)  
  3 8 (7) 5 (4)  
  4 2 (2) 1 (1)  
 Metabolic syndrome3 (n (%)) 51 (44) 26 (23) 7.98×10-4

 Physical strength, kg 37.99 (10.85) 37.10 (12.34) 0.561

 Medication use (n (%)) 76 (66) 69 (60) 0.412

Conventional biomarkers    
 Total cholesterol, mg/dl 228.44 (61.35) 222 (40.34) 0.348

 HDL cholesterol, mg/dl 60.57 (16.42) 70.85 (19.55) 2.35×10-5

 LDL cholesterol, mg/dl 146.91 (39.81) 142.74 (34.84) 0.398

 Triglyceride, mg/dl 194.50 (295.27) 114.95 (50.45) 0.005

 Fasting glucose, mg/dl 91.21 (26.11) 86.20 (15.27) 0.077

 Hemoglobin, g/dl 14.88 (1.11) 14.51 (1.06) 0.009

 Glycated hemoglobin, % 5.74 (0.65) 5.58 (0.34) 0.016

 Alkaline phosphatase, U/l 73.37 (20.49) 71.19 (24.36) 0.463

 Cholinesterase, KU/l 9.45 (1.74) 8.99 (1.92) 0.058

 Fetuin-A, µg/ml 347.04 (89.31) 323.14 (93.86) 0.049

 ALT, U/l 31.36 (15.86) 25.26 (23.58) 0.022

 AST, U/l 25.46 (9.06) 25.68 (18.38) 0.910

 GGT, U/l 48.59 (47.88) 32.08 (29.12) 0.002
 AST/ALT 0.90 (0.26) 1.13 (0.28) 6.22×10-10

 GGT/ALT 1.62 (1.51) 1.38 (1.00) 0.163

Data are means (sd) unless indicated otherwise. P values were obtained from a χ2

or Wald test in a linear regression analysis of categorical and continuous
predictors, respectively.
1 Based upon 167 individuals only because of missing data (29 cases, 34
controls).
2 Number of prevalent diseases, including cancer, chronic disease, any form of
diabetes, gallstones, heart attack, inflammatory bowel disease and neuropathy.
3 The metabolic syndrome was defined according to the International Diabetes
Federation (IDF) definition.
doi: 10.1371/journal.pone.0076813.t001
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enzymes ALT and AST nor the whole set of phenotypes and
biomarkers increased this value substantially (AUC: 0.8154,
p=0.353 and AUC: 0.8375, p=0.052). However, a significantly
higher AUC was noted when the first five PLS components
from a PLS-DA model on 138 metabolites were included (AUC:
0.9135, p=1×10-3). Moreover, risk-based classification of
individuals improved by an absolute IDI of 0.2471 (95% CI:
[0.1917; 0.3025]), corresponding to a 90.0% increase of the
difference between the mean risk of cases and controls. In
addition, the classification error, as obtained from 10-fold CV,
decreased to 20%. Again, inclusion of other single phenotypes
and biomarkers did not substantially further improve the
diagnostic accuracy. Notably however, BMI remained a
significant predictor besides the PLS components in all
prediction models (p<0.05; data not shown). Figure 1 depicts

the diagnostic capability of BMI compared to that of BMI, GGT,
TG and waist circumference and to that of the metabolic
marker set, respectively. Remarkably, consideration of the first
five PLS components alone decreased diagnostic accuracy of
the model based additionally on parameters included in
Bedogni’s FLI only marginally (AUC: 0.8993, p=0.125)
reflecting high discriminative power of metabolic profiles
independently from information provided by BMI, GGT, TG and
waist circumference.

The use of genotype information (GRS) did not substantially
improve the diagnostic accuracy of any model in a sensitivity
analysis (Table 2). Moreover, inclusion of information on
alcohol use, available for 167 participants (86 cases,
81 controls), did also not substantially improve AUC, IDI or the
classification error of any of the models (Table 2). This result

Table 2. Diagnostic accuracy for fatty liver disease.

    ROC1   IDI2  Classification
Predictors AUC 95% CI p Abs 95% CI Rel error3

All study participants, n=230 (115 cases/ 115 controls)        
  BMI, GGT, TG, waist (baseline) 0.8060 [0.7503; 0.8616]     29%
  BMI, GGT, TG, waist, ALT, AST 0.8154 [0.7611; 0.8697] 0.353 0.0223 [0.0028; 0.0417] 8.2% 30%
  Whole set of phenotypes4 and biomarkers5 0.8375 [0.7866; 0.8884] 0.052 0.0686 [0.0354; 0.1017] 25.2% 30%
  BMI, GGT, TG, waist, metabolites6 0.9135 [0.8784; 0.9486] 1.0×10-3 0.2471 [0.1917; 0.3025] 90.0% 20%
  BMI, GGT, TG, waist, ALT, AST, metabolites 0.9167 [0.8824; 0.9511] 7.5×10-4 0.2550 [0.1991; 0.3110] 93.8% 22%
  Whole set of phenotypes and biomarkers, metabolites 0.9233 [0.8901; 0.9564] 3.5×10-7 0.2824 [0.2249; 0.3399] 103.9% 22%

Study participants with available genotype data, n=187 (91/96)      
  BMI, GGT, TG, waist (baseline) 0.8023 [0.7406; 0.8640]     31%
  BMI, GGT, TG, waist, GRS7 0.8076 [0.7462; 0.8690] 0.550 0.0111 [-0.0035; 0.0257] 4.2% 32%
  BMI, GGT, TG, waist, ALT, AST 0.8053 [0.7441; 0.8665] 0.777 0.0143 [-0.0039; 0.0325] 5.3% 35%
  BMI, GGT, TG, waist, metabolites 0.9068 [0.8661; 0.9476] 2.9×10-5 0.2280 [0.1679; 0.2881] 85.3% 24%
  BMI, GGT, TG, waist, metabolites, GRS 0.9071 [0.8659; 0.9483] 2.9×10-5 0.2401 [0.1789; 0.3010] 89.8% 20%
  BMI, GGT, TG, waist, ALT, AST, metabolites 0.9097 [0.8699; 0.9495] 2.1×10-5 0.2314 [0.1709; 0.2919] 86.6% 24%

Study participants with information on alcohol use, n=167 (86/81)      
  BMI, GGT, TG, waist (baseline) 0.8246 [0.7627; 0.8864]     28%
  BMI, GGT, TG, waist, alcohol use 0.8262 [0.7647; 0.8876] 0.706 0.0026 [-0.0052; 0.0103] -0.8% 26%
  BMI, GGT, TG, waist, ALT, AST 0.8285 [0.7675; 0.8894] 0.644 0.0101 [-0.0065; 0.0267] 3.2% 31%
  BMI, GGT, TG, waist, metabolites 0.9556 [0.9291; 0.9821] 2.8×10-3 0.3417 [0.2700; 0.4134] 108.4% 24%
  BMI, GGT, TG, waist, metabolites, alcohol use 0.9555 [0.9287; 0.9823] 3.6×10-6 0.3439 [0.2724; 0.4154] 109.1% 25%
  BMI, GGT, TG, waist, ALT, AST, metabolites 0.9591 [0.9341; 0.9841] 1.7×10-6 0.3534 [0.2812; 0.4256] 112.1% 26%

Diagnostic models are based upon logistic regression models.
1 Diagnostic models were evaluated by reference to AUC, the area under Receiver Operation Characteristics (ROCs) curves. P values were obtained by DeLong’s approach
of comparing AUC between potentially related models.
2 Reclassification was assessed by the integrated discrimination improvement (IDI). The IDI is based upon the change, from one model to another, in terms of the so-called
‘discrimination slope’, defined as the difference in average FLD risk between cases and controls. Whereas the absolute IDI value of two models measures the classification
improvement by the difference between their discrimination slopes, the relative IDI value equals the ratio of their discrimination slopes.
3 The performance of each diagnostic model was evaluated by 10-fold cross-validation with an equal number of cases and controls in each partition.
4 Phenotypes: sex, age, body mass index (BMI), waist circumference, hip circumference, smoking, hypertension, prevalent diseases (cancer, chronic disease, any form of
diabetes, gallstones, heart attack, inflammatory bowel disease, neuropathy), physical strength, medication use.
5 Conventional biomarkers: HDL cholesterol, LDL cholesterol, triglycerides (TG), glucose, hemoglobin, glycated hemoglobin, alkaline phosphatase, cholinesterase, Fetuin-A,
gamma-glutamyl transpeptidase (GGT), alanine transaminase (ALT), aspartate transaminase (AST).
6 Metabolites: the first five components derived from a partial least-squares analysis on 138 metabolites comprising 14 acylcarnitines, 21 amino acids, 11 biogenic amines,
one hexose, 68 phosphatidylcholines (PCs), 9 lyso-PCs and 14 sphingomyelins
7 The genetic risk score (GRS) was calculated as the sum of risk allele dosages, thereby assuming an additive genetic model and an equal contribution to the risk of FLD for
each of the 10 SNPs.
doi: 10.1371/journal.pone.0076813.t002
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remained virtually unchanged when those seven FLD patients
and one control were excluded who had reported an alcohol
intake of more than 20g (>2 C2-units) per day (data not
shown).

Better diagnostic accuracy with sharper endpoint
definitions

PLS components of the metabolite profiles allowed a
moderate discrimination between cases and controls. In
particular, the first two components explained 22.5% of the
variation in FLD status and discriminated moderately between
cases and controls (Figure 2A), whereas the first five
components jointly explained 44.0% of variation in FLD status

and 66.4% of the variation in the predictors (i.e. metabolite
concentrations). Sharper endpoint definitions increased the
ability to discriminate. More specific, since elevated ALT levels
are known to accompany FLD, we choose to re-define FLD
status in two ways, dependent upon (i) the ultrasound
diagnosis of FLD and (ii) an elevated ALT level (>30U/l in men,
>25U/l in women). First, FLD was deemed to be present when
at least one of the two criteria was met and, second, when both
criteria were met. A total of 51 study participants with and 22
without ultrasound-diagnosed FLD had elevated ALT levels (30
males, 21 females compared to 16 males, 6 females). Whilst
the first endpoint definition did not improve prediction
accuracy, AUC increased significantly from 0.8993 to 0.9686

Figure 1.  Comparison of the area under ROC curve (AUC) of three diagnostic models based upon 1: BMI; 2: BMI, GGT, TG,
waist or 3: metabolic marker set.  ROC statistics were based upon logistic regression analysis of 115 FLD patients and 115
controls. Compared to model 1 (AUC: 0.7609), AUC was significantly higher in both, model 2 (AUC: 0.8060, p=0.021) and model 3
(AUC: 0.8993, p=6.7×10-6). A significant increase was also noted from model 2 to 3 (p=4.2×10-4).
doi: 10.1371/journal.pone.0076813.g001
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(95% CI: [0.9449; 0.9923], p=0.003) when both diagnostic
criteria were employed simultaneously (Table 3). Moreover, the
classification error rate decreased to 11% and the first and
second PLS components allowed notably better discrimination
between cases and controls (Figure 2B).

Since FLD is regarded as the hepatic representation of the
MetS, we also assessed endpoint definitions that included
MetS features. The diagnostic accuracy was significantly
improved when ultrasound-diagnosed FLD was combined with
the presence of three or more MetS features (AUC: 0.9589,
95% CI: [0.9335; 0.9843], p=0.012). Diagnostic accuracy
improved even further when participants with ultrasound-
diagnosed FLD and MetS were to be distinguished from those
lacking both criteria, as was evidenced by a significantly higher
AUC (0.9883, 95% CI: [0.9766; 1.0000], p=2.6×10-5), lower 10-
fold CV error rate (6%) and more pronounced separation in a
PLS scatter plot (Figure 2C). No significant differences were
noted between the two diagnostic models based upon either
criterion alone (i.e. ultrasound-diagnosed FLD or MetS).

Adopting the sharper endpoint definitions, we also related
the diagnostic accuracy of the metabolic profiles to that of
phenotypes, conventional biomarkers and combinations
thereof. With all combinations tested, the overall trend towards
a significant improvement by the inclusion of the metabolic
markers was confirmed (data not shown).

Single-metabolite analysis.  As judged by the individual
VIP scores from a PLS-DA, some metabolites turned out to
discriminate better between cases and controls than others
(Table S3). The most prominent ones (VIP>1.35) are
summarized in Table 4. These markers included some lyso-
PCs (particularly acyl C 17:0, C 18:1, C 18:2), PCs (particularly
diacyl C 38:3 and C 40:5 and acyl-alkyl C 38:1, C 40:3 and
C 38:2), the biogenic amine acetylornithine (Ac-Orn) and

various amino acids (particularly leucine, isoleucine, citrulline
and valine). See Table S3 for the loadings of single metabolites
on the first five PLS components. Interestingly, the most
predictive metabolites in PLS-DA were found to be
independent of the respective endpoint definition. In particular,
lyso-PCs acyl C 17:0, C 18:1 and C 18:2, PCs diacyl C 38:3
and C 40:5 as well as amino acids leucine, isoleucine and
valine were consistently identified as the best discriminating
metabolites in all models tested (VIP range: 1.10 to 1.76).

Linear regression analysis of log-transformed metabolite
concentrations revealed a nominally significant association with
FLD for 19 of the 138 metabolites (13.8%; Table S3). In view of
the many phenotypic differences between cases and controls
(Table 1), all models were also adjusted for sex, age, BMI,
presence of MetS, TG, GGT, ALT and AST/ALT ratio. After
adjustment, 24 of the 138 metabolites (17.4%) showed a
nominally significant association with FLD, but none of them
remained significant when multiple testing was allowed for
(Table S3). The smallest nominal p values (p≤0.01) were
obtained for PCs diacyl C 32:1 (p=0.004), C 32:2 (p=0.007),
C 34:2 (p=0.007) and C 36:3 (p=0.008), for acylcarnitines
tetradecenoyl-L-carnitine (C14:1, p=0.006), acetyl-L-carnitine
(C2, p=0.008) and tetradecadienyl-L-carnitine (C14:2, p=0.01),
and for amino acid tyrosine (p=0.01) (Table 4). Interestingly,
almost half of the FLD associations of biogenic amines and
phospholipids were reversed upon adjustment for covariates
(Table S3).

Compared to metabolic profiles based upon the first five
components from a PLS-DA model including all 138 metabolic
markers, a very similar diagnostic accuracy was achieved
when the five PLS components were derived from only those
59 metabolites that had VIP values above unity (AUC: 0.8848,
95% CI: [0.8431; 0.9264], p=0.135). Sparser models based

Figure 2.  Scatter plots of the first two components of partial least-squares discriminant analyses (PLS-DA) of.  fatty liver
disease (FLD). FLD was defined (A) by ultrasound and more stringent (B) by ultrasound and elevated ALT level and (C) by
ultrasound and the presence of the metabolic syndrome (MetS). PLS-DA components were obtained for 138 serum metabolite
concentrations in (A) 230 individuals (115 cases, 115 controls), (B) 144 individuals (51 cases of fatty liver disease with elevated ALT
level, 93 controls with normal ALT level) and (C) 140 individuals (51 cases of fatty liver disease and MetS, 89 controls without
MetS), respectively. In the three models the first two components explained (A) 22.5% (16.1% and 6.4% respectively), (B) 42.4%
(20.1% and 22.3%) and (C) 37.7% (18.7% and 19.0%) of the variation in the response (case-control status). Open circles: cases;
filled circles: controls.
doi: 10.1371/journal.pone.0076813.g002
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upon either those 41 metabolites that had VIP>1.1 or those 24
metabolites that were significantly associated with FLD gave
significantly lower discriminatory power (AUC: 0.8718,
95% CI: [0.8271; 0.9165], p=0.029; AUC: 75.96,
95% CI: [0.6987; 0.8205], p=2.6×10-6).

Discussion

By comparing the diagnostic capability for FLD of different
sets of predictors, including phenotypes, conventional
biomarkers, metabolite profiles, genotypes, in a cross-sectional

Table 3. Diagnostic accuracy of 138 metabolites for
different endpoint definitions of fatty liver disease, and for
metabolic syndrome.

Endpoint definition ROC1
Classification

Cases Controls AUC 95% CI p error2

US+3 (n=115)
no US+
(n=115)

0.8993
[0.8603;
0.9383]

 20%

US+ or elevated
ALT-level4

(n=137)

no US+ and
no elevated
ALT-level
(n=93)

0.9159
[0.8793;
0.9524]

0.544 18%

US+ and
elevated ALT-
level (n=51)

no US+ and
no elevated
ALT-level
(n=93)

0.9686
[0.9449;
0.9923]

0.003 11%

US+ and ≥ 1
trait of MetS5

(n=112)

no US+
(n=115)

0.9153
[0.8793;
0.9512]

0.554 19%

US+ and ≥ 2
traits of MetS
(n=94)

no US+
(n=115)

0.9250
[0.8915;
0.9585]

0.328 18%

US+ and ≥ 3
traits of MetS
(n=51)

no US+
(n=115)

0.9589
[0.9335;
0.9843]

0.012 14%

US+ and MetS
(n=51)

no US+ and
no MetS
(n=89)

0.9883
[0.9766;
1.0000]

2.6×10-5 6%

MetS (n=77)
no MetS
(n=153)

0.9431
[0.9108;
0.9755]

0.091 13%

1 Diagnostic models were evaluated by reference to AUC, the area under Receiver
Operation Characteristics (ROCs) curves. Models were based upon a partial least-
squares discrimination analysis of 138 metabolites. P values were obtained by
DeLong’s approach of comparing AUC between a given model and the baseline
model (baseline model: FLD was diagnosed by abdominal ultrasound).
2 The performance of each diagnostic model was evaluated by 10-fold cross-
validation with an equal number of cases and controls in each partition.
3 US+ refers to FLD as diagnosed by abdominal ultrasound (i.e. defined as
increased hyperechogenic ultrasound pattern of the liver).
4 Elevated alanine transaminase (ALT) level was defined as ALT>30U/l for men
and ALT>25U/l for women.
5 The metabolic syndrome (MetS) was defined according to the International
Diabetes Federation (IDF) definition.
doi: 10.1371/journal.pone.0076813.t003

study, we could show that metabolic profiles yielded superior
diagnostic accuracy among all sets. Moreover, inclusion of
single phenotypes and biomarkers did not substantially
improve the diagnostic accuracy over that of metabolites alone.

Table 4. Model parameter estimates for selected
metabolites most prominent in single linear regression
(p<0.05 adjusted model) and/or partial least-squares
discriminant analysis (VIP≥1.35).

  

Linear regression on logarithmized
metabolite concentrations1

VIP
score2

from
PLS-
DA

Metabolite  Unadjusted model  Adjusted model  
  β p  β p  
Acylcarnitines        
 C14:1  0.05 0.417  0.17 0.006 0.47
 C14:2  0.06 0.365  0.20 0.010 0.72
 C2  0.10 0.053  0.16 0.008 1.11

Amino Acids        
 Cit  -0.01 0.821  0.09 0.127 1.38
 Ile  0.15 4.8×10-4  0.12 0.013 1.39
 Leu3  0.13 0.003  0.12 0.014 1.42
 Tyr  0.15 0.001  0.14 0.010 1.33
 Val  0.13 0.001  0.09 0.061 1.35

Biogenic Amines        
 Ac-Orn  -0.13 0.053  -0.05 0.506 1.42

Phosphatidylcholines       
 PC aa C32:1  0.23 0.001  0.23 0.004 1.31
 PC aa C32:2  0.10 0.119  0.21 0.007 0.82
 PC aa C34:2  0.06 0.130  0.13 0.007 0.99
 PC aa C36:3  0.11 0.031  0.17 0.008 0.98
 PC aa C38:3  0.18 0.001  0.15 0.020 1.66
 PC aa C40:5  0.13 0.020  0.10 0.139 1.36
 PC ae C38:1  -0.14 0.113  6.1×10-4 0.995 1.43
 PC ae C38:2  -0.08 0.200  0.04 0.584 1.37
 PC ae C40:3  -0.12 0.085  -0.03 0.706 1.42

Lyso-Phosphatidylcholines      

 
lysoPC a
C17:0

 -0.18 0.004  -0.06 0.397 1.71

 
lysoPC a
C18:1

 -0.11 0.057  -1.7×10-3 0.980 1.59

 
lysoPC a
C18:2

 -0.12 0.061  0.04 0.581 1.44

1 P values and regression coefficients (β) derived from a linear regression analysis
of the log-transformed metabolite concentrations in 230 study participants (115
FLD cases, 115 controls). All models were also adjusted for sex, age, BMI, TG
level, hemoglobin, glycated hemoglobin and GGT.
2 VIP (Variable Importance in the Projection) scores were calculated on the basis
of the first five components from partial least-squares discriminant analysis (PLS-
DA) in 230 study participants. Missing values were imputed with corresponding
sample means for cases or controls.
3 Linear regression analysis was based upon 229 individuals only because of
missing data.
doi: 10.1371/journal.pone.0076813.t004
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This lack of improved accuracy may be due to the fact that the
metabolite concentrations already captured most of the
information provided by phenotypes and biomarkers. Inclusion
of genotypic information did not contribute to the diagnostic
accuracy of any prediction model.

Comparison to existing diagnostic models
Past research on metabolism in FLD, especially on lipid

metabolism, was aimed at the identification of biomarkers and
a better understanding of the etiology of FLD [9,12,50-53]. In
particular, two metabolome studies following an ‘untargeted
approach’ revealed good discrimination between individuals
with and without liver failure, based upon their metabolic
profiles [12,52]. To our knowledge, however, our study is the
first to compare the diagnostic capability of serum metabolic
markers to that of established phenotypes, biomarkers and
genotypes. Bedogni et al. [13] developed an algorithm for the
prediction of FLD in the general population that is based on
BMI, GGT, TG and waist circumference. Similar to our study,
the authors had based their prediction tool upon ultrasound-
diagnosed FLD. We could confirm diagnostic capability of
parameters included in Bedogni’s FLI [13], with the exception
of waist circumference, being not the strongest but the poorest
predictor for FLD among those parameters in our study
population. In addition, we could show that inclusion of
metabolic makers can further increase accuracy for detecting
FLD and, moreover, that this accuracy was not decreased
substantially when the prediction model was based on
metabolic profiles alone. Another fatty liver score derived by
Kotronen et al. [14] suggested that the presence of the MetS
and of type 2 diabetes, the levels of fasting serum insulin and
AST and the AST/ALT ratio are independent predictors of FLD
status. Moreover, Hamaguchi and colleagues recently reported
an effective prediction of NAFLD from features of the MetS
alone [54]. Even though MetS and AST/ALT ratio differed
significantly between FLD patients and controls, however, the
diagnostic accuracy was not improved notably by the inclusion
of these potential predictors in our study. In line with our
findings, Kotronen et al. also reported no significant
improvement in diagnostic accuracy by the inclusion of genetic
information [14]. Other algorithms to diagnose FLD incorporate
different covariates from the ones considered here [15-18],
thereby reflecting again the difficulty to select predictors for a
generally useful diagnostic model for FLD.

Improved diagnostic accuracy with sharper endpoint
definitions

Metabolic markers showed the highest diagnostic accuracy
in the present study. While the AUC value for the first five PLS-
DA components equaled 0.8993, this likely represents an
overestimate of the predictive power of metabolites for FLD
status due to the use of the same data for both training and
testing of the prediction model. Ten-fold CV yielded a more
realistic and substantial classification error rate of 20% which
corresponds to a misclassification of 47 of the 230 study
participants. Such imprecise discrimination between cases and
controls might be the consequence of a high variability of
metabolite concentrations even in healthy subjects [55] and/or

the low sensitivity and specificity of ultrasound as a diagnostic
tool for FLD [1,11,56]. Indeed, sharper endpoint definitions of
FLD resulted in a significant improvement of the diagnostic
accuracy of the regression models and lower classification
error rates throughout. The best discrimination was obtained
for individuals with ultrasound-diagnosed FLD and MetS
against those lacking both criteria. Metabolic profiles may
therefore be useful for the classification of different subtypes of
FLD as well but, unfortunately, no FLD subtype information
was available in our study.

Metabolites on FLD-related pathways?
VIP scores from a PLS-DA model and simple linear

regression analysis identified several metabolites (amino acids,
acylcarnitines, PCs) as possibly involved in one or more of the
underlying metabolic pathways, rendering them promising
candidates for diagnostic markers for FLD. In particular, the
observed associations between FLD and PCs and
acylcarnitines may, as was to be expected, point towards a
disturbed lipid metabolism in FLD. Strong associations
between FLD and alterations in phospholipid and amino acid
metabolism have been already reported before [12,50-52] and
are discussed elsewhere [57,58]. Higher levels of a given
amino acid among cases (six amino acids with p<0.05) might
reflect leakage from dying hepatocytes into the circulation [59].
Along the same line, Newgard et al. [60] observed significantly
higher levels of amino acids and acylcarnitines in obese than in
lean individuals (both without FLD). Since FLD is closely
related to obesity, the possibility that our results reflect
differences between lean and obese subjects rather than
between FLD patients and controls therefore cannot be
excluded. However, several obesity-related metabolites
identified by Newgard et al. [60] were significantly associated
with FLD in a linear regression analysis after adjustment for
BMI, namely amino acids isoleucine, leucine and tyrosine and
acylcarnitines C3 and C5. Branched-chain amino acids (BCAA)
isoleucine and leucine, which are predominantly catabolized in
extrahepatic tissue, and aromatic amino acid tyrosine could be
of particular interest in future research because they are
reportedly related to insulin resistance [60] and the
development of type 2 diabetes [61]. In any case, additional
experimental approaches are needed to characterize potential
causal pathways.

Limitations
Some limitations of our study should not go unmentioned.

First, we used ultrasound for the definition of FLD, which
cannot differentiate between histological subtypes of FLD and
has been criticized for its low sensitivity [1,11,56]. However,
since this is the first study investigating diagnostic capability of
metabolite profiles for FLD, the study focus was on the ability of
a metabolic marker set to detect FLD rather than to
differentiate between single subtypes of FLD. In addition,
despite criticism regarding possible misclassifications by
ultrasonography, a recent meta-analysis [56] revealed that this
screening method allows for reliable and accurate detection of
moderate-severe FLD, compared to histology, making it
currently the method of choice for FLD diagnosis in the general

Diagnostic Models for Fatty Liver Disease

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e76813



population [1]. Bedogni et al. [13] developed the FLI that may
help physicians select subjects for liver ultrasonography and
intensified lifestyle counseling. Our study suggests that the
inclusion of metabolic markers could even further improve the
accuracy to predict FLD status. Moreover, the diagnostic
models based upon metabolic markers gave consistent results
for different endpoint definitions and an improved diagnostic
accuracy with increasing stringency. Given the evident ethical
and practicability issues and associated risks of biopsies
[11,13], a desirable investigation of the potential improvement
of ultrasound diagnosis by incorporation of biomarker and
especially metabolite profiles by comparison against the biopsy
gold standard seems hardly feasible. Second, since our
investigation of the impact of sharper endpoint definitions was
partially based upon subgroups only, some of our results may
have been due to data-overfitting because of small sample
size. In any case, an improved diagnostic accuracy of
metabolites was confirmed by lower error-rates obtained from
10-fold CV. Third, we are fully aware that a non-targeted
metabolomics approach would have provided data on non-
predetermined metabolites as well, some of them potentially
related to FLD. However, the AbsoluteIDQTM p180 Kit used in
our study includes a panel of biologically relevant metabolites
previously shown to be involved in main metabolic pathways.
Moreover, targeted metabolomics allows a better interpretation
of changes in single metabolite concentrations due to the
availability of quantitative or semi-quantitative information.
Fourth, information on several covariates (e.g. height, weight,
alcohol use) was based on self-reports which always bear a
risk of being imprecise. Moreover, information on alcohol use
was available for only 167 subjects so that we could not
distinguish per se between FLD with a nonalcoholic and an
alcoholic etiology, both potentially associated with different
metabolic profiles in FLD cases. In particular, excess alcohol
use as a cause of FLD could not be ruled out in our seven
cases that reportedly consumed more than 20g (>2 C2-units).
However, since the ‘De Ritis Ratio’ of AST:ALT, proposed to
distinguish between NAFLD and AFLD in the case of elevated
levels of liver enzymes [62], among those 29 FLD patients
lacking information on alcohol use in our study was <1 in the
case of elevated ALT, AST and GGT levels, excessive alcohol
intake turned out to be an unlikely cause of FLD in these
patients. Moreover, our main results did not change
qualitatively by the inclusion of alcohol use. We therefore
surmise that the observed metabolic differences between FLD
patients and controls were due to the presence of NAFLD-
specific metabolite profiles. Finally, since serum metabolism
reflects biochemical changes in many different tissues at a
time, not only in a single tissue such as liver, our metabolic
data may have been subjected to confounding by FLD-related
co-morbidities. In addition, serum metabolite concentrations
are known to be affected by factors like age, sex, genetic
background, ethnicity, diurnal variation, diet, health status and
physical activity level [63-65]. Anyhow, since cases and
controls of our study were matched for sex and age, and
moreover, came from the same confined geographical region
of Northern Schleswig-Holstein, at least the possibility of
confounding by sex and age as well as the risk of population

bias, especially with regard to genotypic or metabolic markers,
are likely to be negligible.

In conclusion, Bedogni’s FLI was proposed to help
physicians to select individuals for liver ultrasonography and
researchers to select patients for epidemiological studies. Our
study revealed that a metabolic marker set formatted on a high-
throughput platform also provides a high predictive accuracy
for ultrasound-diagnosed FLD and exceeds the predictive
power of that previously used set of predictors. Given the
increasing interest in, and availability of, metabolic profiles in
biomedical research, our results emphasize the need for an
inclusion of metabolic markers into epidemiological and
molecular studies of FLD, particularly also related to
histological NAFLD. On the other hand, even although our
study revealed a significantly better performance of metabolic
markers compared to diagnostic models based upon
phenotypes and conventional biomarkers alone, metabolite-
based models are not sufficiently validated yet for use as
diagnostic tools and ultrasonography remains an easier
diagnosis tool at this time. Instead, we wish that our study
stimulates further research into the diagnostic utility of
metabolic profiles.
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