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Polycythemia vera (PV) is a stem cell disorder characterized by hyperproliferation of the

myeloid lineages and the presence of an activating JAK2 mutation. To elucidate

mechanisms controlling PV stem and progenitor cell biology, we applied a recently

developed highly sensitive data-independent acquisition mass spectrometry workflow to

purified hematopoietic stem and progenitor cell (HSPC) subpopulations of patients with

chronic and progressed PV. We integrated proteomic data with genomic, transcriptomic,

flow cytometry, and in vitro colony formation data. Comparative analyses revealed

added information gained by proteomic compared with transcriptomic data in 30% of

proteins with changed expression in PV patients. Upregulated biological pathways in

hematopoietic stem and multipotent progenitor cells (HSC/MPPs) of PV included

mammalian target of rapamycin (MTOR), STAT, and interferon signaling. We further

identified a prominent reduction of clusterin (CLU) protein expression and a

corresponding activation of nuclear factor-kB (NF-kB) signaling in HSC/MPPs of untreated

PV patients compared with controls. Reversing the reduction of CLU and inhibiting NF-kB

signaling decreased proliferation and differentiation of PV HSC/MPPs in vitro. Upon

progression of PV, we identified upregulation of LGALS9 and SOCS2 protein expression

in HSC/MPPs. Treatment of patients with hydroxyurea normalized the expression of

CLU and NF-kB2 but not of LGALS9 and SOCS2. These findings expand the current

understanding of the molecular pathophysiology underlying PV and provide new

potential targets (CLU and NF-kB) for antiproliferative therapy in patients

with PV.

Introduction

Polycythemia vera (PV) is a myeloproliferative neoplasm (MPN) characterized by hyperproliferation of
all myeloid cell lineages1,2 and driven at least in part by an activating JAK2 mutation.3-6 Disease-driving
pathogenic changes in MPNs are thought to originate in MPN stem cells that form the diseased clonal
progeny.7,8 In healthy individuals, hematopoietic stem/multipotent progenitor cells (HSC/MPPs) can
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progressed PV.
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differentiate into committed progenitor cells including common
myeloid progenitors (CMPs), megakaryocyte-erythrocyte progeni-
tors (MEPs), or granulocyte-macrophage progenitors (GMPs).9,10

When the HSC differentiation process is altered, abnormal stem
cell subpopulations may form, leading to clonal hematopoiesis and
the onset of myeloid disease.11,12 To elucidate the molecular and
biochemical changes underlying stem or progenitor cell prolifera-
tion in chronic and progressed PV,1,7 highly refined molecular anal-
yses of human hematopoietic stem and progenitor cells (HSPCs)
in PV are required. Although human PV HSPCs have been investi-
gated previously on the transcriptome level,13,14 corresponding
analyses on the proteome level and in PV HSPC subpopulations
have become possible only recently.15 In this study, we aimed to
detect molecular patterns that distinguish HSC/MPPs and more
committed CMP/MEPs from patients with untreated PV, patients
with PV treated with hydroxyurea (HU), and controls on the protein
and RNA level, deciphering molecular mechanisms underlying PV
etiology and progression.

Until recently, proteomic analysis of fluorescence-activated cell sorter
(FACS)-isolated cells had in general been described only in technical
studies focused on optimization of specific parts of the workflow.16-
19 Others used 400000 cells as starting material.20 This restricted
the scope of the analyses to abundant or large pools of cells. To
overcome these limitations, we developed a new data-independent
acquisition (DIA) mass spectrometry (MS) workflow for rare human
HSPC subpopulations that occur at a frequency of less than 1 candi-
date cell per 1000 peripheral blood mononuclear cells and can
be isolated by FACS.15 With this new DIA-MS technology, it
became possible to identify states of biological networks in normal
human HSC/MPPs that could not be detected using solely
transcriptomics.15

We applied the new DIA-MS proteomic methodology to rare human
HSPC subpopulations from patients with chronic and progressed
PV and integrated the results with genomic, transcriptomic, flow
cytometry, and in vitro colony formation data. We identified new
potential drivers of myeloid hyperproliferation in PV and detected
new potential markers of progressed PV.

Methods

Human hematopoietic stem/progenitor cell samples

Human peripheral blood samples were collected from patients with
chronic and progressed PV (ie, post-PV myelofibrosis or post-PV
acute myeloid leukemia) and from controls with phlebotomy-requiring
hemochromatosis during clinical routine phlebotomy appointments
(Department of Medical Oncology and Hematology, University Hospi-
tal Zurich, Zurich, Switzerland). Buffy coat samples from healthy con-
trols were collected from the blood donation center SRK in Schlieren,
Zurich, Switzerland. All samples were collected with informed consent,
and the local ethics committee approved the study (KEK-ZH-Nr 2015-
0564, BASEC-Nr PB_2019-00135, Kanton Zurich, Switzerland).

As indicated in supplemental Table 1, there were 4 different sub-
groups of subjects: (1) patients with chronic (chron) PV without
cytoreductive treatment (PVchron.UT), (2) patients with chronic PV
treated with HU (PVchron.HU), (3) patients with progressed (prog)
PV (PVprog.UT and PVprog.HU), and (4) controls (hemochromato-
sis and buffy coats from healthy controls).

Cell preparation, flow cytometric analysis, cell

sorting, and sample processing for MS

HSPC subpopulations were isolated using FACS as previously
described.15 For flow cytometric analysis of intracellular clusterin
(CLU) and LGALS9 expression, the IntraPrep Leukocytic Permeabi-
lization Reagent Kit (Beckman Coulter) was used. Dead cells were
excluded in the analysis using Zombie Aqua Fixable Viability Stain
(BioLegend). A list of all antibodies is provided in supplemental
Table 2.

For MS analysis, 25000 HSC/MPPs and CMP/MEPs were sorted
into protein low-binding micro-centrifuge tubes (Eppendorf) and pre-
pared for MS analysis. Details on sample preparation are provided
in the supplemental Material. For RNA sequencing (RNA-seq) analy-
sis, up to 10000 HSC/MPPs, CMP/MEPs, CMPs, GMPs, and
MEPs were sorted into RNeasy lysis buffer (Qiagen) containing
b-mercaptoethanol. For the probes labelled PV1/8/12, CON1,
CON2, and CON3, samples from different individuals had to be
pooled to guarantee adequate HSC/MPP numbers for downstream
MS and RNA-seq measurements (supplemental Table 1).

MS analysis

To create the spectral library necessary for subsequent DIA-MS
analyses of proteins from FACS-isolated clinical cell samples, a
data-dependent acquisition (DDA) mode of operation was applied.
For MS analysis of human HSC/MPPs and CMP/MEPs from
patients with PV and controls, a data-independent acquisition (DIA)
mode of operation was used. Liquid chromatography-MS/MS meas-
urements were performed on an EASY-nLC 1200 system (Thermo
Scientific) connected to an Orbitrap Fusion Lumos Tribrid mass
spectrometer (Thermo Scientific) with a Nanospray Flex ion source.15

Details on sample separation, MS instrument settings, and library
generation are provided in the supplemental Material.

Proteomic data analysis

DDA data were searched by Mascot21 (Matrix Science, version
2.5.1) and Comet22 version 2016.01 rev. 2 against the Swissprot
reviewed subset of the human UniProt database with decoy
sequences generated by sequence reversal (keeping C-terminal K
and R residues). Spectral libraries from DDA data were generated
as previously described.23 DIA data were evaluated by Spectronaut
1124 (Biognosys), querying the library built from DDA runs.

Peptide intensities were log2 transformed and normalized with a
modified robust z-score transformation. For downstream analysis,
data were filtered for proteins with proteotypic peptides, and a multi-
level model was fitted to calculate differences among conditions per
protein.25,26 Empirical Bayes moderated t statistics and their associ-
ated moderated P values were used to assess the significance of
the observed expression changes.27 To adjust for multiple testing
and to estimate false discovery rates (FDR), we used the Benjamini-
Hochberg procedure. No imputation was allowed for statistical anal-
yses or graphs except for the PV signature heatmap plot, where
values of 26 were imputed for NAs. Details on proteomic data anal-
ysis are provided in the supplemental Material.

RNA isolation and sequencing

Total RNA was purified with the RNeasy Plus Micro Kit (Qiagen) fol-
lowing the manufacturer’s instructions. RNA-seq was performed as
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Figure 1. Integrative multi-omics analysis of hematopoietic stem and progenitor cell subpopulations in patients with PV. (A) Study outline. Protein image taken

from reference 69. (B) Mutational analysis based on RNA-seq data in patients with PV showing specific point mutations (rows) identified in the various cell subpopulations of the

PV patients tested (columns). Point mutations predicted by functional analysis through hidden Markov models as pathogenic are labeled in black, mutations classified as neutral are

labeled in violet, and unclassified mutations are labeled in gray.36 See also supplemental Figure 4. For PV1/8/12, samples from different individuals had to be pooled to guarantee

adequate HSC/MPP numbers for downstream MS and RNA-seq measurements.
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specified in Picelli et al28 using the NovaSeq sequencing platform
(Illumina).

RNA-seq data analysis

RNA-seq data were analyzed as previously described.29 In brief, adapt-
ers and low-quality tails were trimmed from reads before mapping to the
transcriptome. We used STAR aligner (v2.6.1.c)30 to align the RNA-
seq data to Ensembl release 91 reference genome build GRCh38.p10.
Gene expression values were quantified using featureCounts from the
Bioconductor package Rsubread (v1.32.4).31 Differential gene expres-
sion was analyzedwith the DESeq2 package (v1.22.2).32

Buffy coat samples were excluded from transcriptome analysis
because they clustered away from other samples in RNA-seq but
not in proteomic data, and pathway analysis showed RNA decay,
but not protein decay, to be significantly upregulated in buffy coat
samples (see supplemental Material).

Mutational analysis from RNA-seq data

We followed the GATK Best Practices Workflow.33 Mapped RNA
reads were duplicates marked, split, and base quality recalibrated.
Variants were called by HaplotypeCaller from GATK (v4.0.8.1)33

and annotated with Ensembl VEP.34 We tested the genes identified
as frequently mutated in MPNs by Grinfeld et al.35 Listed are all
mutations present in the catalogue of somatic mutations in cancer
database and found in the analyzed patient and control HSPC pop-
ulations after exclusion of (1) single nucleotide polymorphisms, (2)
mutations described only in organs other than the hematopoietic/
lymphatic system and mono-allelic, (3) mutations described only in
organs other than the hematopoietic/lymphatic system and observed
in only 1 subpopulation, and (4) mutations occurring in .80% of all
samples including controls. The mutations were then classified as
pathogenic or neutral based on functional analysis through hidden
Markov models.36

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed on pre-
ranked gene lists using the GSEA software (v4.1.0, http://www.
broadinstitute.org/gsea) with default settings and the hallmark
gene sets (h.all.v7.2.symbols.gmt) and gene sets retrieved from
Fisher et al37 (nuclear factor-kB [NF-kB] signaling). Ranked gene
lists were built from the normalized and filtered proteome and tran-
scriptome data using log2 (fold change) as ranking criterion.
Enrichments were deemed significant when FDR was ,0.25 as
suggested by Subramanian et al.38

Variant allele frequency determination in

differentiated granulocytes using droplet

digital PCR

Differentiated granulocytes were obtained from samples from
patients with PV using centrifugation and treatment with 150 mM
NH4Cl/10 mM KHCO3/0.1 mM NA2EDTA to remove contaminating
erythrocytes. Genomic DNA (gDNA) was extracted using the
QIAamp DNA Mini Kit (Qiagen) following the manufacturer’s instruc-
tions. Droplet digital polymerase chain reaction (ddPCR) for JAK2-
V617F variant allele frequency determination was performed using
the BioRad QX200 ddPCR system, the assay dHsaMDV2010061
(BioRad), and the manufacturer’s protocol.

Methylcellulose colony assay

FACS-isolated HSC/MPPs from 4 patients with untreated chronic
PV were plated in cytokine-supplemented methylcellulose medium
(StemCell Technologies) as described previously39 in the presence
or absence of 20 mg/mL recombinant CLU protein (Biolegend),
4 mM NF-kB inhibitor IKK-16 (IKK inhibitor VII, Selleckchem),37 or
both CLU and IKK-16. Cells were preincubated with CLU, IKK-16,
or both for 30 minutes before FACS isolation and plating. Colony
growth was evaluated after 12 days of incubation at 37�C and 5%
CO2. Colony types were defined as previously described.9,40

Additional statistical analyses

Statistical significance of protein and RNA expression between HSC/
MPPs and CMP/MEPs for CD34, CD38, myeloperoxidase, and trans-
ferrin receptor was determined using multiple t tests and the
Holm-Sidak method for correction of multiple comparisons. Statistical
significance of protein/RNA expression and colony growth in different
conditions (patient groups, cell subpopulations, inhibitor treatments)
was assessed by 1-way and 2-way analysis of variance (no missing
values present) or mixed-effects analyses (missing values present), cor-
recting for multiple comparisons with Tukey’s (1-way) and Dunnett’s
(2-way) test. Regression analyses were performed with ordinary least
squares estimation, testing for significance of the estimated correlation
by assuming an underlying F distribution.

Table 1. Mutational analysis in PV patients

ID Subgroup

JAK2-V617F
allele burden

(ddPCR)

Mutational analysis

(low burden, medium-high

burden; RNA-seq based)

PV1/8/12 PVchron.UT JAK2-V617F, EZH2

PV8 PVchron.UT JAK2-V617F, EZH2

PV16 PVchron.UT 43% JAK2-V617F, TET2

PV13 PVchron.UT 78% JAK2-V617F, FLT3

PV6 PVchron.UT 93% JAK2-V617F, FLT3, TET2, BCOR

PV14 PVchron.UT 97% JAK2-V617F, IDH1

PV9 PVchron.UT 92% JAK2-V617F

PV4 PVchron.HU 4% TET2, BCOR, STAG2

PV5 PVchron.UT and
PVchron.HU*

43% JAK2-V617F, DNMT3A, TET2,
CUX1, KMT2C

PV3 PVchron.HU 95% JAK2-V617F, NF1, IDH1, TET2, KMT2C

PV2 PVchron.HU JAK2-V617F, GATA2

PV7† PVchron.HU EZH2

PV18 PVprog.UT 98% JAK2-V617F, TET2

PV17 PVprog.UT JAK2-V617F, SF3B1, EZH2

PV11 PVprog.HU 99% JAK2-V617F, PPM1D, DNMT3A, KIT, TET2

PV15 PVprog.HU JAK2-V617F, TET2

PV10 PVprog.HU JAK2-V617F, FLT3, TET2

Specific point mutations identified in the various cell subpopulations of the PV patients
tested. Low burden, only seen in one cell subpopulation (given that more than one cell
subpopulation was measured) at allele burden less than 40%; medium-high burden,
everything that is more than low burden. Mutations occurring at medium-high burden are
marked in bold. See also supplemental Figure 4.
Chron, chronic; HU, under treatment with hydroxyurea; prog, progressed; UT,

untreated.
*Two sets of samples collected.
†Not enough material for full mutational analysis.
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Results

Protein and RNA landscape of hematopoietic stem

and progenitor cells in patients with PV

DIA-MS proteomic analysis was performed on HSC/MPPs and
CMP/MEPs isolated and purified by FACS from 18 patients with
PV and 21 controls (Figure 1A; supplemental Table 1). HSCs and
MPPs, or CMPs and MEPs, respectively, were combined for individ-
ual patients and controls into HSC/MPPs and CMP/MEPs to reach
required cell numbers (25000 cells) for proteomics. The proteomic
dataset was supplemented with RNA-seq data of the same patient
and control samples. An average of 4285 proteins and 14272
RNAs were identified per individual sample (supplemental Figures 1
and 2).

To verify proteomic and RNA-seq data quality, we tested expression
of surface proteins used to isolate the various HSPC subpopula-
tions and lineage markers with known expression in myeloid progen-
itors. CD34, CD38, the granulocytic marker myeloperoxidase,42 and
the erythroid precursor marker transferrin receptor (aka CD71)43

were detected at expected intensities in specific HSPC subpopula-
tions on the protein and RNA level (supplemental Figure 3).

For better characterization of the study cohort and for insights
into clonal evolution of malignant HSPC subpopulations, RNA-
seq data in HSC/MPPs, CMP/MEPs, CMPs, MEPs, and GMPs
of patients with PV and controls were investigated for genetic
mutations. This demonstrated JAK2-V617F mutations in 94% of
patients with PV but in no control samples, with allele burdens in
PV patients ranging from ,10% to close to 100% (Table 1;
Figure 1B; supplemental Figure 4). ddPCR results for JAK2-
V617F, performed in differentiated granulocytes of the same
patients, closely matched the RNA-seq based mutational data
with 1 exception: For PV4, no JAK2-V617F mutation was
detected in RNA-seq, but ddPCR showed a variant allele fre-
quency of 4% in granulocytes (Table 1; Figure 1B; supplemental
Figure 4). This suggests a detection limit . 4% for RNA-
seq–based mutational analysis or different allele burdens in
HSPCs and differentiated granulocytes in this patient. We next
assessed for mutations other than JAK2-V617F. Many of the
patients with PV in the chronic phase and all patients with
progressed PV carried mutations additional to JAK2-V617F
(Table 1; Figure 1B). As described previously,35 additional muta-
tions were found most often in TET2 (50% of PV patients stud-
ied). Whereas the allele burden of JAK2-V617F was similar for
HSC/MPPs and more committed CMP and MEP subpopulations,
other mutations were often observed with higher allele burdens in

the more committed progenitor subpopulations, mainly in CMPs
and MEPs, compared with HSC/MPPs (supplemental Figure 4).

To gain an overview of the protein and RNA expression land-
scapes of HSC/MPPs and CMP/MEPs in PV, we applied unsu-
pervised hierarchical clustering and principal component
analyses. The proteomic and RNA-seq datasets from patients
with PV showed clustering by cell subpopulation (Figure 2A-B)
and to a lesser extent by disease stage or treatment (supplemen-
tal Figure 5A-B), which was confirmed by principal component
and multidimensional scaling analysis (Figure 2C-D). Because
buffy coat samples showed signs of RNA decay (supplemental
Figures 5C and 6), they were excluded from downstream tran-
scriptomics analyses.

A comparison of the proteomic and RNA-seq datasets in corre-
sponding patient and control samples showed positive correlations
for 70% and negative correlations for 30% of the proteins with
changed expression, with a median correlation coefficient of 0.13
(Figure 2E; supplemental Figure 7). The proportion of genes with
protein-RNA expression discrepancies is consistent with previous
observations in the hematopoietic field.15 An evaluation of RNA
vs protein intensity showed a correlation of 0.38 (supplemental
Figure 8). These findings underscore the added information gained
by proteomic compared with transcriptomic data.

Discrepant stem cell polarity and metabolic pathway

enrichments on the protein and RNA level in

PV HSPCs

To characterize the biological pathways perturbed in PV HSPCs on
the protein and RNA level and to examine protein-RNA discrepan-
cies in more detail, we performed GSEA for hallmark pathways.44

Most pathways were enriched similarly on the protein and RNA level
(Figure 3A). Discrepant pathway regulation on the protein and RNA
level in HSC/MPPs of untreated PV patients compared with con-
trols was observed for the stem cell polarity pathway of epithelial-
mesenchymal transition45 and the inflammatory response pathway
(Figure 3A). Detailed analysis of the epithelial-mesenchymal transi-
tion pathway demonstrated differential RNA and protein expression
for key pathway members (eg, THBS1) as the basis of such differ-
ences (Figure 3B-C). Upon treatment of patients with HU, discrep-
ant pathway regulation was observed for the metabolic pathways of
oxidative phosphorylation and fatty acid metabolism with positive
enrichments seen at the protein level and negative enrichments
observed at the RNA level (Figure 3A). Comparing multipotent
HSC/MPPs to committed CMP/MEPs in patients with untreated PV
showed discrepant pathway regulation for the epithelial-mesenchymal

Figure 2 (continued) Protein and RNA landscape of PV stem and progenitor cells. (A) Heatmap (unsupervised complete hierarchical clustering of Euclidean distances)

for the 3769 proteins uniquely identified across HSC/MPPs and CMP/MEPs isolated from 18 patients with PV and 21 controls. z-Score log2(I) refers to the z-score of log2

transformed protein intensities. Clustering was observed mainly according to cell type. Within cell subpopulations, patients with progressed PV (marked in green and orange)

clustered away from patients with chronic PV (marked in blue and purple), which in turn clustered away from control subjects (marked in red). For graphs with separate clustering

analyses in HSC/MPPs and CMP/MEPs, see supplemental Figure 5A-B. (B) Heatmap of the 2000 most variant mRNAs in HSC/MPPs, CMP/MEPs, CMPs, MEPs, and GMPs

isolated from patients with PV and controls, confirming clustering mainly according to cell type. Class (patient with PV or control), tx (treatment with HU or untreated [UT]), and

progression status (chronic [chron] or progressed [prog]) is marked in color. (C) Corresponding principal component analysis of protein intensities. (D) Multidimensional scaling plot

of RNA-seq data. (E) Correlation between protein and RNA expression. Gray lines mark the minimum, maximum, and the first and third quartile, and the green line represents the

median. Most correlations were positive, but negative correlations were also observed. See supplemental Figure 7 for representative plots of specific candidates with positive and

negative correlations and supplemental Figure 8 for an analysis of protein intensity vs RNA intensity. norm, normalized.
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transition and metabolic pathway glycolysis, with otherwise mainly
congruent pathway regulation on the protein and RNA level
(Figure 3A).

PV HSC/MPPs demonstrated upregulation of mammalian target of
rapamycin (MTOR), STAT5, and interferon signaling, upregulated
E2F and MYC target expression, and increased proliferation com-
pared with control HSC/MPPs (Figure 3A). HU treatment of
patients reversed MTOR signaling, E2F and MYC target expression,
and proliferation pathways but not STAT5 signaling in PV HSC/
MPPs (Figure 3A). Compared with more differentiated PV CMP/
MEPs, PV HSC/MPPs showed upregulation of STAT5, tumor
necrosis factor a, and interferon signaling, decreased expression
of E2F and MYC targets, and decreased proliferation activities
(Figure 3A).

In summary, GSEA for biological pathways in HSPC subpopula-
tions of patients with PV and controls demonstrated discordant
protein and RNA enrichment for stem cell polarity and metabolic
pathways while showing concordant enrichment for most other
pathways.

Hyperproliferative PV stem/progenitor cell

signature with reduced CLU protein expression and

activated NF-kB signaling and markers for disease

progression

To examine the molecular phenotype underlying PV stem and
progenitor cell biology in more detail, we investigated differen-
tially regulated individual proteins in HSC/MPPs of untreated PV
patients compared with controls. We observed strong downre-
gulation of NF-kB–inhibiting CLU46,47 protein expression in
HSC/MPPs of patients with untreated PV (Figure 4A-B; supple-
mental Figure 9). Megakaryocytic lineage proteins such as pro-
platelet basic protein (PPBP), CXCL4/platelet factor 4 (CXCL4/
PF4), and integrin a-2b (ITGA2B) were also downregulated in
HSC/MPPs of patients with untreated PV (Figure 4A),48

whereas LGALS9 (aka galectin 9)49 and suppressor of cytokine
signaling 2 (SOCS2), a STAT-induced STAT inhibitor,50

were upregulated particularly in patients with progressed PV
(Figure 4B; supplemental Figure 9). Intracellular flow cytometry
confirmed downregulation of CLU protein in the HSC/MPP
subpopulation of patients with untreated chronic phase PV
compared with HSC/MPPs of age- and sex-matched controls
(Figure 4C-E). For LGALS9, flow cytometry validated upregula-
tion in patients with progressed PV while showing unchanged
expression in patients with chronic phase PV (Figure 4D-E). For
SOCS2, upregulation in patients with progressed PV in the pro-
teomic analysis was reinforced by RNA-seq analysis (Figure 4F).
These data suggest that LGALS9 and SOCS2 may serve as
markers for disease progression in PV. Treatment with HU abro-
gated the downregulation of CLU but had no effect on progres-
sion markers (Figure 4B). By applying stringent cutoffs (P , .01

and fold change . 2), a PV stem/progenitor cell protein signa-
ture was derived (Figure 5A).

To test for potential key molecular switches distinct for PV stem
and multipotent progenitor cells, as opposed to committed mye-
loid progenitors, we next focused our investigations on HSC/
MPP-specific findings. Subtracting the comparison of HSC/
MPPs vs CMP/MEPs in controls from the same comparison in
patients with untreated PV returned NF-kB2 as the most signifi-
cantly upregulated protein specifically in HSC/MPPs of patients
with untreated PV (Figure 5B). The corresponding analysis for
HSC/MPP-specific findings in PV patients treated with HU and
compared with untreated PV patients showed a downregulation
of the previously upregulated NF-kB2 protein (Figure 5C). These
findings were supported by GSEA, confirming that NF-kB
signaling is activated in HSC/MPPs of patients with untreated
PV (Figure 5D).

CLU and the NF-kB inhibitor IKK-16 inhibit colony

formation of HSC/MPPs isolated from patients with

untreated chronic phase PV

To assess the functional relevance of downregulation of CLU
and activation of NF-kB signaling in PV HSC/MPPs and to exam-
ine its causal link to HSC/MPP proliferation and differentiation in
PV, we cultured HSC/MPPs of patients with untreated chronic
PV in the presence or absence of CLU, the NF-kB inhibitor IKK-
16, and a combination of both. We observed 52%, 74%, and
84% inhibition of total colony formation, respectively, on treat-
ment with CLU, IKK-16, and a combination of both for FACS-
isolated HSC/MPPs from patients with untreated chronic PV
(Figure 5E). Interestingly, the combination of CLU and IKK-16
showed no significant additional inhibitory effect compared with
IKK-16 alone. This is consistent with the antiproliferative effect of
CLU being mediated through downregulation of NF-kB signaling
in HSC/MPPs of patients with untreated PV. CLU, IKK-16, and
their combination inhibited granulocyte/macrophage colony for-
mation from PV HSC/MPPs by 49%, 69%, and 80%, respec-
tively. Erythroid colony formation was reduced by 57%, 83%,
and 90%, respectively (Figure 5E). These results demonstrate
that downregulation of CLU and activation of NF-kB signaling is
linked to HSC/MPP proliferation and differentiation in PV.

Discussion

In this study, we investigated the proteomic landscape of PV
stem and progenitor cells using a recently developed highly sen-
sitive DIA-MS technology for rare human HSPC subpopula-
tions.15 Proteomic data of HSC/MPPs and more committed
CMP/MEPs from patients with untreated PV, patients with PV
treated with HU, and controls were integrated with clinical, geno-
mic, transcriptomic, flow cytometry, and in vitro colony formation
data. We identified a hyperproliferative PV stem/progenitor cell

Figure 3 (continued) Pathway enrichments in HSC/MPPs and CMP/MEPs of patients with PV and controls on the protein and RNA level. (A) GSEA

comparing untreated patients with PV against controls (PV.UT.HSC/MPP vs Control.HSC/MPP) and assessing for the effects of treatment with HU (PV.HU.HSC/MPP vs PV.UT.HSC/

MPP) and differentiation (PV.UT.HSC/MPP vs PV.UT.CMP/MEP). Shown are normalized enrichment scores for perturbed gene sets, whereby FDR , 0.25 denotes significantly

enriched gene sets (marked by intense colors).38 (B) Heatmap of core-enriched RNAs in HSC/MPPs of patient and control groups for the cell polarity pathway epithelial-

mesenchymal transition. (C) Heatmap of core-enriched proteins in HSC/MPPs of patient and control groups for the cell polarity pathway epithelial-mesenchymal transition.
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signature with reduced CLU protein expression and activated
NF-kB signaling in patients with untreated PV. Furthermore,
LGALS9 and SOCS2 were identified as potential markers for
disease progression. Treatment of patients with HU reversed
both downregulation of CLU and upregulation of NF-kB2 but
had no effects on LGALS9 or SOCS2 expression.

Discrepancies in protein and RNA expression were observed for
30% of expressed genes (Figure 2E and Amon et al15). Indeed, the
main findings of downregulated CLU, megakaryocytic lineage pro-
teins, and upregulated LGALS9 demonstrated significant perturba-
tions on the protein, but not on the RNA level. Furthermore, the
stem cell polarity pathway of the epithelial-mesenchymal transition
and metabolic pathway enrichments were discrepantly regulated on
the protein and RNA level. Possible reasons for discrepantly per-
turbed protein and RNA data include differences in coverage and
thus statistical power between proteomic and transcriptomic analy-
ses, as well as differential rates and temporal delays of protein syn-
thesis and degradation,51-57 posttranslational mechanisms such as
ubiquitination,58 protein abundance buffering (the phenomenon of
variations in RNA abundance being reduced [buffered] at the level
of protein abundance),51,59-61 and stabilization and upregulation of
proteins within protein complexes.51,61,62 CLU and LGALS9 both
act within protein complexes,63 which can explain mRNA-protein
abundance discrepancies, at least in part.51,61 Whereas RNA-seq
was more complete and allowed for detection of mutations, the pro-
teomic dataset was closer to cell functions and better suited to
describe cellular states.

Among individual proteins, we identified downregulation of CLU
as an important differentially regulated factor in PV HSC/MPPs.
Its inhibition of colony formation in vitro indicates that CLU has
antiproliferative effects on PV HSC/MPPs. CLU is a well-
described inhibitor of NF-kB signaling.46,47 To test whether the
antiproliferative effect of CLU is consistent with inhibition of
NF-kB signaling, we tested the effect of the NF-kB inhibitor IKK-
16 on the colony formation capacity of PV HSC/MPPs. Indeed,
we found a colony formation–inhibiting effect for IKK-16 in HSC/
MPPs of PV (Figure 5E). Previous studies have shown a colony
formation–inhibiting effect of IKK-16 in healthy HSPCs of the
bone marrow.37 Taken together, this suggests that NF-kB signal-
ing affects proliferation and differentiation of hematopoietic
stem/progenitor cells in PV and healthy individuals. The
observed activation of NF-kB signaling in PV HSC/MPPs relative
to healthy control HSC/MPPs conforms with hyperproliferation in
PV and extends previous reports on the role of NF-kB signaling
in myelofibrosis to patients with nonfibrotic PV.37,64,65 Combined
treatment of PV HSC/MPPs with CLU and IKK-16 did not lead

to significant further inhibition of colony formation compared with
IKK-16 alone (Figure 5E). This is consistent with CLU exerting
its antiproliferative effect through inhibition of NF-kB. Our study
thus supports a mechanistic model in which downregulation of
CLU contributes to the myeloid hyperproliferation seen in PV by
activating NF-kB signaling. Future studies are warranted to delin-
eate the structural and temporal aspects of CLU-mediated
NF-kB modulation in PV.

Malignant transformations rarely rely on a single event, and indeed,
in addition to reduced CLU expression and activation of NF-kB sig-
naling, we also observed downregulation of megakaryocytic lineage
proteins such as CXCL4/PF4, with associated loss of stem cell qui-
escence.48 In contrast to CLU, CXCL4/PF4 exerts its antiprolifera-
tive effects through activation of stem cell quiescence-inducing
transforming growth factor b (TGFb) signaling.48,66,67 Hence, both
proteins affect the proliferation and differentiation process of PV
HSC/MPPs through distinct signaling pathways. The normalization
of both CLU-NF-kB2 and CXCL4/PF4-TGFb, on treatment of PV
patients with HU, supports their involvement in the hyperproliferative
phenotype of PV HSC/MPPs. It remains to be shown which factors
and associated pathways, CXCL4/PF4-TGFb or CLU-NF-kB, gain
predominance in specific patient populations and under different
treatment conditions. Promising results of combined JAK/STAT and
NF-kB inhibitors in murine models64,65 led to clinical trials based on
dual targeting of JAK/STAT and NF-kB for the treatment of myelofi-
brosis.65,68 A similar role for additional agents targeting the
CXCL4/PF4-TGFb or CLU-NF-kB axes may arise in patients with
high-risk PV, whose disease is not adequately controlled by current
approaches.

Upon disease progression of PV to post-PV myelofibrosis and post-
PV acute myeloid leukemia, we observed upregulation of LGALS9
and SOCS2 in HSC/MPPs. LGALS9 was previously described as
a marker for leukemic stem cells.49 SOCS2 was reported to be
upregulated on progression of chronic myeloid leukemia,50 an MPN
driven by the BCR-ABL1 translocation. Our findings in patients with
progressed PV suggest that LGALS9 and SOCS2 may serve as
markers for disease progression in PV. Follow-up studies with
higher numbers of patients with progressed PV are required to vali-
date these findings.

In conclusion, applying a recently developed highly sensitive DIA-
MS technology to stem and progenitor cell samples from patients
with PV, we detected protein-specific pathway enrichment in PV
HSC/MPPs, including the stem cell polarity pathway of the
epithelial-mesenchymal transition. We further identified reduced
CLU protein expression and associated activation of NF-kB signal-
ing in the HSC/MPP subpopulation of patients with untreated PV

Figure 4 (continued) Differentially regulated protein markers in HSC/MPPs of patients with PV and controls. (A) Volcano plot of protein intensity fold changes

and P values comparing HSC/MPPs of patients with untreated PV (PV.UT.HSC/MPP) against controls (Control.HSC/MPP). (B) Normalized protein intensities for CLU, LGALS9,

and SOCS2 in the subgroups of controls, patients with chronic PV without cytoreductive therapy (PVchron.UT), patients with chronic PV with HU therapy (PVchron.HU), and

patients with progressed PV (PVprog). Error bars represent standard deviations. *Adjusted P , .05; **adjusted P , .01; ***adjusted P , .001. Peptide profiles for CLU, LGALS9,

and SOCS2 are provided in supplemental Figure 9. (C) FACS strategy. (D) Representative FACS plots for CLU and LGALS9 in a patient with chronic PV without cytoreductive

treatment (PVchron.UT), a patient with progressed PV (PVprog), and age- and sex-matched controls. FMO, fluorescence minus 1 reference. (E) Graphical summary of intracellular

FACS staining experiments for CLU and LGALS9 in 6 patients with untreated chronic PV, 3 patients with progressed PV, and age- and sex-matched controls. Error bars represent

standard deviations. (F) Normalized RNA reads for SOCS2 in the subgroups of controls, patients with chronic PV without cytoreductive therapy (PVchron.UT), patients with chronic

PV with HU therapy (PVchron.HU), and patients with progressed PV (PVprog). Error bars represent standard deviations. *Adjusted P , .05; ****adjusted P , .0001.
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and 2-way (granulocyte/macrophage and erythroid colonies) analysis of variance testing was applied using Tukey (1-way) and Dunnett (2-way) correction for multiple testing.
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as a potential driver of myeloid hyperproliferation in PV. Upon pro-
gression of PV, we observed upregulation of the protein markers
LGALS9 and SOCS2. Our study demonstrates the applicability of
the newly developed highly sensitive DIA-MS technology in the
characterization of clinically relevant and rare disease subpopula-
tions. It adds a new protein layer to the molecular portrayal of PV
stem and progenitor cells, identifies new protein factors important
for PV biology, and provides potential new therapeutic targets.
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