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Strengths and limitations of this study

►► This meta-analysis assesses the accuracy of MRI 
texture analysis in differentiating low-grade gliomas 
from high-grade ones.

►► The pooled sensitivity and specificity were 0.93 and 
0.86, respectively, for MRI texture analysis in differ-
entiating low-grade gliomas from high-grade ones.

►► A standardised methodology is warranted to guide 
the use of this technique for clinical decision-making.

Abstract
Objectives  Texture analysis (TA) is a method used for 
quantifying the spatial distributions of intensities in images 
using scanning software. MRI TA could be applied to grade 
gliomas. This meta-analysis was performed for assessing 
the accuracy of MRI TA in differentiating low-grade 
gliomas from high-grade ones.
Methods  PubMed, Cochrane Library, Science Direct and 
Embase were searched for identifying suitable studies 
from their inception to 1 September 2018. The quality 
of the studies was evaluated on the basis of the Quality 
Assessment of Diagnostic Accuracy Studies guidelines. 
We estimated the pooled sensitivity, specificity, positive 
likelihood ratio (PLR), negative likelihood ratio (NLR) and 
diagnostic OR (DOR) using the summary receiver operating 
characteristic (SROC) for identifying the accuracy of MRI 
TA in grading gliomas. Fagan nomogram was applied for 
assessing the clinical utility of TA.
Results  Six studies including 440 patients were included 
and analysed. The pooled sensitivity, specificity, PLR, 
NLR and DOR with 95% CIs were 0.93 (95% CI 0.88 
to 0.96), 0.86 (95% CI 0.81 to 0.89), 6.4 (95% CI 4.8 
to 8.6), 0.08 (95% CI 0.05 to 0.15) and 78 (95% CI 39 
to 156), respectively. The SROC curve showed an area 
under the curve of 0.96 (95% CI 0.93 to 0.97). Deeks test 
confirmed no significant publication bias in all studies. 
Fagan nomogram revealed that the post-test probability 
increased by 43% in patients with positive pre-test.
Conclusions  The findings of this meta-analysis 
suggested that MRI TA has high accuracy in differentiating 
low-grade gliomas from high-grade ones. A standardised 
methodology is warranted to guide the use of this 
technique for clinical decision-making.

Introduction
Gliomas are the most frequently occurring 
type of primary malignant brain tumour. 
According to the WHO tumour classification, 
gliomas are subdivided into grades I to IV, 
where I to II are low-grade gliomas (LGGs) 
and III to IV are high-grade gliomas (HGGs).1 
LGG is a low-grade malignant tumour associ-
ated with longer life expectancy, while HGG is 

highly aggressive and has a dismal prognosis 
despite various therapeutic managements.2–4 
Surgical resection is the preferred treat-
ment for most gliomas. Postoperatively, HGG 
normally requires adjuvant therapy, such as 
radiotherapy and chemotherapy, to prevent 
rapid recurrence, while LGG is usually 
followed by close observation.5 Due to the 
high malignancy of HGG, complete surgical 
resection of tumour is crucial in the prog-
nosis of patients. Hence, the identification of 
tumour level before surgery is important for 
intraoperative decision-making. Histopatho-
logical assessment is the current gold stan-
dard for grading gliomas, which is an invasive 
procedure and is generally performed post-
operatively. Thus, the potential to accurately 
ascertain tumour grade by utilising a non-in-
vasive technique is gaining a lot of attention.6 7

MRI is the first-choice of imaging method 
in detecting gliomas. With the development 
of technology, several physiological MRI tech-
niques including magnetic resonance (MR) 
spectroscopy, diffusion-weighted imaging 
(DWI) and perfusion-weighted imaging 
(PWI), have also been applied for grading 
gliomas.8 9 Texture analysis (TA) is a method 
used for quantifying the spatial distributions 
of intensities in images. Some reports have 
suggested that TA holds promise in the field 
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of oncology diagnosis, including quantifying tumour 
heterogeneity and tumour grading.10 11 Until now, some 
reports have been published regarding tumour heteroge-
neity in glioma using MRI TA.8 11–15 However, these studies 
were inconclusive because of insufficient samples and 
different diagnostic algorithms. The present meta-anal-
ysis aimed to systematically evaluate the accuracy of TA in 
discriminating LGGs from HGGs.

Methods
Patient and public involvement
Since this is a meta-analysis, ethical approval was unnec-
essary. Patients’ priorities, experiences and preferences 
were not involved in the study design.

Search strategy
This systematic review and meta-analysis was performed 
following the guidelines for the diagnostic studies.16

PubMed, Cochrane Library, Science Direct and Embase 
were searched from their inception to 1 September 2018. 
The search keywords were ‘Texture analysis’, ‘glioma’, 
‘brain neoplasm’ and ‘brain tumour’. The search strategy 
used for the retrieval of studies from the Cochrane Library 
is presented in online supplementary file 1. The search 
strategy was modified as deemed necessary for other data-
bases. No language restriction was exposed. Reference 
lists of relevant articles were also manually searched. Two 
reviewers independently reviewed the articles. Disagree-
ments were resolved by consensus.

Study selection criteria
The studies were selected on the basis of the following 
criteria: (1) clinical trials assessing the diagnostic accu-
racy of TA in differentiating LGGs from HGGs, (2) used 
histopathology as criterion standard and (3) sufficient 
information for calculating true-positive (TP), false-pos-
itive (FP), true-negative (TN) and false negative (FN) 
results. The exclusion criteria were animal studies, case 
reports, abstracts, insufficient calculable data, duplicated 
reports or studies based on the same study.

One author (Wang QP) conducted the initial search 
according to the inclusion and exclusion criteria. Next, 
two investigators (Lei DQ and Yuan Y) independently 
examined all potentially relevant articles. Disagreements 
were resolved by consensus.

Date extraction and quality assessment
Two investigators (Wang QP and Lei DQ) independently 
assessed the quality and potential bias and extracted 
the data of included studies. We extracted the following 
data: first author, year of publication, country, sample 
size, study design (retrospective or prospective), patient 
age, MRI field strengths, TA tools, TP, FP, TN, FN, sensi-
tivity and specificity values according to tumour grading. 
LGGs (grade I to II gliomas) were considered positive; 
HGGs (grade III to IV gliomas) were considered negative. 
If the TP, FP, TN and FN results were not reported, we 

calculated backward using indexes including sensitivity, 
specificity, positive predictive value and negative predic-
tive value.

The quality of each study was assessed on the basis of 
the Quality Assessment of Diagnostic Accuracy Studies 
(QUADAS) guidelines,17 which is an established, 
evidence-based tool for systematic reviews of diagnostic 
studies.

Statistical analysis
Meta-analyses were performed using the software Meta-
Disc V.1.4 (Metadisc, Unit of Clinical Biostatistics of 
Ramón y Cajal Hospital, Madrid, Spain) and Stata V.12.0 
(StataCorp LP, College Station, Texas, USA). The pooled 
sensitivity, specificity, positive likelihood ratio (PLR), 
negative likelihood ratio (NLR) and diagnostic OR 
(DOR) were calculated on the basis of bivariate gener-
alised linear mixed modelling using the extracted data of 
TP, TN, FP and FN. The accuracy of the data was deter-
mined using a summary receiver operating characteristic 
(SROC) plot and summarising the curve by calculating 
the area under the curve (AUC). Cochran-Q method 
and inconsistency index (I2 were adopted for investi-
gating heterogeneity among the studies. The significant 
heterogeneity was indicated by a p value<0.05 and I2 
<50%. Generally, a diagnostic tool is regarded as to have 
failed when AUC values are between 0.5 and 0.6, poor 
when AUC values are between 0.6 and 0.7, fair when AUC 
values are between 0.7 and 0.8, good when AUC values 
are between 0.8 and 0.9 and excellent when AUC values 
are between 0.9 and 1.18 Fagan nomogram and likelihood 
matrix were used for evaluating the clinical utility of TA.

Subgroup analysis
We calculated the pooled weighted sensitivity and spec-
ificity of subgroups for observing the effects caused by 
substantial heterogeneity of the included studies. Studies 
were grouped on the basis of the MRI performed at 
different field strengths (3.0 T vs not 3.0 T), MRI images 
used (contrast-enhanced T1 and fluid-attenuated inver-
sion recovery (FLAIR) vs DWI) and filtration method 
(grey level co-occurrence matrices (GLCM) vs Laplacian 
of Gaussian band-pass filtration).

Publication bias
The publication bias was assessed using Deeks funnel plot 
asymmetry test, where a p value<0.05 suggests a potential 
publication bias. Deeks funnel plot asymmetry test was 
performed using Stata V.12.0.

Results
Literature research
A total of 125 studies were initially identified using 
the abovementioned search strategy, which were then 
screened by title and abstract. Of these, 38 articles were 
further evaluated in full text. Twenty-nine articles were 
irrelevant and three could not provide sufficient data 
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Figure 1  Results of literature search.
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to construct the 2×2 table. According to the inclusion 
criteria, six studies8 11–15 were retrieved. The study selec-
tion process is shown in figure 1.

Study characteristics
Ultimately, six studies with 440 participants were enrolled 
in this meta-analysis. The detailed characteristics of 
included studies are shown in table  1. All studies were 
retrospective cohort studies. The MR examinations were 
performed using a 1.5 T scanner in one study, 3.0 T in 
four studies and one study did not mention the device. 
Contrast-enhanced T1 images were used for analysis in 
two studies, contrast-enhanced T1s combined with FLAIR 
images were used for analysis in two studies and DWI were 
used for analysis in two studies. Regarding the TA tools, 
TexRAD software (http://www.​texrad.​com, part of Feed-
back Plc, Cambridge UK) was used in two studies, and 
Functional MRI of the Brain’s Software Library (FSL) 
of analysis tools (Analysis Group, FMRIB, Oxford, UK), 
Medical Imaging Solution for Segmentation and Texture 
Analysis (MISSTA, an in-house software of Seoul National 
University College of Medicine, Seoul, Korea), comput-
er-aided diagnosis (CAD) system and FireVoxel (https://​
wp.​nyu.​edu/​firevoxel/) were used in one research 
respectively.

Quality of included studies
The quality assessment of included studies using the 
QUADAS-2 checklist is presented in table  2. For the 
included studies, ‘index test’ and ‘reference standard’ 
revealed slight shortcomings (16.7% [1/6] each), which 
may indicate bias regarding inclusion. Overall, the study 
quality was satisfactory.

http://www.texrad.com
https://wp.nyu.edu/firevoxel/
https://wp.nyu.edu/firevoxel/
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Table 2  Results of the QUADAS-2 quality assessment of included studies

Study Risk of bias Applicability concerns

Patient 
selection

Index test Reference 
standard

Flow and 
timing

Patient 
selection

Index test Reference 
standard

Zacharaki EI 2009 + – + + + ? +

Ryu 20148 + + ? + + ? +

Skogen 201612 + + + + + – ?

Li-Chun Hsieh 201713 + + – + + + ?

Ditmer 201815 + ? + + + ? +

Wang 201814 + + + + + – +

+: Low risk; -: High risk; ?: Unclear risk.
QUADAS, Quality Assessment of Diagnostic Accuracy Studies.

Figure 2  Pooled estimates of sensitivity and specificity of 
texture analysis to differentiate low-grade gliomas from high-
grade ones.

Figure 3  Summary receiver operating characteristics 
(SROC) curve of texture analysis to differentiate low-grade 
gliomas from high-grade ones. AUC, area under the curve; 
SENS, sensitivity; SPEC, specificity.

Pooled results
The pooled sensitivity and specificity of TA for discrimi-
nating LGGs and HGGs were 0.93 (95% CI 0.88 to 0.96) 
and 0.86 (95% CI 0.81 to 0.89), respectively. The forest 
plots are shown in figure  2. The pooled PLR and NLR 
were 0.86 (95% CI 0.81 to 0.89) and 6.4 (95% CI 4.8 to 
8.6), respectively. The DOR was 78 (95% CI 39 to 156). 
SROC curve analysis was used to summarise overall diag-
nostic accuracy. The AUC was 0.96. The SROC curve is 
shown in figure 3. The results demonstrated high diag-
nostic performance in discrimination of LGGs from 
HGGs.

Subgroup analyses
The results of the subgroup analyses are presented in 
table 3. The specificity was slightly lower, but the AUC was 
higher in studies wherein MRI was performed using a 3.0 
T scanner than in those where MRI was performed using 
a 1.5 T scanner. The sensitivity and specificity were signifi-
cantly higher in studies using contrast-enhanced T1 and 
FLAIR images than in those using DWI. The diagnostic 
performance of GLCM was slightly higher than that of 
Laplacian of Gaussian band-pass filtration.

Evaluation of clinical utility
The clinical utility of TA was evaluated by utilising like-
lihood ratios to simulate a Fagan nomogram. The result 
is shown in figure 4. With a 25% pre-test probability of 
LGG, the post-test probabilities of LGG and given positive 
and negative TA analysis results, are 68% and 3%, respec-
tively. Fagan nomogram revealed that the post-test prob-
ability increased by 43% in patients with positive pre-test 
but decreased by 22% in patients with negative pre-test, 
which indicated that TA was useful in clinical practice.

Publication bias and heterogeneity
Publication bias was examined using Deeks plot asym-
metry test, and the funnel plot did not reveal significant 
publication bias (p=0.35). The funnel plots are shown in 
figure 5. Heterogeneity among the included studies was 
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Table 3  Results of pooled estimates of all studies and of different subgroups

Studies N Sensitivity Specificity PLR NLR DOR AUC

All studies 6 0.93 0.86 6.4 0.08 78 0.96

MRI performed at 3.0 T 4 0.93 0.85 6.2 0.08 78 0.96

MRI performed at not 3.0 T 2 0.93 0.88 10.5 0.08 107 0.50

Image used: contrast-enhanced T1 and FLAIR 4 0.93 0.86 6.6 0.08 85 0.96

Image used: DWI 2 0.90 0.84 6.8 0.12 56 0.50

Diagnostic algorithm: GLCM 3 0.92 0.89 11.6 0.08 125 0.96

Diagnostic algorithm: Laplacian of Gaussian 
band-pass filtration

2 0.93 0.84 5.6 0.09 62 0.50

AUC, the area under the curve; DOR, diagnostic OR; DWI, diffusion-weighted imaging; FLAIR, Fluid-attenuated inversion-recovery sequence; 
GLCM, Grey Level Co-occurrence Matrices; NLR, negative likelihood ratio;PLR, positive likelihood ratio.

Figure 4  Fagan nomogram for the elucidation of post-test 
probabilities with a pre-test probability of 25%. LR,likelihood 
ratio; Prob, probability.

Figure 5  Deeks funnel plots indicating no publication bias 
(p=0.35).

measured using Cochran-Q method and I2. As shown 
in figure  2, the p value of the Cochran-Q method was 
>0.05. The I2 value of the pooled specificity analysis was 
33.29%, which showed slight heterogeneity. The potential 

source of the observed heterogeneity was assessed using 
subgroup analyses.

Discussion
The earliest reports have indicated that TA based on 
CT images has the potential of differential diagnosis of 
tumour heterogeneity.19 20 To date, there have been some 
reports on glioma grading using MRI TA.21 However, 
the results have been inconclusive. We conducted this 
meta-analysis for systematically evaluating the accuracy of 
TA in discriminating LGGs from HGGs. The findings of 
the meta-analysis showed that the pooled sensitivity and 
specificity of TA were 0.93 and 0.86, respectively. The PLR 
and NLR were 6.4 and 0.08, respectively. The AUC was 
0.96. The results demonstrated that TA had high diag-
nostic performance in ruling out HGGs in discriminating 
gliomas.

Histopathology assessment is the gold standard for 
the diagnosis of gliomas, but it is an invasive procedure. 
To provide accurate information and to avoid unneces-
sary operations for gliomas, the role of MRI cannot be 



6 Wang Q, et al. BMJ Open 2019;9:e027144. doi:10.1136/bmjopen-2018-027144

Open access�

neglected. With the development of techniques, more 
and more metabolic and physiological MRI, such as diffu-
sion tensor imaging, magnetic resonance spectroscopy, 
DWI, dynamic susceptibility contrast MRI and dynamic 
contrast-enhanced MRI, have been utilised in grading 
gliomas.22–24 All these examinations assessed the malig-
nancy of tumours by identifying the difference of in 
characteristics in the images, such as greyscale brightness 
and contrast of image pixels. Textures are complex visual 
patterns composed of entities that have characteristic 
size, brightness, intensity and so on. Thus, texture can be 
regarded as a similarity grouping in an image.15 TA is an 
integrated analysis of texture using special tools, such as 
TexRAD, MISSTA, CAD and FireVoxel. Therefore, TA has 
more powerful diagnostic capability than the ordinary 
examination method.

In performing TA, the first step is image filtration. The 
two methods used in the included studies were GLCM 
and Laplacian of Gaussian band-pass filtration. Although 
the superiority of the two remains undetermined, the 
meta-analysis found that the diagnostic performance 
of GLCM was slightly higher than that of Laplacian of 
Gaussian band-pass filtration. Quantitative analysis of 
the filtered pixel values is conducted after the image-fil-
tration step. The parameters include mean of positive 
pixel values, mean intensity, SD, entropy, skewness and 
kurtosis.25 26 Next, the AUC of the parameters to distin-
guish tumour grades were calculated by receiver oper-
ating characteristic curve analysis.

This review demonstrated that TA was useful in 
discriminating LGGs and HGGs. In a published 
meta-analysis based on MR PWI for glioma grading, 
the pooled sensitivity, specificity and DOR were 93%, 
81% and 55%, respectively.27 However, PWI requires the 
injection of contrast medium and the results are influ-
enced by many factors; therefore, it is difficult to widely 
use of PWI. In another meta-analysis on the accuracy 
of MR DWI for glioma grading, the pooled sensitivity, 
specificity and AUC were 0.85, 0.80 and 0.90, respec-
tively.28 DWI has specific advantages over PWI; it is 
easily accessible, less expensive and does not require a 
contrast agent. TA can use any kind of MRI sequences 
such as PWI, DWI and FLAIR; thus, this technique is 
easy to use.

However, obvious heterogeneity between studies was 
noted. Different field strengths (3.0 T and 1.5 T), MRI 
used (DWI, contrast-enhanced T1 and FLAIR), analysis 
tools (MISSTA, TexRAD, FireVoxel and FSL of analysis 
tools) and filtration methods (GLCM and Laplacian of 
Gaussian band-pass filtration) could affect the accuracy 
of the conclusion. The procedure should be standardised 
by conducting further research. The meta-analysis 
showed that studies employed higher strength (3.0 T), 
contrast-enhanced T1 and FLAIR imaging and GLCM to 
perform TA yielding higher diagnostic performance in 
the discrimination of LGGs from HGGs. Therefore, it is 
recommended to adopt these techniques for TA in future 
studies.

It is worth noting that this study had several limitations. 
First, this systematic review included six studies with 440 
patients. Limited studies and participants might have 
affected the accuracy of the results. Second, although no 
publication bias was detected in this meta-analysis, the test 
strength may have been affected by the limited number 
of studies. Thus, publication bias was also a concern. 
Lastly, different field strengths, imaging sequences and 
TA tools were used in the included studies that lack 
consensus, which influenced the consistency of measure-
ments. Therefore, well-conducted investigations using a 
standardised methodology are required to confirm the 
discrimination value of TA on gliomas.

Therefore, our study suggested that TA could be an 
accurate tool for discriminating gliomas. However, more 
studies are warranted to verify the most suitable tech-
nique. The application of TA with a standardised meth-
odology would improve the accuracy of glioma diagnosis 
and clinical decision-making in the future.
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