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DNA methylation is an epigenetic modification modulating the structure of DNA molecule and the interactions
with its binding proteins. Accumulating large-scale methylation data motivates the development of analytic
tools to facilitate methylome data mining. One critical phenomenon associated with dynamic DNA methylation
is the altered DNA binding affinity of transcription factors, which plays key roles in gene expression regulation. In
this study, we conceived an algorithm to predict epigenetic regulatorymodules through recursivemotif analyses
on differentiallymethylated loci. A two-step procedurewas implemented to first group differentiallymethylated
loci into clusters according to their correlations in methylation profiles and then to repeatedly identify the tran-
scription factor bindingmotifs significantly enriched in each cluster.We applied this tool onmethylome datasets
generated formouse brainswhich have a lack of DNAdemethylation enzymes TET1 or TET2. Comparedwithwild
type control, the differentially methylated CpG sites identified in TET1 knockout mouse brains differed signifi-
cantly from those determined for TET2 knockout. Transcription factors with zinc finger DNA binding domains
including Egr1, Zic3, and Zeb1 were predicted to be associated with TET1 mediated brain methylome program-
ming, while Lhx family members with Homeobox domains were predicted to be associated with TET2 function.
Interestingly, genomic loci from a co-methylated cluster often host motifs for transcription factors sharing the
same DNA binding domains. Altogether, our study provided a systematic approach for epigenetic regulatory
module identification and will help throw light on the interplay of DNA methylation and transcription factors.
© 2019 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In mammalian genomes, DNA methylation primarily occurs on the
cytosines in the context of CpG dinucleotides and plays an important
role in many biological processes including tissue development and
cellular function. DNAmethylation contributes to the dynamics of chro-
matin conformation, and thus interferes directly or indirectly with the
interactions between DNA molecule and its binding proteins. For
instance, the methylation on gene promoters may prevent the bindings
of transcription activators but facilitate the recruitment of transcription
suppressors [1,2]. In the past decade, high-throughput sequencing
technologies and methylation microarray such as the Infinium
MethylationEPIC BeadChip provide powerful strategies to generate a
large amount ofmethylomedata. Excellent algorithms have been devel-
oped for bisulfite sequencing data mapping, array data processing and
the identification of differentially methylated CpG sites [3–6]. Despite
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a growing list of tools, very limited approaches have been developed
to predict protein-DNA interaction networks associated with methyla-
tion alterations.

Transcription factors (TFs) interpret genetic sequence and epige-
netic modification information simultaneously. These proteins recog-
nize specific sequence motifs or structural features of specific genomic
regions. To determine the binding sites for transcription factors, ChIP-
seq (chromatin immunoprecipitation followed by sequencing) has
been widely used. The ChIP-seq technique uses an antibody against a
specific TF to pull down the genomic DNA bounded by the target TF
for high-throughput sequencing. From ChIP-seq data, de novomotif dis-
covery can be achieved with motif discovery tools such as HOMER [7]
(Hypergeometric Optimization of Motif EnRichment). HOMER also
compiles a database collecting TFmotifs from (1)motif database gener-
ated by HOMER software largely based on motif analyses using high-
quality public ChIP-seq datasets. (2) JASPAR motif database primarily
based on published binding site selection experiments in addition
to data from in vitro microarray-based factor affinity experiments,
(3) Organism-centric motif databases including Drosophila [8],
Arabidopsis [9] and Saccharomyces cerevisiae motifs [10,11]. Recent
nd Structural Biotechnology. This is an open access article under the CC BY-NC-ND license
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years, several studies have been conducted to explore the transcription
factor binding preference on free DNA, nucleosomal DNA and methyl-
ated DNA [12,13]. To assess the protein binding affinity to methylated
DNA, methylation-sensitive SELEX (systematic evolution of ligands by
exponential enrichment) approach has been developed [7]. Transcrip-
tion factors were incubated with a pool of random methylated and/or
unmethylated oligonucleotides to enrich for the ones bounded by the
TF of interest. It was found that DNA methylation affects the binding
of approximately 60% of the 574 human transcription factors assessed
[7]. Currently, such important information has not been fully explored
to understand the epigenetic changes observed during normal develop-
ment and disease progression.

The changes in DNA methylation require the participation of epige-
netic machinery including DNAmethyltransferases and DNA demethyl-
ation enzymes. Ten-eleven translocation (TET) enzymes promote the
removal of methyl-group via the oxidation of 5-methylcytosines [14].
Three TET familymembers in mammals were found to have distinct ex-
pression patterns and functional activities in different developmental
stages and diverse cell types. In mouse brain, Tet1 is involved in both
neural development related biological processes [15] and neuronal ac-
tivity induced methylation changes [16]. The loss of either Tet1 or Tet2
impairs hippocampus neurogenesis and cognition [15,17]. The deletion
of Tet3 leads to neonatal lethality due to its key role in fertilized oocytes
to demethylate both maternal and paternal DNA by coupling with DNA
replication [18,19]. Despite the growing information for the critical
functions of three TET enzymes, it is not yet clear exactly how TET
enzymes are recruited to specific genomic loci and the interplays
between TET enzymes and transcription factors remain largely elusive.

In this study, we aim to develop a computational pipeline to expe-
dite the identification of epigenetic transcription regulatory modules
(ETRMs) fromdifferentiallymethylated genomic loci. Here, an ETRMre-
fers to a set of TFs with binding sites adjacent to a ‘key’ TF, whose motif
is the most significantly enriched in differentially methylated regions.
To demonstrate the power of our analytical procedure, we made use
of methylome data sets generated for the frontal cortices from TET1
knockout (TET1KO) and TET2 knockout (TET2KO) mice and predicted
that several neural-development-related or neuronal-activity-induced
ETRMs were associated with brain methylome programming on differ-
ent genomic loci mediated by TET1 or TET2. The software package
developed in the study is available in Github repository ETRM-
identification (https://github.com/BSharmi/ETRM-identification).

2. Results

2.1. An Outline of the Computational Pipeline for ETRM Identification

Mostmethylation studies led to the identification of CpG sites or ge-
nomic regions showingdifferentialmethylation patterns amongvarious
conditions. The association of methylation changes to a specific physio-
logical condition or disease statuses could be established swiftly, how-
ever, the understanding of mechanistic causal nexus underlying
dynamic methylation often requires substantial extra effort. The deter-
mination of transcription factors as methylation readers and effectors
is crucial to explain how methylation changes occur and translate into
the alterations of downstream gene expression. To ease this process,
we conceived a two-step approach (Fig. 1, Supplementary Fig. S1) to
take differentially methylated regions (DMRs) as inputs: 1) to partition
DMRs into co-methylated clusters according to their methylation corre-
lations using the Weighted Correlation Network Analysis (WGCNA) al-
gorithm [20]; 2) to determine TFmotifs enriched in each cluster using a
recursive motif-finding algorithm.

The first step in our approach is to identify co-methylated clusters
following a procedure described in our previous study [21], which is
based on the assumption that: genomic loci sharing similarmethylation
profiles during development or among cell types might be co-regulated
by a common set of TFs. Since the subsequentmotif enrichment analysis
will be performed using a hyper-geometric test to compare input
sequences with background controls, the motif enrichment p-values
depend heavily on the composition of input sequences. This first step
greatly reduces genome complexity via segmentation according to the
similarity inmethylation, and thus increases the chances to identifymo-
tifs with significant p-values. In the second step, we implemented a
novel recursive motif search algorithm to identify transcriptional regu-
latory modules. For each co-methylated cluster, we performed motif
enrichment analysis using HOMER to identify the transcription factor
with a motif enriched with the most significant p-value, and denoted
as “key TF”. From the co-methylated cluster, genomic regions contain
the motif of the key TF will be extracted as a sub-cluster for another
round of motif search. For this sub-cluster, we will be able to determine
the transcription factors with motifs significantly enriched in genomic
regions surrounding the motif of the key TF. This step establishes the
links between key TF and its associated TFs for a sub-cluster, which
comprised differentially methylated regions sharing a similar methyla-
tion profile. Such a process will be recursively executed until no motif
could be identified with an enrichment p-value less than 1e-10 as rec-
ommended by the HOMER software. Therefore, each co-methylated
cluster may be further divided into several sub-clusters. For each sub-
cluster, an epigenetic regulatory module with a key TF and associated
TFs will be predicted. Further experimental data from ChIP-seq studies
could lend a hand with supporting evidence for the ETRMs predicted.

2.2. A Comprehensive Motif Database Compiled for Epigenetic Regulatory
Module Identification

In this study, we aimed at identifying epigenetic regulatorymodules,
particularly for the transcription factorswithmotifs enrichedwithin dif-
ferentially methylated regions. To achieve this goal, we augmented the
HOMER's database of known motifs with two additional motif datasets
(Fig. 2). The first is a combined set of un-methylated (or canonical) and
methylation-related motifs compiled in the MeDReaders database
according to published literature [22]. This dataset contains motifs for
731 transcription factors (601 for human and 130 for mouse) that
may bind to methylated DNA. In addition, the MeDReaders database
also provides methylation-related motifs predicted using in silico ap-
proaches for 292 transcription factors (287 for human and 5 for
mouse). In addition to this motif library, we extended the search to in-
clude information regarding how DNAmethylation may affect TF bind-
ing. A second dataset was prepared using the position frequency
matrices (PFMs) for over five hundred transcription factors obtained
with methylation-sensitive SELEX approach [12]. The motifs in this
dataset can be broadly classified as (a) ‘MethylMinus’: the consensus se-
quence obtained from the motif with one or more CGs, the methylation
of which negatively affects TF binding; (b) ‘MethylPlus’: the consensus
sequence obtained from the motif contains one or more CGs, the meth-
ylation of which enhances TF binding. Thus, we integrated the afore-
mentioned two motif datasets with HOMER known motif database
and classified the motifs into five types – (1) methylation-related
motifs, containing motifs without CpG dinucleotide (‘No CpG’), motifs
with CpG but methylation having little effect on TF binding (‘Little
effect’) [12] and motifs predicted in methylated sequences by
MeDReaders using in silico approaches (2) canonical motifs predicted
from un-methylated sequences by MeDReaders; (3) ‘MethylPlus’ and
(4) ‘MethylMinus’ identified with methylation-sensitive SELEX
approach; and (5) motifs from HOMER database.

After PFM deduplication, we collected a total of 364 motifs from
the HOMER database, 864 canonical motifs from MeDReaders, 22
non-canonical motifs from MeDReaders, 191 ‘MethylPlus’ motifs and
143 ‘MethylMinus’ motifs. The transcription factors associated with
these motifs were summarized in Fig. 2A. The TFs documented in our
integrated motif database can be classified according to their
DNA-binding domains [23] and shown in Fig. 2B using a Circos plot
[24]. We observed that 30.1% of motifs documented are for TFs with

https://github.com/BSharmi/ETRM-identification


Fig. 1. Computational pipeline designed to identify transcriptional regulatory modules (ETRMs) within differentially methylated regions using recursive motif searching algorithm. The
pipeline is comprised of three segments: (a) WGCNA is applied on the methylation profiles of differentially methylated regions (DMR) to obtain co-methylated clusters. (b) A
recursive algorithm (Supplementary Fig. S1) is used to identify ETRMs for each co-methylated clusters. Color codes were used to indicate TF families. (c) TF ChIP-seq datasets are
exploited to support the predicted ETRMs. The left column shows the input data and the method used and the right column illustrates examples for output files.
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Homeobox domain whereas only 0.2% of motifs were for TFs with the
MAD domain. Transcription factors with the homeodomain (HM) and
C2H2 Zinc Fingers (ZF) domain frequently recognize the motifs in the
‘MethylPlus’, ‘Canocial’ and ‘Methylated’ categories. On the other hand,
transcription factors with high mobility group box (HMG-box) and
E26 transformation-specific (ETS) domain were present in all except
for the ‘MethylPlus’ category. Although the information on methylation
preference is still incomplete for many TFs, this result suggests that the
differences in DNA binding domains could be a key factor controlling
whether a TF would interact with their methylated binding sites.

2.3. Genome Distribution of Hypermethylated CpG Sites Identified in
TET1KO and TET2KO Frontal Cortices

With this unique motif database, we applied the analytical pipeline
implemented (Fig. 1) on two methylome datasets generated for the
frontal cortices of TET1KO and TET2KO mice. The TET1KO methylome
was generated with reduced representation bisulfite sequencing to
enrich for genomic regions rich in CpG dinucleotides by digestion with
MseI and MluCI enzymes with recognition sites for TTAA and AATT, re-
spectively. The TET2KOmethylomewas generated with whole genome
bisulfite sequencing, and thus with broader coverage in genome-wide.
Interestingly, we identified 42,558 differentially methylated sites
(DMSs) for TET1KO but only 12,900 DMSs for TET2KO. In addition,
only 643 common DMSs were identified between TET1KO and
TET2KO tissues (Supplementary Fig. S2A). This result suggests TET1
and TET2 enzymes are indispensable for two distinct sets of CpG sites
during brain development. Compared to the genome distribution of
TET2KO DMSs, TET1KO DMSs tend to localize inside or adjacent to
genes (Supplementary Fig. S2B&C). For instance, promoters host 4.3%
of TET1KO DMSs and 1.9% of TET2KO DMS respectively. Thus, promoter
methylation seemsmore susceptible to the loss of TET1 than the loss of
TET2. Since both TET1 and TET2 are DNA demethylation enzymes, the
direct consequence of TET1 or TET2 loss is the increased methylation
on their corresponding targets. It is not a surprise thatwe found thema-
jority of DMSs identified (75.1% for TET1KO and 67.3% for TET2KO) are



Fig. 2. The composition of methylation related motif database. A) Venn diagram showing the number of shared motifs among the five categories. B) Distribution of five motif categories:
Canonical, Methylation-related, HOMER, ‘MethylPlus’ and ‘MethylMinus’. TF binding domains were arranged in clockwise decreasing order.
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hypermethylated in TET1KO or TET2KO mice. On the other hand, the
methylation losses observed in TET1KO or TET2KO mice are likely to
be indirect consequences. In order to understand the gain of methyla-
tion observed in TET1KO and TET2KO mice, further analyses were lim-
ited to the hypermethylated regions surrounding DMSs identified in
TET1KO and TET2KO mice.
2.4. Distinct ETRMs Identified for Differentially Methylated Clusters

To perform co-methylation co-regulation analysis, we collected 66
methylomes for mouse forebrain, midbrain and hindbrain regions dur-
ing development and for sorted mouse brain cells including astrocytes,
oligodendrocytes, Excitatory neurons, PV neurons and VIP neurons
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(Supplementary Table S1A). We next applied WGCNA to cluster differ-
entially methylation regions into groups, which show highly correlated
methylation profiles across themethylomes. For TET1KOor TET2KO, the
WGCNA algorithm identified three co-methylated clusters with each
cluster showing a distinct methylation profile (Figs. 3 & 4, Supplemen-
tary Fig. S3). Despite TET1KO and TET2KOmice share a very small num-
ber of DMSs as noted earlier, we observed similar methylation profiles
for some clusters in two kinds of mice of distinct genotypes. For in-
stance, the first clusters in TET1KO and in TET2KO both show decreased
methylation during brain development and arewith the lowestmethyl-
ation level in excitatory neurons among all brain cell types. For TET1KO,
the second cluster shows low methylation during embryonic develop-
ment phases and increased methylation in postnatal frontal cortex
while the third cluster shows hypo-methylation inmost samples except
in TET1KO. For TET2KO, the second cluster shows increasedmethylation
in various kinds of neurons vs glial cells while the third cluster shows
hyper-methylation in astrocyte, E17.5 neuron, and oligodendrocyte.

For each cluster, we applied HOMER software to identify transcrip-
tion factor motifs within the sequences of differentially methylated
loci. Top significant motifs were shown in Figs. 3 & 4 for each ETRM
with more details in Supplementary Tables S2. Despite the fact that
themajority of DMSs are different in TET1KO and TET2KOmice, several
transcription factors were identified to be associated with both TET1KO
and TET2KO including MEF2 family with MADS domain (MCM1,
Agamous, Deficiens, and Serum response factor), Sox family with
HMGdomain (highmobility group) andOlig2, Ascl1 frombHLHdomain
(basic helix-loop-helix). Interestingly, for TET1KO, transcription factors
from Zinc Finger family were enriched in all three clusters but the
cluster 1 showed motif enrichment for EGR1 whereas cluster 2 and 3
showed the motif enrichment for ZIC3 and Zeb1, respectively (Supple-
mentary Tables S2). EGR1 is involved in the consolidation of new
Fig. 3.Methylation profiles of three DMR clusters identified (A-C) and the corresponding ETRMs
(blue) to 1 (yellow). For each iteration cycle, the numbers of DMR included in the analysis were
ring. The TFs were colored according to TF family annotated with DNA binding domain.
memories and critical for early postnatal brain development [25]. ZIC3
regulates the expansion of neuronal progenitors [26] while Zeb1
keeps neurons in an immature state by preventing neuronal polariza-
tion [27]. This result indicates that TET1KO associated TFs with the
same DNA binding domain may play very different functional roles
during brain development. It helps in explaining why these ZF TFs
with motifs enriched in different genomic regions showing distinct
methylation profiles.

We next applied the recursive motif identification approach on each
cluster to investigate motif distribution. During the recursive motif
searching process, the exclusion of some genomic regions in a cluster
may lead to substantial changes in the enrichment p-values for TF
motifs. For example, in cluster 1 of TET1KO, Egr2, Sp5, and Klf14 motifs
are with enrichment p-values as 1e-5, 1e-3 and 1e-6 respectively (Sup-
plementary Tables S2A). However, all three motifs were significantly
enriched in Egr1 ETRM, a subset in the cluster1, which was obtained
through a recursive motif identification approach (Fig. 3D). Thus, the
recursive ETRM identification approach predicted clusters of motifs
enriched nearby a key TF, which otherwise go unnoticed if all input se-
quences are analyzed together. The recursive motif identification ap-
proach also led to several interesting observations. Some TFs with
different DNA binding domains are likely to form an ETRM together,
such as NF1 (CTF domain), Tgfi2 (Homeobox domain) and Ascl1 (bHLH
domain) (Figs. 3D & 4D). On the other hand, some ETRMs are composed
of TFswithDNAbinding domain of the same class, including TFswith the
ZF domain (EGR family), MADS domain (MEF2) and HMG domain (SOX
family). These results shed some light on how TFsmay be organized into
regulatory complex, for instance, heterodimers with TFs from the same
family. Pioneer TFs such as Ascl1 [28] were observed to have motifs
enriched in multiple ETRMs (Fig. 3D). This may reflect the fact that pio-
neer TFs act at early stages and participate in epigenetic regulation of
predicted (D-F) for TET1KO brainmethylome. The range ofmethylation levelswas set as 0
shown on right bar. The key TF identified in each iteration cycle wasmarkedwith double



Fig. 4.Methylation profiles of three DMR clusters identified (A-C) and the corresponding ETRMspredicted (D-F) for TET2KO brainmethylome. The range ofmethylation levelswas set as 0
(blue) to 1 (yellow). For each iteration cycle, the numbers of DMR included in the analysis were shown on right bar. The key TF identified in each iteration cycle wasmarkedwith double
ring. The TFs were colored according to TF family annotated with DNA binding domain.
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genomic regions in multiple sub-clusters. Interestingly, Sox3 and Sox10
were predicted to be key TFs in TET2KO clusters. The transient expres-
sion of Sox3 has been reported in neural progenitors [29] but Sox10 is
known as a critical regulator involved in multiple stages during neural
crest development [30]. The genomic regions related to Sox3 ETRMs
are hypo-methylated whereas those for Sox10 ETRM are hyper-
methylated during development (Supplementary Fig. S4).

Transcription factors binding could be under the influence of DNA
methylation, histone modifications, and chromatin structures [12,31].
For ETRMs identified for both TET1KO and TET2KO brains, several
methylation-related motifs were enriched in the differentially methyl-
ated regions (Supplementary Table S3). As classified in our motif data-
base, motifs from following categories were identified for their
corresponding TFs: (1) ‘MethylMinus’ motifs for Sox12, Atf3, Batf and
Tcf12; (2) ‘MethylPlus’ motifs for Lhx1, Lhx4, Lhx6, Lhx9 and Nanog;
(3) ‘Methylation-related’motifs, which include ‘motifs with little effect
by DNA methylation’ for Tlx2 and Myog and ‘motifs with no CpG’ for
Atoh1, MEF2 and Sox family members (Supplementary Fig. S5). Having
‘motifs with little effect by DNA methylation’ or ‘motifs with no CpG’
would enable a TF to neglect methylation statuses of its binding sites.
Such kind of TFs may work as forerunners together with TFs bind to
‘MethylPlus' motifs. Logically, the bindings of TFs with ‘MethylMinus'
motifs may depend on the interactions between forerunners and DNA
demethylation enzymes to demethylate their binding sites. Thus, the
identification of ETRMs together with the information of methylation
related motifs would supply information for how TFs may assemble in
differentially methylated loci.

2.5. Brain ChIP-seq Data Support the ETRMs Predicted

We next made use of brain ChIP-seq data to determine the binding
frequencies of transcription factors on the genomic sequences for each
differentially methylated sub-cluster with ETRM identified (Fig. 5).
Not surprisingly, most ETRMswe predicted are enriched for the binding
sites of corresponding transcription factors. For instance, the top TFs
with binding sites enriched in AP-1-ETRM are FOS and JUN proteins,
the two sub-units of a typical AP-1 protein complex. Similar results
were observed for Atoh-ETRM, Egr1-ETRM, Mef2-ETRM, NF1-ETRM,
and Sox-ETRM. Although we did not find the ChIP-seq study for Zic3
in mouse brain, genome-wide analysis of Zic3 binding sites in zebrafish
embryos revealed a distribution biased towards distal intergenic re-
gions that may act as functional enhancers [32]. We observed that
Zic3-ETRM is enriched for the binding sites of chromatin domain
boundary proteins CTCF and its partner Smc1 (Structural maintenance
of chromosomes protein 1) which is a key component of cohesin ring
complex [34]. Four transcription factors are with binding sites depleted
from Zic3-ETRM but highly enriched in Zeb1-ETRM are Nup153, Foxa2,
Bmi1, and Smchd1 (Fig. 5A). Although the interactions among Zeb1
with these transcription factors are not well studied, Zeb1, Foxa2,
Bmi1, and Smchd1were reported to be critical for epithelial mesenchy-
mal transition [27,35–37], an early neural developmental process in
which the neuroepithelium of the dorsal neural tube gives rise to neural
crest cells.

For both TET1KO and TET2KO methylomes, we observed neuronal-
activity-related transcription factors Npas4 and co-factor CBP are with
binding sites clustered together in AP-1-ETRM and Mef2-ETRM (Fig.
5A). On the other hand, brain-development-related transcription fac-
tors Pax6, Tcf4, and Brn1 are enriched in Lhx-ETRM and Sox-ETRM
(Fig. 5B). Mef2-ETRM, NF1-ETRM, and Sox-ETRM were identified for
both TET1KO and TET2KO DMRs. Despite the similarity in the enrich-
ment of corresponding transcription factors, a number of TFs show dis-
tinct binding preferences for these three ETRMs identified in themouse
brains lacking the two different TET enzymes. In particularly, Nup153
and Smchd1 binding sites are highly enriched in regions regulated by
Mef2-ETRM in Tet2KO but depleted from those in the Tet1KO brain.
Currently, little information is available regarding the interactions
between TET1 and TET2 enzymes with transcription factors such as
MEF2 family members, our result suggests TET1 and TET2 are likely
involved in two independent epigenetic regulatory pathways, i.e. via
different combinations of TFs with MEF2.



Fig. 5.The enrichment of TF binding sites in TET1KO and TET2KOETRMs. Each color value in thefigures represents the estimate of the odds ratio based on conditionalMaximumLikelihood
Estimate derived from Fisher's exact test. For TET2 KO, the two NF1 ETRMs identified from cluster 1 and cluster 3 shown in Fig. 4 were combined and labeled as one NF1-ETRM in the
bottom panel.
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3. Discussion

In this study, we proposed a computational pipeline tomaximize the
mechanistic understanding of methylation changes and demonstrated
its applications with brain methylomes derived from TET1KO and
TET2KO mice. To our knowledge, this is the first toolkit taking advan-
tage of several lines of information embedded in existing datasets:
1) methylome datasets collected for DMR clustering; 2) motif database
compiled for methylation associated TF searching; and 3) ChIP-seq
datasets providing additional experimental evidence.

From technical aspects, our approach consisted of two complemen-
tary steps: clustering based on methylation correlation and recursive
motif identification based on sequence analysis. These two steps serve
an important purpose to group genomic loci under the same epigenetic
regulation mechanism together and thus improve the likelihood to
identify TFs with motifs significantly enriched in each sub-group. Our
pipeline accepts DMRs identified with different thresholds defined by
various kinds of software designed for methylation data analysis. Wor-
thy of mention, ETRMs identified with our pipeline are not based on a
single DMR but rather thousands of DMRs sharing a similar methylation
profile. Therefore, it is not difficult to imagine that a slight change in the
list of DMRs is unlikely to result in striking differences in ETRMs pre-
dicted. More accurate clustering results in grouping DMRs sharing sim-
ilarmethylation patternsmay be achievedwith the increasing numbers
of methylomes generated for diverse conditions, development stages
and distinct cell types. The recursive TF motif identification enables us
to further explore the differences within clusters at the sequence level
and to reveal diverse mechanisms driving the epigenetic dynamics.
The combination of these two steps also allows us to explore subtle dif-
ferences in epigenome regulation within a specific cell type at a given
developmental stage. Our pipeline adopted the WGCNA algorithm to
group genomic regions with highly correlated methylation profiles.
Weighted adjacency feature in WGCNA puts emphasis on regions with
a high correlation at the expense of regions with low correlations
where the weight can be selected using scale-free topology [38].
WGCNA also allows scalability by splitting large matrices into smaller
blocks to fit within the available RAM resulting in faster computation.
For differentially methylated regions, we recommended a window
size comparable to the width of a typical ChIP-seq peak. In a recent
study conducted on defining features for ChIP-seq peak calling algo-
rithms, the authors suggested the ChIP-seq peak as a 200 bp window
surrounding the peak center [39]. They observed that the performance
of some peak calling tools dropped with a setting for shorter window
width (75 bp per window). Finally, HOMER motif analysis is limited to
a set of TFs with known motif position weight matrix (PWM). For in-
stance, based on ChIP-seq data, we observed the enrichment of
Nup153, Bmi1, and Smchd1 in cluster 3 of TET1KO. However, in
HOMER or JASPAR [40] databases, no motif is documented for these
three TFs. In addition, some transcription factors prefer to recognize
DNA structure (shape-based) instead of a stretch of DNA sequences,
and thus not all TFs are withmotifs documented in themotif databases.

From biological aspects, we identified a number of brain ETRMs
composed of transcription factors from the same family. This result is
consistent with known facts that some TFs, such as MEF2 [41] and AP-
1 [42] (a heterodimer composed of Fos and Jun proteins), tend to form
homo-dimers with itself or heterodimers with members of the same
family. Worthy of mentioning, TFs from the same family may not
work on the same locus simultaneously but substitute each other in a
sequential order during the developmental process. For instance, Sox2
and Sox3 keep neuronal differentiation genes silent in neural progenitor
cells and will be replaced by Sox11 when terminal differentiation initi-
ates [43]. Apparently, the lack of comprehensive datasets of high-
quality could dampen the power of the pipeline to provide an accurate
prediction. For instance, brain ChIP-seq datasets used in this study were
generated from diverse neural stem cell lines and brain tissues of differ-
ent developmental stages. Currently, very limited co-binding informa-
tion is available for these transcription factors due to the lack of ChIP-
seq datasets generated on desired experimental conditions. Addition-
ally, ETRMs were identified from different sets of genomic loci but
may interact with each other in 3D through chromatin folding. Future
efforts are required to integrate chromatin configuration information
into ETRM modeling. Despite these limitations, the predicted ETRMs
could still provide great starting points for further dedicated research
and we anticipate the analytic procedure described in this study will
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assist in the ultimate interpretation of the causes and consequences of
methylation alterations. Finally, the combination of HOMERwith the re-
cursivemotif search algorithm for regulatorymodule identificationmay
be applied on genomic regions of other interests beyond differentially
methylated loci demonstrated in this study.

4. Materials & Methods

4.1. “Omics” Datasets and Data Processing

Methylome and ChIP-seq datasets used in the study are summarized
in Supplementary Table S1A&B, respectively.Methylomedatasetswere
processed as described in previous studies with slight modifications
[44,45]. Sequence bases of low quality and illumina adaptors were
trimmed off using Trim_Galore. Trimmed sequences were aligned to
mouse reference genome mm10 using Bismark [3]. Fisher Exact test
was used to evaluate the significance of differential methylation [45].
Briefly, a contingency table was constructed for each CpG with the
rows indicated two conditions and the columns indicated the number
of methylated cytosines and unmethylated cytosines. In the test, CpG
sites were required to have at least 10Xs read coverage. A sequential
permutation method was employed to control FDR [46]. A new contin-
gency tablewas reconstructed by randomly assigning reads to cellswith
the same methylation probability for each sample in each permutation.
A total of 1000 permutations were performed for each CpG site. Differ-
entially methylated sites were determined with an adjusted p-value
equal to or less than 0.05. NeighboringDMSs locatedwithin 200 bpwin-
dowwere merged into DMRs. Finally, all DMRs including orphan DMSs
(in absence of neighboring DMS within 200 bp) were extended by
100 bp to both ends and used as the inputs for recursive ETRM identifi-
cation. ChIP-seq data processing followed the procedure described in
our previous study [31].

4.2. Clustering DMRs for motif Enrichment

WGCNAR package [20] was used to group each DMR set into differ-
ent clusters. We collected 66 methylomes for mouse forebrain, mid-
brain and hindbrain regions during development and for sorted
mouse brain cells including astrocytes, oligodendrocytes, excitatory
neurons, PV neurons and VIP neurons (Supplementary Table S1A). For
each DMR, a matrix was generated to host the methylation values
from the 66 methylomes. There are two main steps in WGCNA cluster-
ing. In the first step, DMRs were pre-clustered into different blocks
using projective k-means. Next, for each block, network analysis was
performed by identifying clusters of highly correlated DMRs and esti-
mating cluster Eigen node which is the first principal component of a
module and can be considered as a representative of the methylation
profile in a module. Lastly, clusters with highly correlated Eigen nodes
were merged. According to WGCNA clustering, a label ‘0’ (color ‘Grey’)
was assigned to DMRs that were not part of any co-methylated module
and were excluded from further analysis.

4.3. Preparing Motif Libraries

HOMER known motif library is primarily based on the analysis of
high-quality ChIP-Seq data sets [7]. The two additional methylation-
relatedmotif libraries contain positionweightmatrices (PWM) for indi-
vidual motifs were added to the HOMER database under known TF
motif directory. For annotation, all methylation-related motifs have
‘_methylated’ appended to their names.

4.4. Recursive Motif Search to Identify ETRMs

Known motif enrichment analysis was performed using the script
findMotifs.pl in HOMER with parameter “–mset vertebrates”. The
motif with the most significant p-value predicted by HOMER was
selected as a key TF. In case of ties involving two motifs sharing a
same enrichment p-value, the motif with a higher frequency in target
sequences was selected. Next, the regions containing the key motif
were identified with HOMER and the center of each region was shifted
to the predicted binding site of the key TF for another round of motif
search. This step results in the identification of TF motifs adjacent to
the key motif. Finally, the regions containing the motif for the key TF
were removed from the input dataset and the rest of input sequences
were used to identify the next most significant candidate motif. Such
motif searching process was performed recursively until no significant
motif can be identified.
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