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Abstract
The logistic coupled map lattices (LCML) have been widely investigated as well as their

pattern dynamics. The patterns formation may depend on not only fluctuations of system

parameters, but variation of the initial conditions. However, the mathematical discussion is

quite few for the effect of initial values so far. The present paper is concerned with the pat-

tern formation for a two-dimensional Logistic coupled map lattice, where any initial value

can be linear expressed by corresponding eigenvectors, and patterns formation can be

determined by selecting the corresponding eigenvectors. A set of simulations are con-

ducted whose results demonstrate the fact. The method utilized in the present paper could

be applied to other discrete systems as well.

Introduction
Logistic coupled map lattices (LCML) are important models to investigate spatially extended
dynamical systems recognized as such since the early 80s. Logistic coupled map lattices present
discrete space and time, but a continuous state variable whose evolution is governed by a map.
Thus, Logistic coupled map lattices are able to generate local information and a rich spatio-
temporal dynamics. Such properties encourage the use of LCMLs as models to describe the
behavior of chemical and biological systems, magnetic and optical media, gas and electron hole
plasmas, semiconductor and gas-discharge structures, etc [1].

LCML can be defined as cases of coupling which takes into account the effects of the nearest
neighbors of a given lattice site, that can be viewed as a discretization of a second order spatial
derivative appearing in a diffusive term of reaction–diffusion systems. A two-dimensional
LCML can be defined as
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and ε is the coupling parameter, the mapping function f(x) = λx(1 − x), and λ 2 (0, 4].
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The two-dimensional logistic coupled map lattice is exploited to describe the Turing insta-
bility in [2]. The different pattern structures have also been observed for same parameters and
different initial values. Indeed, an example has been shown for ε = 0.34 and λ = 2.9 in [2]. We
find that different patterns such as stripe pattern and spiral pattern resulting from random ini-
tial values will emerge, even if all parameters are fixed. It is an interesting fact.

Patterns formation may depend on both fluctuations of system parameters and variation of
the initial conditions. Due to a large number od degrees of freedom, a rich variety of spatio-
temporal solutions is available for those spatial systems in different regions of parameter space.
As the system parameters are changed, the qualitative structure of solutions for certain parame-
ters will vary [3–4]. So far, most theoretical and experimental investigations for continuous or
discrete reaction-diffusion systems have focused on the parameters of systems, for example, see
[5–15]. The initial concentration also plays a great role for system evolvement, such as popula-
tion evolution, genetic program and chemical reaction. Initial distribution of an immobile reac-
tive species can affect pattern formation [16–23]. For example, comparison of spatio–temporal
evolution of experimental subaqueous particulate gravity flows at two different initial concen-
trations is made in [16]. The extent of malic acid degradation is affected by its initial concentra-
tion, the extent and the rate of deacidification increased with initial malate concentration [17].
In the absence of an electric field pattern formation exhibits increasingly stochastic behavior as
the initial concentration difference between the outer and the inner electrolytes (D) approaches
to zero [18]. Average host density per cell (equivalent to metapopulation density), plotted
against time, illustrate how metapopulation behavior and spatial patterns can differ depending
on initial conditions, even when parameter values are identical [19]. [20] shows that the con-
vergence to periodic attractors and the sensitivity of chaotic processes of the logistic map
depends not only on the control parameter but also on the eigenvalues of the matrix of initial
conditions.

From different viewpoint, We will prove that the asymptotic behavior of the problem Eqs
(1) and (2) depend on the eigenvalues and corresponding eigenvectors of a discrete Laplace
operator. That is, any initial value can be linear expressed by eigenvectors, and we can obtain
different pattern by means of the selective eigenvectors. It will have theoretical significance for
pattern dynamics.

The remainder of this paper is organized as follows. Firstly, we will show how the different
initial distributions have differential effect on the spatiotemporal dynamics of the two-dimen-
sional logistic coupled map lattice. Secondly, numerical results will show that different patterns
can be realized by means of selecting different eigenvector as initial value in stable or unstable
space. Finally, we summarize our results.

Methods

Eigenvalue Analysis
In this section, we will assume that ε> 0 is the coupling parameter,m is a positive integer,
i, j 2 {1, 2, . . .,m} = [1,m], the mapping function f (x) = λx(1 − x), and λ 2 (1, 3). In this case,
the system (1) can be rewritten by
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For the sake of convenience, we denote ε
4
by ε in Eq (4) yet. It is well known that the lineariza-

tion equation of Eq (3) can be written by

utþ1
ij ¼ 2� lð Þ ut

ij þ εr2ut
ij

� �
: ð5Þ

To clearly illustrate our views, we also need to consider eigenvalues of the following equation

r2Xij þ lXij ¼ 0 ð6Þ

with the periodic boundary conditions

Xi;0 ¼ Xi;m;Xi;1 ¼ Xi;mþ1 ð7Þ

and

X0;j ¼ Xm;j;X1;j ¼ Xmþ1;j: ð8Þ

In view of [2], the eigenvalue problem Eqs (6)–(8) has the eigenvalues

lls ¼ 4 sin 2 ðl � 1Þp
m

þ sin 2 ðs� 1Þp
m

� �
¼ k2ls ð9Þ

and the corresponding eigenvectors

vlsij1 ¼ sin
2ðl � 1Þpi

m
sin

2ðs� 1Þpj
m

ð10Þ

vlsij2 ¼ sin
2ðl � 1Þpi

m
cos

2ðs� 1Þpj
m

ð11Þ

vlsij3 ¼ cos
2ðl � 1Þpi

m
sin

2ðs� 1Þpj
m

ð12Þ

vlsij4 ¼ cos
2ðl � 1Þpi

m
cos

2ðs� 1Þpj
m

forl; s 2 1;m½ �: ð13Þ

From [2], we easily see that the conditions of Turing instability for the problem Eqs (1) and
(2) are: there exist l, s 2 [1,m] and ε> 0 such that
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l� 1
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Dependence of Initial Value

Now, let u0
ij ¼ vlsij , then we have
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For any initial value function u0
ij, it can be expressed by
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Let λLS = maxl,s{λls} and assume that cLS 6¼ 0, then, we have
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From above discussion, we find that the solution fut
ijgt2Z

þ

i;j2½1;m� of Eq (5) and the sequence
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have some asymptotic behavior.
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In the following, we study the sequence

2� lð Þ εlLS � 1ð Þ½ �tvLSij
n ot2Zþ

i;j2 1;m½ �
: ð30Þ

First of all, we assume that 1< λ< 2. In this case, we have

2� lð Þ εlLS � 1ð Þ > 1; ð31Þ
which implies that the sequence {[(2 − λ)(ελLS − 1)]t}t 2 Z+ is monotone increased and

lim
t!1

2� lð Þ εlLS � 1ð Þ½ �t ¼ þ1: ð32Þ

Thus, we think that the “good” patterns cannot be observed. If 2< λ< 3, we have

l� 2ð Þ εlLS � 1ð Þ > 1; ð33Þ

the sequence {[(2 − λ)(ελLS − 1)]t}t 2 Z+ is oscillation.

Results

Stable and Unstable Space
Corresponding to the above theory analysis, the initial value u0

ij is chosen by

u0
ij ¼

l� 1

l
þ d

Xm
l;s¼1

clsv
ij
ls; ð34Þ

here δ is small enough. From Eq (5), we know that the number of eigenvalues for the eigenvalue
problem Eqs (6)–(8) ism2, where k211 ¼ 0 is a unique simple eigenvalue. According to Section
2, numerical simulations will be given for differentm.

For some fixed parameters, we denote unstable space

Eu ¼ span vlsij llsj j > 1; l; sð Þ 2 1;m½ �2��n o
ð35Þ

and stable space

Es ¼ span vlsij llsj j < 1; l; sð Þ 2 1;m½ �2�� 	
: ð36Þ

n

When a initial value u0
ij is chosen, clearly, some of cls may be zero or

Pm
l;s¼1 clsv

ij
ls 2 Es, then we

have naturally

ut
ij !

l� 1

l
as t ! 1: ð37Þ

If there exists cls 6¼ 0 or
Pm

l;s¼1 clsv
ij
ls 2 Eu, the solution of Eq (3) will be away from the

equilibrium.

Numerical Simulation
In the following, we will perform a series of numerical simulations of the two-dimensional
Logistic coupled map lattice in two-dimensional spaces. Whenm is even, first of all, we shall

show some dynamics of the system if cls = 0 or
Pm

l;s¼1 clsv
ij
ls 2 Es; only stable pattern can be

observed.
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When there exist cls 6¼ 0 for
Pm

l;s¼1 clsv
ij
ls 2 Eu, we firstly consider patterns if

ε >
3� l

4 2� lð Þ sin 2 ðl�1Þp
m

þ sin 2 ðs�1Þp
m

� � for 1 < l < 2: ð38Þ

Fig 1 shows snapshots of transient pattern at 0, 57, and 69 iterations for the parameter
λ = 1.5 and ε = 0.4 with a system size of 200 × 200 space units. If the iteration is further
increased, the boundary of the domain moves in time till a single domain covers the space
which we call ‘not good’ pattern or ‘overflowing’ pattern. Even if other parameters in the
above parameter space are selected, similar fact will be observed, which only has different
time to a single domain.

Fig 1. Spatial pattern of the time evolution at different instants. Snapshots of contour pictures of the time evolution of CML system at some instants with
λ = 1.5 and ε = 0.4 in the Turing instability region. (A) t = 0. (B) t = 57. (C) t = 69.

doi:10.1371/journal.pone.0158591.g001
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Next, we assume that the condition

ε >
l� 1

4 l� 2ð Þ sin 2 ðl�1Þp
m

þ sin 2 ðs�1Þp
m

� � for 2 < l < 3 ð39Þ

hold. To explore clearly if different initial distributions have differential effect on the spatio-
temporal dynamics of the two dimensional coupled map lattices, we investigate the effect of
initial value by keeping the system parameters of the system fixed. As a numerical example,
a series of simulations firstly are finished with a system size of 200 × 200 space units when
λ = 2.9 and ε = 0.34.

Fig 2 shows some snapshots of the spatial grid at given times t for various l, s when the initial
value is selected as l�1

l þ dvlsij . Let δ = 0.01, as shown in Fig 2A For l = 2, s = 2, a stable pattern of

square shapes, namely, stationary wave is observed. But if we let l = 5, s = 50, spiral patterns
will emerge in Fig 2B. When l = 5 and s = 95, clear stripe patterns appear in Fig 2C. An interest-
ing situation is depicted in Fig 2D where a transient dot-like pattern can be seen when l = 50
and s = 50. If the initial distributions are further changed, similar patterns are observed.

Fig 2. Spatial pattern at given times with different initial value ððl� 1Þ=lÞ þ dvlsij . Snapshots of the spatial grid at given times t for
various l, s when the initial value is selected as ððl� 1Þ=lÞ þ dvlsij with δ = 0.01, λ = 2.9 and ε = 0.34. (A) l = 2, s = 2, t = 50000. (B)
l = 5, s = 50, t = 50000. (C) l = 50, s = 50, t = 5000. (D) l = 5, s = 95, t = 50000.

doi:10.1371/journal.pone.0158591.g002
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Moreover, for different initial value like l�1
l þ d

P
l;s dlsv

ls
ij or some special initial values, various

patterns can be seen in Fig 3.
To exhibit the difference between eigenvector initial value and random initial value, Fig 4A–

4F exhibit in detail the distribution of time-evolutions for eigenvector initial value, In Fig 4B,
the symmetry breaking around the fixed point can be observed. Fig 4C–4E show the self-

Fig 3. Spatial pattern at given times with different initial value ððl� 1Þ=lÞ þ d
P

l;s dlsv
ls
ij . Snapshots of the

spatial grid at given times t for various l, s when the initial value is selected as ððl� 1Þ=lÞ þ d
P

l;s dlsv
ls
ij with

δ = 0.01, λ = 2.9 and ε = 0.34. (A) spiral wave. (B) traveling wave with the diagonal direction of spatial
propagation. (C) trigger wave with the diagonal direction of spatial propagation. (D) trigger wave with the vertical
direction of spatial propagation. (E) stationary wave. (F) spatiotemporal chaos.

doi:10.1371/journal.pone.0158591.g003
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organization process of the system, space-time periodic characteristics begin to appear, spiral
wave patterns can be seen. Then with the evolution time proceeding, the spiral is tensility and
broken down, steady periodic structures, namely, stationary wave emerge in Fig 4F.

Likewise, we performed lots of two-dimensional simulations with a system size of 201 × 201
space units. Contrast with Fig 2, similar patterns can also be realized dependent of eigenvector
initial value.

Fig 4. Spatial pattern of the time evolution at different instants. Snapshots of contour pictures of the time
evolution of CML system at some instants with λ = 2.9 and ε = 0.34 in the Turing instability region. (A) t = 0. (B)
t = 100. (C) t = 5000. (D) t = 10000. (E) t = 50000. (F) t = 100000.

doi:10.1371/journal.pone.0158591.g004
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Conclusion
In this paper, we use a two-dimensional Logistic coupled map lattice to present mathematical
mechanism of the effect of initial values on pattern development. Some asymptotic behavior
between pattern formation and initial value determined by the corresponding eigenvectors of
the eigenvalue for discrete Laplace operator can be found. Any initial value can be linearly
expressed by corresponding eigenvectors, and patterns formation can be determined by selec-
tive the corresponding eigenvectors. We tested the effect by comparing the evolution of pat-
terns with time starting from different initial values, and found that the patterns are sensitive
to this factor. It has important consequences for modeling because it shows that quantitative
prediction of the extent and control of patterns formation is possible when the initial values are
well characterized.
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