
RESEARCH ARTICLE

Graph-based algorithms for Laplace

transformed coalescence time distributions

Gertjan BisschopID*

University of Edinburgh, Institute of Evolution and Ecology, Edinburgh, United Kingdom

* g.bisschop@sms.ed.ac.uk

Abstract

Extracting information on the selective and demographic past of populations that is con-

tained in samples of genome sequences requires a description of the distribution of the

underlying genealogies. Using the Laplace transform, this distribution can be generated

with a simple recursive procedure, regardless of model complexity. Assuming an infinite-

sites mutation model, the probability of observing specific configurations of linked variants

within small haplotype blocks can be recovered from the Laplace transform of the joint distri-

bution of branch lengths. However, the repeated differentiation required to compute these

probabilities has proven to be a serious computational bottleneck in earlier

implementations.

Here, I show that the state space diagram can be turned into a computational graph,

allowing efficient evaluation of the Laplace transform by means of a graph traversal algo-

rithm. This general algorithm can, for example, be applied to tabulate the likelihoods of

mutational configurations in non-recombining blocks. This work provides a crucial speed up

for existing composite likelihood approaches that rely on the joint distribution of branch

lengths to fit isolation with migration models and estimate the parameters of selective

sweeps. The associated software is available as an open-source Python library, agemo.

Author summary

For simple models of idealised populations, the process that generates the observed

sequences can be mathematically described. For a given number of samples, we can enu-

merate all possible genealogies. We can even incorporate the impact of past events like

population size reductions on the observed sequence variation. However, the number of

possible genealogies will become very large, very fast. So, to extract information from the

observed mutations, we need mathematical tools and efficient algorithms to use the infor-

mation contained within the large collection of possible genealogies.

The Laplace transform is one such mathematical tool that allows us to recursively gen-

erate the branch length distribution of all genealogies. Here I show how the transform can

be represented as a graph. Using this nonlinear data structure, I define a general proce-

dure to efficiently evaluate the associated mathematical expressions. And I further show

how this can be used to speed up existing composite likelihood approaches to fit

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010532 September 15, 2022 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bisschop G (2022) Graph-based

algorithms for Laplace transformed coalescence

time distributions. PLoS Comput Biol 18(9):

e1010532. https://doi.org/10.1371/journal.

pcbi.1010532

Editor: Mark M. Tanaka, University of New South

Wales, AUSTRALIA

Received: May 20, 2022

Accepted: September 1, 2022

Published: September 15, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1010532

Copyright: © 2022 Gertjan Bisschop. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The software is

available at http://github.com/LohseLab/agemo.

Documentation on how to use agemo can be found

at https://agemo.readthedocs.io.

https://orcid.org/0000-0001-8327-0142
https://doi.org/10.1371/journal.pcbi.1010532
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010532&domain=pdf&date_stamp=2022-09-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010532&domain=pdf&date_stamp=2022-09-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010532&domain=pdf&date_stamp=2022-09-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010532&domain=pdf&date_stamp=2022-09-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010532&domain=pdf&date_stamp=2022-09-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010532&domain=pdf&date_stamp=2022-09-27
https://doi.org/10.1371/journal.pcbi.1010532
https://doi.org/10.1371/journal.pcbi.1010532
https://doi.org/10.1371/journal.pcbi.1010532
http://creativecommons.org/licenses/by/4.0/
http://github.com/LohseLab/agemo
https://agemo.readthedocs.io

demographic models and estimate sweep parameters. The associated software, agemo,

has a well-documented Python API and has been designed with extensibility in mind,

making it an ideal back-end for many other inference approaches in population genetics.

This is a PLOS Computational Biology Software paper.

Introduction

The Laplace transform is often introduced as a formal tool to solve differential equations. Yet

in mathematical fields like queuing theory, the integral transform is used to simplify the analy-

sis of the studied probabilistic problems. This is due to two key properties of the Laplace. One,

the transform of the distribution of the sum of independent random random variables

becomes the product of their respective Laplace transformed marginal distributions. Two, the

Laplace transform of a random variable X describing the length of an interval, has a clear prob-

abilistic interpretation. Let a Poisson process with intensity ω mark this interval, then the

Laplace transform, LðfXÞðoÞ ¼ f ?X ¼ E½e� oX�, is the probability of not observing any marks in

the considered interval [1]. If we translate this idea to the standard coalescent framework [2–4]

and let the marking process describe the arrival of mutations, then the Laplace transform of

the distribution of the total branch length gives the probability of not observing any mutations

along the modelled genealogies. Conversely, the probability of not observing any mutations

between two coalescence events gives us the transformed distribution of the total branch

length spanned by those two events. This means that, given a state-space graph that describes

all possible transitions during the coalescent process, one can easily write down all associated

expressions in the Laplace domain [5]. This is not the case for the time domain.

The Laplace transformed description of the distribution of coalescence times has been used

to tackle two major problems in population genetics: fitting explicit models of population his-

tory [5–8] as well as estimating sweep parameters [9]. Note that because the Laplace transform

can be interpreted as the generating function (GF) of a continuous random variable, this

method is often referred to as the GF approach. These studies have used composite likelihood-

based approaches that summarize mutational information as counts of the (joint) site fre-

quency spectrum within blocks of a fixed length [7]. Note that the GF framework allows for

the inclusion of multiple recombining loci [5]. However, because of the associated computa-

tional complexity, current applications all calculate likelihoods based on the mutational infor-

mation in blocks small enough for recombination to be negligible. Also note that likelihoods

are not only composited over all blocks, but also over all possible subsamples of size at most 6

[8]. This is due to the fact that the GF grows superexponentially with the number of samples,

but also because of the number of possible joint site frequency spectra within small blocks (see

Mutation configuration probabilities).

The probabilities of observing all block-wise mutational configurations are given by a mul-

tivariate Poisson distribution mixed over the joint distribution of branch lengths. The Laplace

transform is well suited to compute these probabilities because this Poisson distribution can be

written as a function of the Laplace transform of the branch length distribution. Specifically,

the probability of observing k mutations along each of the ki branch types is proportional to

the kth derivative with respect to the associated variable in the Laplace domain [5]. Previous

implementations have always used a computer algebra system (CAS) to compute these higher-

PLOS COMPUTATIONAL BIOLOGY Graph-based algorithms for Laplace transformed coalescence time distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010532 September 15, 2022 2 / 13

Funding: This work was funded by an ERC

starting grant awarded to Konrad Lohse

((ModelGenomLand, 757648, erc.europa.eu)). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1010532

order derivatives of the Laplace transform. Such an approach suffers from an explosion in the

number of terms due to the product or the Leibniz rule. This computational bottleneck has

limited the usability of the framework.

One way to solve the computational bottleneck is to replace the recursive description of the

generating function by matrix manipulations. This has been done using phase-type theory

[10]. Phase-type distributions are the result of a mixture or convolution of exponential distri-

butions. The theory provides an alternate way of translating the state transition diagram into a

description of the branch length distribution of genealogical trees. One of the major computa-

tional advantages of this description is that the matrices that define the distribution are typi-

cally preserved up to the point of evaluation [10]. Because computationally efficient algorithms

for linear algebra operations already exist, phase-type theory lends itself to efficient implemen-

tations. With increasing sample size however, matrix operations become computationally

unfeasible. Given the sparsity of most real-world state spaces, graph-based representations of

these matrices can alleviate this issue to some extent [11]. However, currently no algorithms

have been described to extract information from the joint branch length distribution.

Graphs reveal the relationships between the base entities or nodes. Therefore, the more

complex these relationships are, the more connected the graph will be and the more useful a

graph-based representation becomes. In machine learning for example, computational graphs

representing mathematical equations are used to efficiently calculate derivatives [12]. What I

have implemented here takes inspiration from automatic differentiation in that we will use the

recursively generated state-space graph as a computational graph to avoid both symbolic com-

putation and repetitively evaluating the same expressions. Note that representing the GF as a

graph does not remove the exponential growth with sample size of both the state space and the

number of possible mutational configurations within small blocks.

Here, I present the key algorithms underlying this approach as well as agemo, an open-

source non-symbolic implementation of the GF framework. The paper is structured as follows.

First, I will summarize the description of the GF as a large symbolic expression as defined in

[5] and show how the GF can be represented more succinctly. Secondly, I lay out the graph tra-

versal algorithm that allows efficient evaluation of the GF. I then show how this algorithm can

be used to query the joint distribution of branch lengths and tabulate the probabilities of

observing mutation configuration in blocks of non-recombining sequence.

Methods

Recursive description of the branch length distribution in the Laplace

domain

Given a sample of n ¼
Pk

i¼1
ni uniquely labeled lineages from k distinct populations, we can

represent all possible coalescent histories of that sample in a single rooted directed graph [13].

By labelling lineages by the samples they subtend, we can associate each node of the transition

diagram with a vector O = (O1, . . ., Ok) uniquely describing that state. Here Oi represents all

lineages present in deme i. As we move through the graph from the source node, representing

the set of all sampled lineages, to the absorbing state or most recent common ancestor (mrca),

we track the movement and coalescence of lineages. Coalescence events reduce the number of

lineages in a deme, while events like a (mass) migration will move lineages from one deme to

another. Fig 1 shows the state space graph for a toy example. Here, edges 1 and 3 are associated

with mass migration events moving all lineages from population B to A, leaving OB empty.

Note that, in general, any state where all but Oi are empty and |Oi| = 1, can be an absorbing

state.

PLOS COMPUTATIONAL BIOLOGY Graph-based algorithms for Laplace transformed coalescence time distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010532 September 15, 2022 3 / 13

https://doi.org/10.1371/journal.pcbi.1010532

The state space graph as described above can be generated recursively. All state transitions

are conditionally independent. They only depend on the lineages in the current state and on

the set of competing processes that define how one moves from one state to the next. Along

each path through the graph, the time to the mrca is distributed as the sum of the inter-event

times. In the Laplace domain, the sum of independent random variables is equal to the product

of their respective Laplace transformed distributions. This general property of generating func-

tions turns this graph into more than just a visual aid. The graph is now a description of how

to generate the Laplace transform f ?L , of the random variable L, describing all branch lengths.

Given the expressions that detail the time to go from one state to the next, the distribution

associated with a single path through the graph can be retrieved by multiplying all the expres-

sions associated with the edges found along that path. The entire Laplace transform is then a

simple sum of the equations describing all paths through the graph. A minimal representation

of the GF thus consists of a list of the unique equations, each associated with a single edge, and

a list of lists P enumerating for each path b through the graph the index a of each edge/equa-

tion along that path (see Fig 1). As a result f ?L can be written as
P

b

Q
a2Pb

f ?a .

Because of the probabilistic interpretation of the Laplace transform, the expression associ-

ated with each edge equates to the probability of observing the event of interest before any

other event happening at rate ω. In the standard coalescent framework, coalescence events are

exponentially distributed with rate n
2

� �
when there are n lineages remaining. So in the Laplace

domain, the distribution of the waiting time until the next coalescence is given by
n
2

� �
= n

2

� �
þ o

� �
. To incorporate more than one process with an exponentially distributed

waiting time, it suffices to observe that min(X, Y)� exp(ωx + ωy) when both X� exp(ωx) and

Y� exp(ωy). This means one can incorporate as many events with exponentially distributed

Fig 1. Coalescent state space graph for two populations A and B with 2 and 1 unphased sample(s), respectively.

Each node in the graph is labeled by the lineages present in each population as indicated by the square brackets (OA:

top,OB: bottom). The demographic model assumes a single mass migration event from population B to A back in time.

Vector r consists of the rates of all possible events: coalescence (c0) in population A, a dummy variable δ associated

with the mass migration (see Discrete events), and a dummy variable ωk for each possible branch type. The Laplace

transform associated with edge i, f ?i , can be retrieved as the ratio of the dotproduct of p and q with r. Red indices on the

graph indicate edges associated with an equation containing δ. Edges 1 and 3 represent a mass migration event,

moving all lineages from B to A. All other transitions represent coalescence events. All paths can be described by

enumerating the indices of the associated matrices: P ¼ ðð0; 1; 2Þ; ð3; 4; 2Þ; ð3; 5; 6ÞÞ.

https://doi.org/10.1371/journal.pcbi.1010532.g001

PLOS COMPUTATIONAL BIOLOGY Graph-based algorithms for Laplace transformed coalescence time distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010532 September 15, 2022 4 / 13

https://doi.org/10.1371/journal.pcbi.1010532.g001
https://doi.org/10.1371/journal.pcbi.1010532

waiting times as computationally possible. The probability that the event with rate λi happens

before the other j − 1 competing events will still have the same general form.

f ?ðλ;ωÞ ¼
liliP

jljlj þ
P

kokok
with 0 < i � j ð1Þ

In this equation, we associate a unique dummy variable (ωk) with each of the k branch types

along which all j competing processes (λj) happen. Roman letters represent integers that count

the number of branches of a particular type (ok), or the number of ways a certain (coalescence

or other) event can modify the current state (lj). Note that in the case of multiple populations,

coalescence rates are given relative to the rate in a reference population, i.e. li ¼ Neref
=Nei

.

Let r = (λ, ω)0 = (λ1, . . ., λi, . . ., λj, ω1, . . ., ωk)
0, denote the vector containing the rates of

all j competing processes as well as the k dummy variables, and let p = (0, . . ., li, . . ., 0) and

q = (l1, . . ., li, . . ., lj, o1, . . ., ok), then Eq 1 can be written as the ratio of p � r and q � r. Looking

at our example (Fig 1), edge 0 is associated with a coalescence event of two lineages in A. There

is only 1 possible way these lineages can coalesce, so the first entry of p0 is 1. q0 encodes all pos-

sible events (coalescence or mass migration) given the set of sampled lineages and a count of

each of the branch types present prior to coalescence. Starting out, we have two a lineages and

a single b lineage. All other equations, and their corresponding arrays can be deduced in the

same way.

Storing the equations in this way ensures that we can efficiently substitute in parameter val-

ues by taking the dot product with a vector r representing a point in parameter space once the

Laplace transform needs to be evaluated. Also, storing the equation coefficients in matrix form

allows us to efficiently perform operations on the equations (see Discrete events).

Discrete events. For the general description of the GF, we have assumed that all competing

processes have exponentially distributed waiting times. As outlined by [5], discrete events that

only happen once can be included by treating them initially as a competing exponentially dis-

tributed process with rate δ. The Laplace transform of the joint branch length distribution g?LjT ,

given the discrete event happened at time T, can be recovered by taking the inverse transform

of the GF as described in the previous section, f ?L ðω; dÞ, divided by its associated dummy vari-

able, δ. To see this, note that f ?L can be written as a compound distribution integrating over the

probability density function of the time to the discrete event: f ?L ðω; dÞ ¼
R1

0
de� dTg?LjTðω;TÞdT.

Dividing both sides by δ we recognize 1

d
f ?L ðω; dÞ ¼ Lðg?LjTÞðdÞ. This procedure has been used to

incorporate population divergence, admixture events, and bottlenecks [5, 7], as well as selective

sweeps [9].

Previous implementations have relied on a CAS to obtain an analytic solution for the

inverse transform of the GF. However, as long as we limit ourselves to a single discrete event,

the GF will always be a sum of the products of factors of the form f �ðciÞ ¼
1

ciþd
. Using partial

fraction expansion, we can formulate a closed-form solution, to the inverse Laplace, L� 1
ðf �Þ,

with respect to δ, where T represents the time to the discrete event. Also, having stored all

equation coefficients as an array, we can do so in a way that allows for efficient substitution of

all parameter values.

L� 1
Yk

i¼0

f ?ðciÞ

 !

¼ ð� 1Þ
kþ1
Xk

i¼0

e� ciT

Qk
j ¼ 0
i 6¼ j

ðci � cjÞ
ð2Þ

Looking at a single path along the graph, only the equations associated with edges leading

up to the node representing the discrete event will contain δ. Equations associated with edges

PLOS COMPUTATIONAL BIOLOGY Graph-based algorithms for Laplace transformed coalescence time distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010532 September 15, 2022 5 / 13

https://doi.org/10.1371/journal.pcbi.1010532

past that point can be treated as constants. The resulting inverse of this path will therefore be

an expression given by Eq 2 times the unchanged equations associated with all edges posi-

tioned downstream, i.e. moving through the graph backwards in time, of the node associated

with the discrete event.

Adding in new events. Currently, in addition to coalescence, two types of events have

been implemented in the Python library agemo: unidirectional migration at a constant rate

and population splits (forwards in time). Because of the recursive description, adding in more

event types is straightforward and only requires a description of all possible state transitions

due to that event given the current configuration of lineages. Note that the library does cur-

rently not accommodate events that generate cycles in the graph. This means that bi-direc-

tional migration, for example, is not supported. This does not mean that the GF framework

cannot handle events that generate cycles. Using a Taylor series expansion, the GF can be

decomposed into histories with 1, 2, . . ., m cyclic events [8].

Graph traversal algorithm

The one-to-one correspondence between the state space graph and the Laplace transform

means the state space graph can be thought of as a computational graph. Evaluating the trans-

form at a single point s in the Laplace domain equates to substituting the value into the expres-

sion associated with each edge, followed by multiplying the results along each path and adding

the results across all paths. This is the general idea that will be used in the next paragraph.

However, note that because of the general form of the inverse in the case of a discrete event

(Eq 2), the graph needs to be modified slightly so that, ultimately, the nodes of the computa-

tional graph again represent the factors of a multiplication. This is achieved by, for each path,

reducing the part of the path leading up to the node associated with the discrete event to a sin-

gle edge and pairing that edge with the result of Eq 2. This is demonstrated in Fig 2A and 2B.

Edges marked with red indices are associated with equations containing the dummy variable

setting the rate of the discrete event and require inversion. Edge 0 and 1 are collapsed into a

single edge and are now associated with L� 1
ðf ?

0
� f ?

1
Þ as defined in Eq 2. Also note that to sim-

plify the evaluation algorithm, equations are represented by nodes instead of edges (Fig 2C).

General algorithm. Given the computational graph (as described in Graph traversal algo-

rithm and see Fig 2C), a general algorithm to propagate any evaluation of the equations associ-

ated with each node is given by Alg 1. The algorithm relies on the fact that, implicitly, the

edges of the graph represent multiplication. The evaluated values associated with each node do

not need to be single floats. They can be the coefficients of a generating function, for example,

representing the probabilities of seeing particular mutation types (see Mutation configuration

probabilities). In these cases, multiplication and addition operators will need to be defined for

propagation. We can then rely on the commutative property to efficiently traverse the graph

towards the root. Especially in the case where addition is a less costly operation than multipli-

cation (as is the case for polynomials, see Mutation configuration probabilities), it will pay off

to add the values associated with the children of a node prior to multiplication. The annota-

tions on Fig 2C demonstrate the algorithm for our toy example.

Algorithm 1: Propagate values through graph
1 function PROPAGATE;
Input: A (adjacency list of graph), N (evaluated equations for each

node), E (topological sorting of graph)
2 foreach parent in E do
3 children = A[parent];
4 temp = 0;
5 if children then

PLOS COMPUTATIONAL BIOLOGY Graph-based algorithms for Laplace transformed coalescence time distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010532 September 15, 2022 6 / 13

https://doi.org/10.1371/journal.pcbi.1010532

6 foreach child in children do
7 temp+=N[child];
8 end
9 if parent not root then
10 N[parent] = PRODUCT(temp, N[parent]);
11 else
12 return temp;
13 end
14 end
15 end

Mutation configuration probabilities. Assuming branches are labelled by the samples

they subtend, 2n − 2 branch types can be distinguished for a sample of n lineages. Along each

of these branch types, mutations might occur. Under an infinite-sites mutation model, the

joint probability of seeing ki mutations along each of these i branch types in short blocks of a

given length can be derived using the GF. Each mutation configuration is then defined as a

vector of the form ðk1; . . . ; k2n � 2Þ where each entry is a count within the interval

½0; 1; 2; . . . ; kmax
i þ 1�. kmax

i þ 1 is used to group all mutation configurations with more than

kmax
i mutations. The array representing all possible block-wise mutation configuration counts

is of size
Q

iðk
max
i þ 2Þ.

This is a more general description of the block-wise site frequency spectrum or bSFS as

introduced by [7]. The bSFS only distinguishes mutations along branches with the same num-

ber of descendants. By ignoring both phase and root information, all mutation configurations

are essentially instances of the folded (joint) site frequency spectrum for blocks of a fixed

length. The bSFS is a tally of all observed (joint) SFS instances. Note that the absence of phase

Fig 2. From coalescent state space to computational graph: State space graph and model identical to Fig 1. A: Unmodified state-

space graph. B: Collapsed form, grouping all parts of each path that require inverting with respect to the dummy variable associated

with the discrete event. The integers in red are the indices of the equations containing δ. C: To simplify the formulated algorithms,

nodes represent the equations previously associated with the edges. The graph has been annotated to demonstrate the general

propagation algorithm of the evaluated equations associated with each node towards the root. L� 1
ðf ?i Þ is the inverse Laplace of f ?i with

respect to δ.

https://doi.org/10.1371/journal.pcbi.1010532.g002

PLOS COMPUTATIONAL BIOLOGY Graph-based algorithms for Laplace transformed coalescence time distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010532 September 15, 2022 7 / 13

https://doi.org/10.1371/journal.pcbi.1010532.g002
https://doi.org/10.1371/journal.pcbi.1010532

and root information can be accommodated via a simple relabeling of all branches, and there-

fore their associated dummy variables in the GF [8]. By labeling all samples by the population

they were collected from, one can incorporate unknown phase. Removing root information is

identical to the concept of folding the SFS, i.e. combining branch types on either side of the

root.

Quite often, the array containing the probabilities associated with all block-wise mutation

configurations will be sparse. Some branch types can simply never be jointly observed along

any of the possible genealogies. As a consequence, we know the probability of a configuration

indicating the presence of mutations along these branch types will always be zero without hav-

ing to perform any computations. agemo therefore pre-determines incompatible branch

types and only reserves memory and performs computations for mutation configurations with

a non-zero probability. This implies both time and significant memory savings.

In the presence of phase information further savings can be made. Because of the symme-

tries inherent to the coalescent, some mutation configurations can be equally likely. For exam-

ple, in a single population with samples (a, b, c) observing a single mutation along both

branches ab and b is equiprobable to observing a single mutation along both branches bc and

c. Here again, agemo will only compute the probability of a single representative of the set of

all equiprobable mutation configurations.

The probability of observing mutation configuration k under a specified model is propor-

tional to a term in a (truncated) Taylor series expansion (see Eq (1) in [5] for details). Any

naive approach, based on calculating all higher order derivatives using a CAS, will suffer from

an explosion in the number of terms due to the Leibniz or product rule when differentiating.

Generally, a CAS will fail to take into account the fact that the same partial derivatives of the

functions that constitute the expression are computed multiple times. This problem has been

well studied for the purpose of automatic differentiation algorithms [14–17]. In fact, it has

been shown that a set of recurrence relations can be defined on the coefficients of truncated

Taylor series to efficiently compute higher-order derivatives [18]. Departing from the elemen-

tary functions as represented by a computational graph, a complex Taylor series expansion can

be performed without recalculating the same derivatives.

Algorithm 2: Product of two truncated Taylor series [18].
1 function SERIES_PRODUCT;
Input: Two arrays A and B with same shape
Output: array C of same shape as A and B

2 foreach multi-index k < shape(A) do
3 sum = 0;
4 foreach multi-index j � multi-index k do
5 sum = ADD(sum, A[j] � B[k − j]);
6 end
7 C[k] = sum;
8 end
9 return C;

Translating this to the graph traversal algorithm outlined above requires us to first obtain

all coefficients for a truncated Taylor series of the equation associated with each node in our

computational graph. We can then use the algorithm defining the product of two truncated

Taylor series (see Alg 8 in [18] and Alg 2) to propagate the coefficients of the series associated

with each node. Note that adding two truncated Taylor series simply amounts to the pairwise

addition of all corresponding coefficients. To obtain the higher-order derivatives needed for

the first step, we could use the recurrence relations defined in [18]. Note however, that the

computational graph representation of the GF we have constructed is not at the level of the ele-

mentary functions. Because all equations associated with each of the nodes are well

PLOS COMPUTATIONAL BIOLOGY Graph-based algorithms for Laplace transformed coalescence time distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010532 September 15, 2022 8 / 13

https://doi.org/10.1371/journal.pcbi.1010532

characterized, we can define a closed-form implementation of the derivatives with respect to

the distinguished branch types. The equations all fall into one of two categories, depending on

whether an inversion step was needed. Given a first-degree multivariate polynomial of the

form f(x) = ∑i cixi + b, non-inverted equations can be written as 1/f(x). Inverted equations on

the other hand have building blocks that take on the form of ecf(x)/(∏j fj(x)). Using Alg 2 and

Eq 4, we can come up with all partial derivatives for the inverted equations as well. With s = ∑i

ki and x representing the branch type vector,

@f ðxÞ� 1

@
kixi

¼ ð� 1Þ
ss!

cki
i

f ðxÞ2
ð3Þ

@ecf ðxÞ

@
kixi

¼ cscki
i ecf ðxÞ ð4Þ

Note that Alg 2 contains an explicit ADD function. Care needs to be taken when summing

(a subset of) the coefficients of a Taylor series: these will be both positive and negative, and as

such, catastrophic cancellation might occur, leading to accuracy loss. To counteract this, I

implemented the compensated summation algorithm of Ogita-Rump-Oishi [19]. The loss of

precision is bounded by keeping track of small errors and adjusting the result using the error

term. An alternative way of handling this would be to temporarily increase numeric precision

at the crucial steps. Lastly, an advantage of using Taylor series coefficients rather than the cor-

responding derivatives is that the coefficients will always be smaller by a factor (∑ k)!, leading

to less cumulative rounding error [18].

Results and discussion

The work presented here constitutes a CAS-independent, open-source implementation of the

GF approach. A general outline has been given on how the correspondence between the event

state-space graph and the GF can be used to query the distribution of Laplace-transformed

coalescence times efficiently. In particular, an algorithm has been laid out to calculate the

probability of block-wise mutation configurations by propagating the calculation of series

coefficients down the graph of ancestry states. The fact that this automation does not rely on a

CAS and that it has been implemented in Python makes agemo an ideal back-end for likeli-

hood calculations.

agemo relies on numba [20] just-in-time compilation to speed up the critical parts of the

code. Compiling the code using numba has a few consequences. Firstly, compilation happens

the first time the code is run and the resulting compiled code is written into a file-based cache.

Secondly, some numerical operations are implemented differently in numba than in numpy.

In the case of summation this can lead to a loss of precision and has required the implementa-

tion of a compensated sum algorithm. A potentially faster solution would be to temporarily

increase machine precision for the evaluation of particular sums. However, this is not possible

using numba and would therefore require translating part of the code to C.

To evaluate accuracy and performance, I calculated the bSFS for an isolation with migration

(IM) model with 2 populations and 2 lineages in each population. Here two populations are

descended from a common ancestral population at some time in the past, and since then uni-

directional gene flow is assumed to have happened at a constant rate [21]. When discarding

root and phase information, this leaves just 4 branch types. For each branch type I set kmax = 2,

which means that the final result will contain 44 elements. This is the most complex model for

which there exists a CAS-based implementation. Note that the original Mathematica imple-

mentation [5] can only calculate the bSFS for a simplified IM model with two Ne parameters,

PLOS COMPUTATIONAL BIOLOGY Graph-based algorithms for Laplace transformed coalescence time distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010532 September 15, 2022 9 / 13

https://doi.org/10.1371/journal.pcbi.1010532

meaning that at least two populations must have the same size. An implementation using open

source CAS Sagemath [22] takes about 75 s for a non-simplified model where each population

has a unique Ne, while agemo evaluates a single point in parameter space in 181 ms. Increas-

ing the sample size to 3 lineages in each population increases the number of nodes in the graph

from 76 to 4449. The bSFS now contains 47 elements. Run time goes up accordingly to 134 s.

The Python module contains multiple test suites testing all functions. Accuracy is assessed

against an independent Sagemath implementation (Fig 3 left).

This IM model can be simplified to only include migration. We assume migration has been

going on for an infinitely long time. Without any discrete events the graph is now maximally

connected. For 2 lineages per population agemo takes 5 ms. Table 1 shows how performance

scales with an increase in the number of samples per population.

I also benchmarked the evaluation time and accuracy (Fig 3 right) against the simulation-

based approach as described in [23]. Using msprime [24], coalescent trees can be simulated

under (almost) any demographic model. Without having to simulate mutations, we can calcu-

late the probability of observing each mutation type. Given that mutations on each branch

type happen independently, the probability of seeing mutation configuration (k1, k2, . . ., kn) is

Fig 3. Accuracy: These scatter plots compare the negative logarithm of the computed probability (−logP) of observing each block-wise mutation

configuration with a non-zero probability. The output of an independent Sagemath implementation (left) or of the Monte Carlo simulation-based

approach [23] (right) is plotted against the output of agemo. 1000 simulation replicates were used. Model parameters: IM model, 2 samples per

population, migration from A to B (backwards in time). NeAB
¼ 1:5e6, NeA

¼ 1:3e6, NeB
¼ 0:6e6, me = 7e − 7, T = 1e7, θ = 1.152, kmax = (2, 2, 2, 2).

https://doi.org/10.1371/journal.pcbi.1010532.g003

Table 1. Run times migration-only model, 2 populations, unphased and unrooted branchtypes, kmax = 2.

samples per population nodes in graph non-zero entries in bSFS size bSFS time

2 30 112 256 5 ms

3 196 1408 16384 480 ms

4 1106 21952 16777216 52.3 s

https://doi.org/10.1371/journal.pcbi.1010532.t001

PLOS COMPUTATIONAL BIOLOGY Graph-based algorithms for Laplace transformed coalescence time distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010532 September 15, 2022 10 / 13

https://doi.org/10.1371/journal.pcbi.1010532.g003
https://doi.org/10.1371/journal.pcbi.1010532.t001
https://doi.org/10.1371/journal.pcbi.1010532

given by the product of n probabilities as given by a Poisson distribution with rate θ/2 � ti.
Here, ti is the total branch length of branch type i and θ = 4Neμ. When averaged across many

replicates, the true value will be approximated. Note that particular entries of the bSFS might

require fewer/more replicates to get at a good approximation than others [23, 25]. For the IM-

model, with 1000 replicates one can already approach the true bSFS quite well [23] (see also

Fig 3). Scaling linearly with the number of replicates, this takes about 450 ms. For 3 lineages

per population run time goes up to 917 ms. With 4 lineages per population, there are 412

entries in the bSFS, making a non-sparse approach prohibitively slow. Using simulations, run

times are the same for both the IM and the migration model. Note that I aimed to make the

comparison as fair as possible by optimizing the code and compiling the critical parts with

numba. All calculations have been done on the same MacbookPro (2.2 GHz 6-Core Intel Core

i7). Also note that the bottleneck of simulating the bSFS is not the actual simulation itself but

the inherent combinatorial explosion of an ever increasing number of mutation configurations

with increasing sample size. I attempted to alleviate this by means of sparse matrices, but this

came at a speed cost.

This issue is inherent to the way the array of block-wise mutation configuration counts is

defined and also applies to agemo. In part, this is solved by only calculating and storing the

values associated with each unique mutation configuration that has a non-zero probability.

However, computing the residual probabilities (observing more than kmaxi
mutations along

each branch type i) in the last step currently still requires us to populate an array of size
Q
ðkmaxi

þ 2Þ. Memory usage quickly becomes an issue here, and solving this requires a general

sparse array implementation of the existing function. This suggests that the mutation configu-

ration counts array would benefit from a dedicated sparse-data structure. Ideally, this data

structure would also enable us to take advantage of the dependency structure of all higher-

order derivatives.

A last inherent limitation to the GF approach is that although we can include discrete

events, retrieving the expression parametrized by the time to that discrete event requires us to

take an inverse Laplace transform. Unfortunately, translating the mathematical description

into a computational graph does not simplify this issue. As discussed, with the inclusion of dis-

crete events the state space graph can no longer be translated into a computational graph with-

out modification. A node must be added to the computational graph for each path leading to a

discrete event, thus increasing the number of nodes and decreasing the connectivity of the

graph, making a graph-based approach less efficient. agemo will therefore always do better in

scenarios without discrete events (Table 1).

As indicated in the Methods section, extending the GF approach to include new event types

can easily be done. Because of its recursive nature, it only requires defining a function that

describes the impact of the event on the extant lineages. All implemented events can then be

combined to define a structured coalescent model. Note however that the current implementa-

tion only contains closed-form expressions to efficiently evaluate the GF associated with at

most a single discrete event.

The general algorithm outlined here should enable users to query the Laplace transform to

extract, for example, topology information, the SFS or the time to the first coalescence event.

These functionalities have not been explicitly implemented yet. But, they can be computed

using the described graph and associated expressions. Also, agemo was designed with extensi-

bility in mind. Future work on this library will enable a more diverse range of structured coa-

lescent models as well as the ability to dynamically restrict the graph to those paths that are

compatible with a specified topology.

PLOS COMPUTATIONAL BIOLOGY Graph-based algorithms for Laplace transformed coalescence time distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010532 September 15, 2022 11 / 13

https://doi.org/10.1371/journal.pcbi.1010532

The work described in this paper shows significant similarities with recent progress in

phase-type theory [11]. The authors present a general graph-based description of multivariate

phase-type distributions and demonstrate the ability of their approach by calculating the SFS

for an IM-type model sampling 7 lineages from each population. There are two main advan-

tages of the phase-type theoretic approach. Firstly, incorporating discrete events does not

require taking an inverse transform. Second, the paper contains algorithms using Gaussian

elimination to translate cyclic graphs into an acyclic phase-type distribution, thus taking care

of issues associated with, for example, bi-directional migration. Dealing with bi-directional

migration thus no longer requires a costly matrix inversion.

On the other hand, agemo allows users to take full advantage of the information present

within the joint distribution of coalescence times (e.g. block-wise mutation configuration

counts). Including short-range linkage information comes at a computational cost, limiting

the applicability to smaller sample sizes. However, previous work has demonstrated that this

approach maximizes the information contained in small samples compared to relying on the

SFS [7, 9]. More importantly however, both frameworks have (independently) combined the

same two basic ingredients to efficiently describe coalescent models: a recursive state-space

construction and a graph representation for fast evaluation of the represented distributions.

Acknowledgments

I would like to thank Konrad Lohse, Derek Setter, Kevin Thornton and Helen Alexander for

constructive comments on the manuscript.

Author Contributions

Conceptualization: Gertjan Bisschop.

Investigation: Gertjan Bisschop.

Software: Gertjan Bisschop.

Writing – original draft: Gertjan Bisschop.

References
1. Råde L. On the use of generating functions and laplace transforms in applied probability theory. Interna-

tional Journal of Mathematical Education in Science and Technology. 1972; 3(1):25–33. https://doi.org/

10.1080/0020739720030104

2. Kingman JFC. The coalescent. Stochastic Processes and their Applications. 1982; 13(3):235–248.

https://doi.org/10.1016/0304-4149(82)90011-4

3. Hudson RR. Testing the constant-rate neutral allele model with protein sequence data. Evolution. 1983;

37(1):203–217. https://doi.org/10.2307/2408186 PMID: 28568026

4. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983; 105(2):

437–460. https://doi.org/10.1093/genetics/105.2.437 PMID: 6628982

5. Lohse K, Harrison RJ, Barton NH. A general method for calculating likelihoods under the coalescent

process. Genetics. 2011; 189(3):977–987. https://doi.org/10.1534/genetics.111.129569 PMID:

21900266

6. Frantz LAF, Madsen O, Megens HJ, Groenen MAM, Lohse K. Testing models of speciation from

genome sequences: Divergence and asymmetric admixture in Island South-East Asian Sus species

during the Plio-Pleistocene climatic fluctuations. Molecular Ecology. 2014; 23(22):5566–5574. https://

doi.org/10.1111/mec.12958 PMID: 25294645

7. Bunnefeld L, Frantz LAF, Lohse K. Inferring bottlenecks from genome-wide samples of short sequence

blocks. Genetics. 2015; 201(3):1157–1169. https://doi.org/10.1534/genetics.115.179861 PMID:

26341659

PLOS COMPUTATIONAL BIOLOGY Graph-based algorithms for Laplace transformed coalescence time distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010532 September 15, 2022 12 / 13

https://doi.org/10.1080/0020739720030104
https://doi.org/10.1080/0020739720030104
https://doi.org/10.1016/0304-4149(82)90011-4
https://doi.org/10.2307/2408186
http://www.ncbi.nlm.nih.gov/pubmed/28568026
https://doi.org/10.1093/genetics/105.2.437
http://www.ncbi.nlm.nih.gov/pubmed/6628982
https://doi.org/10.1534/genetics.111.129569
http://www.ncbi.nlm.nih.gov/pubmed/21900266
https://doi.org/10.1111/mec.12958
https://doi.org/10.1111/mec.12958
http://www.ncbi.nlm.nih.gov/pubmed/25294645
https://doi.org/10.1534/genetics.115.179861
http://www.ncbi.nlm.nih.gov/pubmed/26341659
https://doi.org/10.1371/journal.pcbi.1010532

8. Lohse K, Chmelik M, Martin SH, Barton NH. Efficient strategies for calculating blockwise likelihoods

under the coalescent. Genetics. 2016; 202(2):775–786. https://doi.org/10.1534/genetics.115.183814

PMID: 26715666

9. Bisschop G, Lohse K, Setter D. Sweeps in time: Leveraging the joint distribution of branch lengths.

Genetics. 2021; 219(2). https://doi.org/10.1093/genetics/iyab119 PMID: 34849880

10. Hobolth A, Siri-Jégousse A, Bladt M. Phase-type distributions in population genetics. Theoretical Popu-

lation Biology. 2019; 127:16–32. https://doi.org/10.1016/j.tpb.2019.02.001 PMID: 30822431

11. Røikjer T, Hobolth A, Munch K. Graph-based algorithms for phase-type distributions. bioRxiv preprint.

2022.

12. Güneş A, Baydin G, Pearlmutter BA, Siskind JM. Automatic Differentiation in Machine Learning: a Sur-

vey. Journal of Machine Learning Research. 2018; 18:1–43.

13. Simonsen KL, Churchill GA. A Markov chain model of coalescence with recombination. Theoretical

Population Biology. 1997; 52(1):43–59. https://doi.org/10.1006/tpbi.1997.1307 PMID: 9356323

14. Neidinger RD. An Efficient Method for the Numerical Evaluation of Partial Derivatives of Arbitrary Order.

ACM Transactions on Mathematical Software (TOMS). 1992; 18(2):159–173. https://doi.org/10.1145/

146847.146924

15. Neidinger RD. Computing multivariable Taylor series to arbitrary order. In: Proceedings of the interna-

tional conference on Applied programming languages—APL ’95. New York, New York, USA: ACM

Press; 1995. p. 134–144.

16. Griewank A, Utke J, Walther A. Evaluating Higher Derivative Tensors by Forward Propagation of Uni-

variate Taylor Series Source: Mathematics of Computation, Jul., 2000, Vol. 69, No. 231 (Jul.,

2000), pp. 1117- Publi. Mathematics of Computation. 2000; 69(231):1117–1130.

17. Bettencourt J, Johnson MJ, Duvenaud BD. Taylor-Mode Automatic Differentiation for Higher-Order

Derivatives in JAX. In: Program Transformations for ML Workshop at NeurIPS 2019; 2019. Available

from: https://openreview.net/forum?id=SkxEF3FNPH.

18. Neidinger RD. Efficient recurrence relations for univariate and multivariate Taylor series coefficients.

Conference Publications. 2013; p. 587–596.

19. Ogita T, Rump SM, Oishi S. Accurate sum and dot product. SIAM Journal on Scientific Computing.

2005; 26(6):1955–1988. https://doi.org/10.1137/030601818

20. Lam SK, Pitrou A, Seibert S. Numba. In: Proceedings of the Second Workshop on the LLVM Compiler

Infrastructure in HPC—LLVM ’15. New York, New York, USA: ACM Press; 2015. p. 1–6. Available

from: http://dl.acm.org/citation.cfm?doid=2833157.2833162.

21. Nielsen R, Wakeley J. Distinguishing migration from isolation: A Markov chain Monte Carlo approach.

Genetics. 2001; 158(2):885–896. https://doi.org/10.1093/genetics/158.2.885 PMID: 11404349

22. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.5.0); 2005.

23. Beeravolu CR, Hickerson MJ, Frantz LAF, Lohse K. ABLE: blockwise site frequency spectra for infer-

ring complex population histories and recombination. Genome Biology. 2018; 19(1):145. https://doi.org/

10.1186/s13059-018-1517-y PMID: 30253810

24. Baumdicker F, Blows MW, Goldstein D, Gower G, Ragsdale AP, Tsambos G, et al. Efficient ancestry

and mutation simulation with msprime 1.0. Genetics. 2022; 220(3). https://doi.org/10.1093/genetics/

iyab229 PMID: 34897427

25. Becquet C, Przeworski M. A new approach to estimate parameters of speciation models with applica-

tion to apes. Genome Research. 2007; 17(10):1505–1519. https://doi.org/10.1101/gr.6409707 PMID:

17712021

PLOS COMPUTATIONAL BIOLOGY Graph-based algorithms for Laplace transformed coalescence time distributions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010532 September 15, 2022 13 / 13

https://doi.org/10.1534/genetics.115.183814
http://www.ncbi.nlm.nih.gov/pubmed/26715666
https://doi.org/10.1093/genetics/iyab119
http://www.ncbi.nlm.nih.gov/pubmed/34849880
https://doi.org/10.1016/j.tpb.2019.02.001
http://www.ncbi.nlm.nih.gov/pubmed/30822431
https://doi.org/10.1006/tpbi.1997.1307
http://www.ncbi.nlm.nih.gov/pubmed/9356323
https://doi.org/10.1145/146847.146924
https://doi.org/10.1145/146847.146924
https://openreview.net/forum?id=SkxEF3FNPH
https://doi.org/10.1137/030601818
http://dl.acm.org/citation.cfm?doid=2833157.2833162
https://doi.org/10.1093/genetics/158.2.885
http://www.ncbi.nlm.nih.gov/pubmed/11404349
https://doi.org/10.1186/s13059-018-1517-y
https://doi.org/10.1186/s13059-018-1517-y
http://www.ncbi.nlm.nih.gov/pubmed/30253810
https://doi.org/10.1093/genetics/iyab229
https://doi.org/10.1093/genetics/iyab229
http://www.ncbi.nlm.nih.gov/pubmed/34897427
https://doi.org/10.1101/gr.6409707
http://www.ncbi.nlm.nih.gov/pubmed/17712021
https://doi.org/10.1371/journal.pcbi.1010532

