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Physical activity—a lifestyle factor that is associated with immune function,

neuroprotection, and energy metabolism—modulates the cellular and molecular

processes in the brain that are vital for emotional and cognitive health, collective

mechanisms that can go awry in depression. Physical activity optimizes the stress

response, neurotransmitter level and function (e.g., serotonergic, noradrenergic,

dopaminergic, and glutamatergic), myokine production (e.g., interleukin-6), transcription

factor levels and correlates [e.g., peroxisome proliferator-activated receptor C

coactivator-1α [PGC-1α], mitochondrial density, nitric oxide pathway activity, Ca2+

signaling, reactive oxygen specie production, and AMP-activated protein kinase [AMPK]

activity], kynurenine metabolites, glucose regulation, astrocytic health, and growth

factors (e.g., brain-derived neurotrophic factor). Dysregulation of these interrelated

processes can effectuate depression, a chronic mental illness that affects millions of

individuals worldwide. Although the biogenic amine model has provided some clinical

utility in understanding chronic depression, a need remains to better understand the

interrelated mechanisms that contribute to immune dysfunction and the means by which

various therapeutics mitigate them. Fortunately, convergent evidence suggests that

physical activity improves emotional and cognitive function in persons with depression,

particularly in those with comorbid inflammation. Accordingly, the aims of this review are

to (1) underscore the link between inflammatory correlates and depression, (2) explicate

immuno-neuroendocrine foundations, (3) elucidate evidence of neurotransmitter and

cytokine crosstalk in depressive pathobiology, (4) determine the immunomodulatory

effects of physical activity in depression, (5) examine protocols used to effectuate

the positive effects of physical activity in depression, and (6) highlight implications

for clinicians and scientists. It is our contention that a deeper understanding of the

mechanisms by which inflammation contributes to the pathobiology of depression will

translate to novel and more effective treatments, particularly by identifying relevant

patient populations that can benefit from immune-based therapies within the context of

personalized medicine.
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INTRODUCTION

Depression is a pervasive health problem that includes emotional,
psychomotor, cognitive, and biorhythmic disturbances (Kessler
et al., 2005), symptoms that are associated with a 20-fold increase
in the risk of suicide (Lépine and Briley, 2011). Current estimates
suggest that close to 300 million persons are affected worldwide
(Ferrari et al., 2013a), making depression the leading cause of
disability as measured by disability-adjusted life years (Reddy,
2010). In addition to the incredible personal toll, the direct and
indirect costs of treating depression are staggering. Spending
on depression-related costs is $83.1 billion annually in the
United States (Greenberg et al., 2003).

Initial progress toward understanding the pathobiology of
depression was made following the serendipitous discovery that
amine modulation effectuated disturbances in mood (Ghasemi
et al., 2017), a finding that suggested that depression was caused
by deficits in monoamine function. Accordingly, the majority
of therapies for treating depression were derived to target the
monoaminergic system. Notwithstanding, extant therapeutics
exert a slow pace of action (3–5weeks), have extensive side effects,
and fail to provide full symptom relief in a significant proportion
of persons treated (Paul and Skolnick, 2003; Trivedi, 2006).
These limitations implicated other factors in depression and
prompted stakeholders to diversify their search for mechanisms,
biomarkers, and treatments.

Among the alternative mechanisms and therapeutics that
have garnered increased attention are immune mechanisms
that promote the body’s natural response to protect against
injury, infection, and emotional stress. The brain regulates
central and peripheral immune processes via modulation
of neurotransmitters (e.g., serotonergic, noradrenergic,
dopaminergic, and glutamatergic), endocrine hormones,
and cytokines (nonstructural proteins that are secreted by
distinct cell populations and that exert variable effects at multiple
levels of the central nervous system, e.g., neuroendocrine,
autonomic, and behavioral) (Besedovsky and del Rey, 1992;
Niciu et al., 2014; Ghasemi et al., 2017), processes that can go
awry in the case of depression.

Indeed, a bevy of research indicates a link between
inflammation and depression. Preclinical study demonstrates
that stress paradigms (e.g., chronic unpredictable stress, learned

Abbreviations: ACTH, adrenocorticotropic hormone; AMPA, α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid; BH4, tetrahydrobiopterin; BDNF,

brain-derived neurotrophic factor; CRH, corticotropin-releasing hormone; CREB,

cAMP response element-binding protein; CRP, c-reactive protein; ERRα,

estrogen-related α; FoxO, forkhead box O; GLUT4, glucose transporter type 4;

HPA, hypothalamic–pituitary–adrenal; IDO, indolamine 2,3-dioxygenase; IFN,

interferon; IL, interleukin; IRS, insulin receptor substrate; KAT, kynurenine

aminotransferase; KMO, kynurenine 3-monooxygenase; LC, locus coeruleus;

MAPK, mitogen-activated protein kinase; MEF, myocyte enhancer factor;

MHPG, 3-methoxy-4-hydroxypheny-glycol; NFkB, nuclear factor κB; NRF,

nuclear respiratory factor; NMDA, N-methyl-D-aspartate; NO, nitric oxide;

SOCS, suppressor of cytokine signaling proteins; PA, physical activity; Pgc-

1α, peroxisome proliferator-activated receptor C coactivator-1α; SSRI, selective

serotonin reuptake inhibitor; Th, T helper; TNF, tumor necrosis factor; TDO,

tryptophan 2,3-dioxygenase; TLRs, Toll-like receptors; VTA, ventral tegmental

area.

helplessness, social defeat, and social isolation) induce pro-
inflammatory cytokines centrally and peripherally (Steptoe et al.,
2001; Bartolomucci et al., 2003; Grippo et al., 2005; Chourbaji
et al., 2006; Audet et al., 2011; Gómez-Lázaro et al., 2011;
Moller et al., 2013), changes that correlate with depressive-
like symptoms (Kenis and Maes, 2002; Tuglu et al., 2003;
Basterzi et al., 2005; Tsao et al., 2006; Dantzer et al., 2008;
Miller et al., 2009; Elgarf et al., 2014; Lu et al., 2017) but can
be mitigated following antidepressant administration (Dantzer
et al., 2008; Guo et al., 2009; Miller et al., 2009; Elgarf et al., 2014;
Lu et al., 2017). Others have shown that genetically modified
rodents with impaired pro-inflammatory immune signaling fail
to exhibit depressive-like behaviors that are induced in wild-
type mice following chronic mild stress (Goshen et al., 2008;
Brüning et al., 2015). Agents that induce inflammation (e.g.,
recombinant cytokines) in humans recapitulate symptoms of
depression, effects that are circumvented with selective serotonin
reuptake inhibitor (SSRI) administration (Hauser et al., 2002).
In persons with autoimmune or inflammatory disorders, tumor
necrosis factor (TNF) antagonists and certain nonsteroidal anti-
inflammatory agents (Brunello et al., 2006; Müller et al., 2006;
Tyring et al., 2006; Krishnan et al., 2007; Soczynska et al.,
2009; Menter et al., 2010; Fond et al., 2014; Köhler et al., 2014;
Abbott et al., 2015) exert antidepressant effects. In the general
population, clinical evidence suggests an increased tendency for
pro-inflammatory markers in persons with depression (increased
interleukin [IL]-6, TNF-α, and CRP) relative to controls (Laske
et al., 2008; Steiner et al., 2012), a trend that normalizes
following response to antidepressants (Myint et al., 2005). Others
have shown that administration of anti-inflammatory agents
in combination with antidepressants accelerates and enhances
treatment response in a subset of persons with depression
(Mendlewicz et al., 2006; Müller et al., 2006; Nery et al.,
2008; Akhondzadeh et al., 2009; Abbasi et al., 2012; Raison
et al., 2013). Certain polymorphisms in genes associated with
inflammation are associated with the risk for the development
of mood disorders and treatment response (Bufalino et al., 2013;
Michopoulos et al., 2015). Together, these findings implicate
inflammation in a subset of persons with depression who
likely exhibit unique variations in pathobiology and clinical
presentation.

Fascinatingly, parallel evidence demonstrates that a lack of
physical activity (PA) promotes the accumulation of visceral
fat, adipose infiltration by proinflammatory immune cells,
persistent low-grade inflammation (Ouchi et al., 2011), and,
thereby, an increased risk for depression (Leonard, 2007).
Conversely, adequate levels of persistent PA exert positive
immunomodulatory (Hamer and Steptoe, 2007; Walsh et al.,
2011) and antidepressant effects (Cooney et al., 2013; Schuch
et al., 2016), even in persons who did not remit with conventional
antidepressant treatment (Trivedi et al., 2011). Some reports
suggest that PA outcomes compare favorably to antidepressant
and cognitive behavioral therapy in mild to moderate depression
(Mead et al., 2009). The therapeutic effect of long-term PA on
depression likely includes the optimization of neurotransmitter
level and function, hormone regulation, muscle-derived protein
(e.g., peroxisome proliferator-activated receptor C coactivator-1α
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[Pgc-1α] and IL-6), and neurotrophic factors (Phillips, 2017a).
Within contracting skeletal muscles, PA elicits intermittent
elevations of IL-6 (Pedersen et al., 2001; Pedersen and Fischer,
2007), which then induces the synthesis of IL-10 and inhibits
the release of TNF-α (Schindler et al., 1990; Apostolopoulos
et al., 2014; Silverman and Deuster, 2014). Upon release into
the local and systemic circulation, IL-10 promotes an anti-
inflammatory milieu in the periphery. In the long-term, PA
appears to lower levels of proinflammatory cytokines by altering
visceral fat mass (de Lemos et al., 2012; Sell et al., 2012)
and Toll-like receptors (TLRs) (Lambert et al., 1985; Francaux,
2009; Gleeson et al., 2011; Sell et al., 2012; Drummond et al.,
2013), changes that may be particularly beneficial to persons
with comorbid depression and metabolic disorders given that
activation of TLRs contribute to the development of insulin
resistance (Francaux, 2009; Liang et al., 2013). Consideration
of its inexpensive low-risk profile and ease of implementation
(Barbour et al., 2007) has increasingly led to the suggestion that
PA can be deployed as a therapeutic strategy to reduce the degree
of depressive symptoms (Cooney et al., 2013; Pemberton and
Fuller Tyszkiewicz, 2016) in mild to moderate depression (Carek
et al., 2011; Stanton and Reaburn, 2014; Kvam et al., 2016; Schuch
et al., 2016) in all age groups (Abu-Omar et al., 2004; Motl et al.,
2004).

Because it is important that clinicians and scientists
understand the means by which PA can exert
immunomodulatory effects in depression from both a self-
and patient-education perspective, the aims of this review are
to (1) underscore the link between inflammatory correlates
and depression, (2) explicate immuno-neuroendocrine
foundations, (3) elucidate evidence of monoaminergic and
cytokine crosstalk in depressive pathobiology, (4) articulate
the immunomodulatory mechanisms and pathways that confer
the benefits of PA in depression, (5) examine protocols used to
effectuate the benefits of PA in depression, and (6) highlight
implications for clinicians and scientists. It is our contention
that a deeper understanding of the mechanisms by which
inflammation contributes to the pathobiology of depression will
translate to novel and more effective treatments, particularly by
identifying relevant patient populations that can benefit from
immune-based therapies within the context of personalized
medicine.

IMMUNO-NEUROENDOCRINE
FOUNDATIONS

Within the context of homeostatic challenge, stressors initiate
behavioral and immune responses so as to favor vigilance
and protection against injury and immune challenge in lieu
of explorative activities. The hypothalamic-pituitary-adrenal
(HPA) axis and sympathetic nervous system coordinate these
activities following activation by endogenous or exogenous
stressors (Tsagarakis et al., 1989; Besedovsky and Rey, 2007).
Specifically, exposure to psychological and physiological stressors
activates the paraventricular nucleus of the hypothalamus.
Activation of the paraventricular nucleus results in the release of

corticotropin-releasing hormone (CRH), which then stimulates
the release of adrenocorticotropic hormone (ACTH) from the
pituitary. This, in turn, induces cortisol and catecholamine
secretion from the adrenals (Figure 1). Initially, the HPA
and sympathetic nervous system function to increase cortisol
and catecholamine release during challenge to coordinate
the fight-or-flight response. These stress hormones inhibit
excess production of proinflammatory cytokines (e.g., IL-12,
TNF-α, and interferon [IFN]-γ) in healthy individuals with
optimal regulatory capacity, while simultaneously increasing
production of anti-inflammatory cytokines (e.g., IL-10 and IL-
4) (Elenkov and Chrousos, 1999). Concomitantly, cortisol exerts
inhibitory effects upon the hypothalamus and pituitary (Crosby
and Bains, 2012) through medial prefrontal cortex (mPFC)
receptors (Hill et al., 2011a,b) and reduces stress-induced over
excitability of the amygdala (Gray et al., 2015) in conditions
of health. Temporal and sequential regulation of the immune
response is paramount as failure in negative feedback effectuates
persistent hypersecretion of proinflammatory cytokines, which
can then induce central neuroinflammation (Leonard, 2001;
Lacy and Stow, 2011) via active transport mechanisms at the
circumventricular organs, binding to blood vessel receptors,
or by retrograde transport by the vagus nerve (Maier and
Watkins, 2003). By accessing the brain via the aforementioned
mechanisms, systemic inflammation can activate resident
microglia in the brain (McCusker and Kelley, 2013) following
peripheral immune challenge (D’Mello et al., 2009) and promote
depression in vulnerable individuals.

Undoubtedly, persistent systemic inflammation alters the
function and expression of glucocorticoid receptors in the
HPA axis, changes that impair negative feedback mechanisms
(Karanth et al., 1997) at the level of the hypothalamus and
anterior pituitary (Besedovsky and Rey, 2007). Chronic stress
results in lower diurnal cortisol secretion as well as a blunted
stress response (Peeters et al., 2003), which is problematic for
immune modulation given the anti-inflammatory characteristics
of catecholamines (e.g., noradrenaline (Bergmann et al.,
1999) and cortisol (Cupps and Fauci, 1982). Whereas basal
levels of noradrenaline promote an anti-inflammatory milieu
(Bergmann et al., 1999), depletion of noradrenaline promotes
a proinflammatory milieu, an effect that can be blocked by
the beta adrenergic receptor agonist isoproterenol (Madrigal
et al., 2005). Additionally, disruption of the catecholamine
response is deleterious to the brain given that noradrenaline
modulates the neuroprotective effects of astrocytes via
trophic factor release (Junker et al., 2002). Much evidence
clearly demonstrates that HPA dysregulation and prolonged
inflammation contribute to depressive pathobiology (Pariante
and Miller, 2001).

Thus, on the one hand the immune system defends
against endogenous and exogenous stressors. On the other
hand, it acts as a regulatory system that is in continual
communication with the nervous and the endocrine systems
via reciprocal communication mediated by cytokines, hormones,
and neurotransmitters (Besedovsky and Rey, 2007). Imbalances
among these mediators induce chronic disease conditions
such as depression. Some persons with depression exhibit
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FIGURE 1 | Stress, inflammation, and depression. The HPA and sympathetic nervous systems regulate the response to stressors, i.e., cytokines, psychological

stress, and PA. The systemic response to stress is initiated via CRH secretion by the hypothalamus. CRH stimulates the pituitary to secrete ACTH into systemic

circulation. In turn, ACTH secretion stimulates the adrenals to release catecholamines and glucocorticoids, factors that collectively induce pro- or anti-inflammatory

cytokine release. Negative feedback mechanisms limit the process of inflammation in times of health. Conversely, persistent stress leads to dysregulation of the HPA

with resultant endocrine disturbances in states of disease, e.g., depression. Stress-related disturbances in neuroendocrine hormones are problematic as they disrupt

immune modulation and lead to a pro-inflammatory state. By acting as an intermittent stressor, PA exerts its’ central and peripheral neuroprotective effects via several

avenues. During PA, muscle contractions induce the release of myokines. These factors increase the expression of PGC-1α and decrease the expression of

pro-inflammatory cytokines at the molecular level. Moreover, PA directly modulates neurotransmitter level and function (e.g., noradrenergic function), which is

important promoting a pro- or anti-inflammatory milieu. Finally, PA increases hippocampal neurotrophic factor levels (e.g., BDNF) to promote hippocampal health and,

thereby, promotes stress hormone regulation (e.g., cortisol regulation).

activated cell-mediated immunity with a T helper (Th)1-style
response and elevated levels of IFN-γ (Maes et al., 1990; Maes,
2011), whereas others exhibit a distinct subtype wherein a

Th2-style response predominates (Fornaro et al., 2013), possibly
reflective of different stressor profiles, disease points, or genetic
contributions.
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At the molecular level, pro-inflammatory cytokine
interactions with their cognate receptors initiate signaling
events that promote a feedforward inflammatory process if left
unchecked. IkB proteins typically sequester inactive transcription
factors in the cytoplasm in unstimulated cells. Yet in states of
low-grade inflammation, persistent receptor stimulation by
cytokines and TLR agonists triggers intracellular signaling
events that activate IkB kinase (IKK) activity and induce the
dissociation of the IkB protein complex and, in turn, promote
IkB degradation. The resultant release of nuclear factor κB
(NFkB) dimers (e.g., p50/p60) permits their translocation to the
nucleus and binding to cognate DNA sites that then regulates
transcription of inflammatory genes and antioxidant defense
(Baldwin, 1996).

Within the context of metabolic disorders, it has
become increasingly evident that the presence of persistent
pro-inflammatory cytokines plays a vital role in certain
depressive phenotypes. The global prevalence of depression
is approximately 5% in the general population; and yet, this
figure approximates 20% or more in persons with obesity,
diabetes, and coronary artery disease (Ferrari et al., 2013b),
subsets of the population that may be particularly resistant to
conventional antidepressant therapy (Raison et al., 2013; Felger
et al., 2016; Haroon et al., 2016). The low-grade inflammation
that results in these persons derives in part from macrophages
and T-cells infiltration of adipocytes in white adipose tissue,
liver, and skeletal muscle. This infiltration elicits a state of
persistent secretion of proinflammatory cytokines, including
TNF-α, IL-1, and IL-6 and a reduction in anti-inflammatory
cytokines (e.g., adiponectin) (Hotamisligil, 2006; Kanda et al.,
2006; Pedersen, 2009; Ouchi et al., 2011). The proinflammatory
cytokines IL-1, IL-6, and TNF-α are thought to play a primal
role in the neurotransmitter and neuroendocrine changes
that occur in depression given their central role in sickness
behavior. Undoubtedly, the presence of pro-inflammatory
cytokines markedly affects neurotransmission within regulatory
brain circuits related to emotions and induces hormonal
changes commensurate with those observed following stress
(Gadek-Michalska et al., 2013).

NEUROTRANSMITTER AND CYTOKINE
INTERACTIONS IN DEPRESSION

Heretofore, we have established how depression is associated
with peripheral and central inflammation and, thereby,
how anti-inflammatory agents mitigate symptoms. Now we
review evidence that inflammatory cytokines alter the level
and function of key neurotransmitters that are relevant to
depression neurobiology. We also explicate how cytokines
activate the kynurenine pathway, lower tryptophan levels, and
produce metabolites that modulate dopamine and glutamate
function. We then shown how anti-inflammatory therapeutics
(pharmacotherapy and PA) can optimize monoamine
neurotransmitter level and function by modulating the synthesis,
metabolism, and release of serotonin, noradrenaline, dopamine,
and glutamate (Phillips, 2017a). Via these mechanisms,

inflammation and therapeutics that mitigate depression may
dramatically alter its pathobiology by directly impinging on
the levels and function of key neurotransmitters that regulate
depression circuit function and integrity and, ultimately, the
affected individual’s emotional and cognitive health.

Serotonergic Interactions
The majority of central serotonin-synthesizing neurons within
the brain derive from the raphe nuclei, which are located near the
midline of the brainstem (Das et al., 2014). The raphe sends more
than 500,000 terminals to the cortical and limbic system (Cowen,
1991). This immense number of connections enable the raphe
to modulate mood (Canli and Lesch, 2007), appetite (Blundell,
1984), arousal (Dubovsky, 1994), impulsivity (Dubovsky, 1994),
aggression (Passamonti et al., 2012), and the sleep-wake cycle
(Monti, 2011). Serotonin is synthesized from dietary tryptophan
and translocated to the central nervous system, a rate-limiting
step in serotonin synthesis. The fact that the serotonergic
dorsal raphe is juxtaposed to the cerebral aqueduct suggests a
vulnerability to inflammation. Indeed, evidence demonstrates
that proinflammatory cytokines alter the functional status of the
serotonergic system in the raphe and beyond in a manner similar
to that seen in depression, providing a mechanistic explanation
for the serotonergic abnormalities and associated symptoms seen
in persons with depression.

Direct evidence that cytokines contribute to serotonergic
dysfunction in depression pathobiology derives from data from
electrophysiological, neurochemical, genetic, behavioral models,
as well as from translational investigations. Intracellular
recordings performed in a guinea-pig brain stem slice
preparation demonstrated that IL-1β decreased spontaneous
firing rates of serotonergic neurons by 50%, an effect that
was reversible with washout (Manfridi et al., 2003). A parallel
investigation in rodents showed that IL-1β inhibited the firing
of dorsal raphe serotonergic neurons by enhancement of
GABA-ergic inhibitory tone (Brambilla et al., 2007). These
electrophysiological findings are congruent with the idea that
IL-1 promotes non-rapid eye movement sleep by inhibiting the
spontaneous firing of wake-active serotonergic neurons in the
dorsal raphe nucleus (Brambilla et al., 2007). By corollary, the
latter findings suggest that IL-1 alterations may contribute to
alterations in arousal in depression, particularly to disturbances
in stage III and IV sleep (Jones et al., 1987). Other work
demonstrates that peripheral immune challenge alters the
release and metabolism of central serotonin across brain regions
(Dunn, 1992; Palazzolo and Quadri, 1992; Cho et al., 1999),
changes that alter transporter activity. Serotonin transporters are
responsible for transporting serotonin from the synaptic cleft to
the presynaptic neurons to terminate signaling. As a high-affinity
transporter, serotonin transporters maintain low extracellular
serotonin levels in the synapse to prevent overstimulation of
receptors and ensure responsiveness. Within this context, it
has been determined that chronic exposure to proinflammatory
cytokines alters serotonin transporter activity in a regionally
specific manner and, thereby, modulates serotonin levels in
the nerve terminal (Haase and Brown, 2015). Some preclinical
evidence shows that stress-induced activation of the 5-HT2a
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serotonin receptor decreased hippocampal brain-derived
neurotrophic factor (BDNF) levels (Vaidya et al., 1999).

Fortunately, several lines of work suggest that chronic
PA modulates the serotonergic system to mitigate depressive
symptoms in persons with inflammation. Translational studies
demonstrate that plasma-free tryptophan is increased following
PA (Davis et al., 1992; Melancon et al., 2012) by catecholamine-
induced elevations in lipolysis and non-esterified fatty acids
that displace albumin-bound tryptophan (Horowitz and Klein,
2000). Elevations in free tryptophan levels in the periphery
increase tryptophan availability to the brain and, in turn, enhance
serotonin synthesis (Chaouloff et al., 1986).

It seems logical that serotonin levels are more readily
maintained with chronic PA given that it reduces
proinflammatory markers (e.g., IFN-γ and TNF-α) and increases
anti-inflammatory markers (e.g., IL-6 and IL-10) (Petersen
and Pedersen, 1985; Smith et al., 1999; Panagiotakos et al.,
2005; Kohut et al., 2006; Liu et al., 2013). For example, persons
with depression exhibit a decrease in the pro-inflammatory
cytokine TNF-α after submax exercise along with an increase in
anti-inflammatory IL-4 (Hallberg et al., 2010). Within adipose
tissue, PA limits proinflammatory cytokine secretion and
inhibits macrophage infiltration phenotypic switching (from
pro- to anti-inflammatory) of macrophages (Kawanishi et al.,
2010). Within immune cells and skeletal muscles, PA decreases
TLR4 and TLR2 expression (Gleeson, 1985; Lambert et al.,
1985; Francaux, 2009), changes that decrease the inflammatory
capacity of leukocytes and may alter whole-body chronic
inflammation (Gleeson et al., 2006). Studies of human peripheral
blood following PA demonstrate a reduction in circulating
proinflammatory monocytes (Timmerman et al., 2008) and an
increase in circulating regulatory T cells (Yeh et al., 2006).

Undoubtedly, the ability of PA to bias the immune
system toward an anti-inflammatory state is significant for
the serotonergic system because this state downregulates IDO
activity and shifts the ratio of kynurenine metabolites toward
neuroprotective kynurenic acid and away from neurotoxic
quinolinic acid (Ito et al., 2003; Kiank et al., 2010). Moreover,
the reduction of pro-inflammatory cytokines by PA reduces
serotonin uptake by transporters to increase serotonin in the
nerve terminal (Mössner et al., 2001). Finally, the ability of PA
to optimize levels of tryptophan and serotonin exerts positive
effects on BDNF and neurogenesis in the prefrontal cortex and
hippocampus, underscoring the interrelationship between these
two signaling systems (Mattson et al., 2004; Ernst et al., 2006;
Esch and Stefano, 2010).

Noradrenergic Interactions
Noradrenergic neurons are a vital component of the central
“stress circuitry” that induces “fight or flight” behavior, fear,
and anger. Noradrenergic synthesizing neurons are primarily
located in the locus coeruleus (LC), a brainstem structure
within close proximity to the fourth ventricle (Phillips et al.,
2016). The LC sends extensive projections to a number of
brain regions including the thalamus, frontal and entorhinal
cortices, basal lateral amygdala, and hippocampus (Loughlin
et al., 1986). The LC’s vast arborization and divergence

of collaterals permit widespread synaptic and extrasynaptic
release of neurotransmitters and neuropeptides throughout the
central neuraxis onto neuronal and non-neuronal cells (Fornai
et al., 2007, 2011), enabling the LC to exert a significant
modulatory effect on behavior and HPA axis secretion. The
latter occurs via dense noradrenergic projections from the
LC to corticotropin-releasing hormones in the paraventricular
nucleus of the hypothalamus, enabling psychological stress
and immune challenges to activate the hypothalamus and
trigger glucocorticoid release (Gadek-Michalska et al., 2013).
Robust evidence demonstrates that proinflammatory cytokines
alter the functional status of the noradrenergic system in the
LC and beyond, providing a mechanistic explanation for the
noradrenergic abnormalities and associated symptoms seen in
persons with depression.

Direct evidence that cytokines can contribute to
noradrenergic dysfunction derives from electrophysiological,
neurochemical, genetic, behavioral models, and from
translational studies. Microinjection of IL-1 into the LC
region increased firing activity of LC neurons in the rat brain,
an effect that was blocked by an IL-1 antagonist. Intraperitoneal
injection of a low dose of lipopolysaccharide increased LC firing
activity, an effect that lasted 3 weeks after injection (Borsody
and Weiss, 2002). IL-2 and IFN-α administration altered LC
electrical activity (De Sarro et al., 1990; Nisticò and De Sarro,
1991; Nisticò, 1993). The ability of inflammation to increase
LC activity is significant because a common characteristic of
effective antidepressants is their ability to decrease LC neuronal
activity. Moreover, LC activity is highly correlated with arousal:
higher rates of neuronal firing occur during the awake state,
whereas complete LC neuronal inhibition occurs during rapid
eye movement sleep (Hobson et al., 1974; Aston-Jones and
Bloom, 1981), suggesting that alterations in firing patterns in
depression may contribute to the sleep disturbances seen in
depression. Juxtaposed with the electrophysiological studies
are neurochemical investigations that showed that a common
response to cytokine release involved an increased noradrenaline
metabolism in multiple brain regions (Dunn et al., 1989), but
with a preferential activation of the ventral component of the
system, which derived from the nucleus tractus solitarius and
LC (Dunn, 1988). Lipopolysaccharides IL-1, IL-2, and IFN-α
potently activate the noradrenergic system across brain regions
(De Sarro et al., 1990; Dunn, 1992; Smagin et al., 1996), a
change that is not surprising because sustained stress increases
noradrenergic requirements. Pharmacological manipulations
that increase noradrenergic action and duration at the synapse
(e.g., noradrenergic reuptake inhibitors) elevate mood and
attention, mitigating the effects of stress-mediated noradrenergic
depletion.

Outside the brain, noradrenaline can modulate autonomic
sympathetic postganglionic fibers via primary and secondary
lymphoid organs (bone marrow and thymus versus spleen and
lymph nodes, respectively) during immune challenge. These
actions are accomplished via direct activation of β2-adrenergic
receptors that are present on Th1 cells, but not on Th 2 cells
(Sanders et al., 1997). Purportedly, the anti-inflammatory effects
of β2-adrenergic receptors activation stem from the inhibition of
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Th1 pro-inflammatory cytokines (e.g., IFN-γ, IL-12, TNF-α) or
stimulation of Th2 anti-inflammatory cytokines (IL-10, IL-6, or
TGF-β) (van der Poll et al., 1996; Elenkov et al., 2000). It has
been shown that noradrenaline suppresses IL-12 production in
a dose-dependent fashion and at physiological concentrations,
whereas it dose-dependently increases the production of IL-10,
effects that are blocked completely by propranolol, a β-adrenergic
receptor antagonist (Elenkov et al., 1996). These findings suggest
that immune balance is regulated via peripheral end-effectors of
the stress system and that chronic dysregulation may bias the
system toward a pro-inflammatory status (Elenkov et al., 1996).

Several lines of evidence suggest that PA modulates the
noradrenergic system directly and indirectly to mitigate
depressive symptoms in persons with inflammation. Within
minutes, PA activates the sympathetic nervous system in
an activity-dependent manner to modulate the secretion of
the adrenal hormone adrenaline. Similarly, within minutes
PA activates release of ACTH from the hypothalamus.
These intermittent hormonal responses are vital for an
anti-inflammatory milieu because intermittent elevations in
adrenaline (Bergmann et al., 1999) and cortisol exert anti-
inflammatory effects (Cupps and Fauci, 1982). Most studies of
PA have reported a higher adrenaline response post exercise in
endurance trained persons as compared to untrained controls
(Zouhal et al., 2008). Other work has shown that running
elevates cortisol levels in saliva and plasma in healthy persons
(Duclos et al., 1998; Labsy et al., 2013) when performed at
60% of VO2max (maximum capacity of oxygen uptake) (Labsy
et al., 2013). The intermittent nature of PA also contributes
to a proportional increase in inactivation of the active steroid
(cortisol) into the inert steroid (cortisone). The ability of PA
to optimize catecholamine and cortisol levels is paramount in
persons with comorbid depression and inflammation because
these hormones modulate immune function and yet may be
blunted as a consequence of chronic stress.

Within the brain, PA induces the neuronal adaptation that
is requisite for mitigating stressful stimuli in varied ways
across brain regions. Preclinical study demonstrates that 6
weeks of wheel running reduces LC firing following stress
(Greenwood et al., 2003; Greenwood and Fleshner, 2008).
Underlying these adaptive effects (Greenwood and Fleshner,
2008) is the upregulation of galanin in the LC, which induces
a hyperpolarization of noradrenergic neurons and, thereby,
inhibits excessive noradrenaline release (Seutin et al., 1989;
Pieribone et al., 1995; Reiss et al., 2009; Murray et al., 2010) in
some brain regions. The latter changes are essential for reducing
noradrenaline levels in the amygdala to limit anxiety behavior
(Sciolino and Holmes, 2012). Recapitulating these findings in
humans, it has been shown that galanin increases in plasma after
acute episodes of PA (Legakis et al., 2000). Conversely, long-
term PA increases noradrenaline levels in the hippocampus to
improve cognitive outcomes (Sarbadhikari and Saha, 2006), a
finding that may have important implications for microglia and
astrocytes in this brain region. The maintenance of basal levels
of noradrenaline is important for inhibiting the release of the
proinflammatory cytokines by microglia (Feinstein et al., 2002;
Mori et al., 2002) and stimulating astrocytes to release trophic

factors (e.g., BDNF) for neuroprotection (Junker et al., 2002).
Prospective randomized controlled trials have demonstrated that
hippocampal volumes increase following long-term aerobic PA
(i.e., 1–2 years) (Erickson et al., 2011; Rosano et al., 2017).

Dopaminergic Interactions
The majority of dopaminergic neurons are found in the ventral
tegmental area (VTA) of the midbrain, the substantia nigra
pars compacta, and the arcuate nucleus of hypothalamus. The
dopaminergic neurons of these areas project to different brain
structures through the mesocortical (with neurons originating in
VTA and transporting dopamine to the amygdala, hippocampus,
septum, and prefrontal cortex), mesolimbic (with neurons
originating in the VTA and transporting dopamine to the
nucleus accumbens through the amygdala and hippocampus),
and nigrostriatal pathways (with neurons originating in the
substantia nigra and transporting dopamine to the hippocampus
and dorsal striatum that is comprised of the caudate nucleus
and putamen) (Prasad and Pasterkamp, 2009). The diverse
origins and ramifications of these pathways explain the varied
effects produced by dopaminergic activation (Cho et al.,
2006). Whereas optimal signaling in the mesolimbic pathway
induces feelings of enjoyment and reinforcement following
exposure to pleasurable stimuli (e.g., food, sex, and drugs) and
associated contexts (Maas et al., 1997), optimal signaling in the
mesocortical is vital for concentration and working memory. In
the nigrostriatal system, signaling modulates motoric (planning
and execution) and cognitive responses. In contrast, decrements
in dopaminergic neurotransmission can effectuate symptoms of
impaired ability to experience pleasure (anhedonia), motivation,
executive function, and motricity in persons with depression
(Nestler and Carlezon, 2006; Tye et al., 2013), a cluster of
symptoms that traditional SSRIs often fail to assuage (Dunlop
and Nemeroff, 2007; Trivedi et al., 2008). Knowledge that
proinflammatory cytokines alter the functional status of the
dopaminergic system in a similar manner to that seen in
depression (reduces ventral striatal activity to reward cues)
suggests a mechanistic explanation for their co-occurrence of
inflammation in a distinct subset of persons who are clinically
depressed.

Direct evidence that cytokines induce dopaminergic
dysfunction derives from data from neurochemical, behavioral,
electrophysiological, genetic, and human clinical studies. For
instance, it has been shown that both peripheral and central
administration of inflammatory agents alter dopamine levels
in the brain (Miller et al., 2009), particularly in the striatum
(Kamata et al., 2000; Mauriño et al., 2010). Interestingly, some
evidence suggests cytokine-specific alterations across brain
regions: IL-1 and IL-2 administration increased dopamine
turnover in the prefrontal cortex, whereas IL-6 increased
turnover in the hippocampus and prefrontal cortex (Zalcman
et al., 1994). The effects of cytokine challenge may also be
concentration and time dependent. Low concentration of
IL-2 administered to mesencephalic cell cultures increased
dopamine release, whereas higher concentrations had no
effect (Alonso et al., 1993). A parallel in vivo micro dialysis
study showed that acute treatment of monkeys with IFN-α
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increased dopamine release in the striatum, whereas chronic
treatment with IFN-α decreased dopamine release. Notably, the
decreased dopamine that occurred in the striatum after chronic
treatment was correlated with reduced effort-based sucrose
consumption (Felger et al., 2013b), an effect that was mitigated
by levodopa administration via reverse in vivo microdialysis,
suggesting that inflammatory cytokines reduce the availability of
dopamine precursors without affecting end-product synthesis or
vesicular packaging or release (Felger et al., 2015). Other work
demonstrated that immune challenge effectuated decreased
intracranial self-stimulation of lateral hypothalamus (Borowski
et al., 1998). One of the structures affected by intracranial
self-stimulation is the medial forebrain bundle which contains
ascending dopaminergic projections from the VTA to the
nucleus accumbens (mesolimbic pathway) and passes through
the lateral hypothalamus (You et al., 2001; Nestler and Carlezon,
2006). Under basal conditions, the dopaminergic neurons in
the VTA area oscillate between low-frequency regular action
potentials (tonic activity) and bursts of action potentials (phasic
activity patterns) (Schultz, 2002). Transient increases in phasic
firing are thought to occur with exposure to unexpected rewards
or aversive stimuli, thereby encoding a “reward prediction error”
and reinforcing certain behaviors (Tsai et al., 2009). Notably,
inflammatory stimuli decrease rodent responding for rewarding
electrical stimulation in the lateral hypothalamus (Anisman
et al., 1998; Borowski et al., 1998), a change that likely reflects
anhedonia secondary to a loss of reward function. Translating
this work to humans, it has been shown that volunteers exposed
to low-dose polysaccharide exhibited reduced ventral striatal
activity to monetary reward cues, a change that correlated with
increased depressive symptoms (Eisenberger et al., 2010). It
appears that there is a rate of long burst-like spike activity that
is requisite for VTA dopaminergic neurons to release sufficient
levels of dopamine to promote feelings of reward (Yadid and
Friedman, 2008), a phenomenon that may be deleteriously
altered in depression and inflammation. Indeed, administration
of desipramine to Flinders-sensitive line rats (an animal model
of depression) increased the rate of long-bursting, high-spike
activity in the VTA in a manner similar to that seen in controls
(Yadid and Friedman, 2008). Additionally, integrated behavioral,
pharmacological, optogenetic, and electrophysiological methods
used by Tye et al. (2013) to assess freely moving rodents showed
that inhibition or excitation of dopaminergic neurons in the
VTA immediately and bi-directionally modulated (induced or
relieved) depressive-like symptoms effectuated by chronic mild
stress.

One of the implicated mechanisms by which inflammation
can alter dopaminergic signaling is via modulation of
tetrahydrobiopterin (BH4), a cofactor that is essential for
the degradation of amino acid phenylalanine and biosynthesis of
dopamine. Chronic immune challenge correlates with reduced
dopamine synthesis (Neurauter et al., 2008). In fact, patients
treated with IFN-α demonstrate reduced BH4 function in the
brain (Felger et al., 2013a). By corollary, persons subjected
to dietary depletion of dopamine (via a tryptophan-depleting
beverage) exhibited blunted activation of the ventral striatum
during reward anticipation activities (Bjork et al., 2014),

recapitulating the effects of immune challenge (Eisenberger
et al., 2010). Further attesting to the effects of inflammation and
dopaminergic function is recent work in a subgroup of clinically
depressed individuals that showed that infliximab (a highly
selective TNF-α antagonist) effectuated a strong antidepressant
effect (with greatest effects seen in area of motivation), but only
in patients with elevated CRP at baseline (Raison et al., 2013).

Interestingly, most studies suggest that PA increases dopamine
levels in several brain regions (Brown et al., 1979; de Castro and
Duncan, 1985; Dishman, 1997; Meeusen et al., 1997; Soares et al.,
1999). These effects putatively stem from the ability of PA to
alter metabolism (de Castro and Duncan, 1985; Chaouloff et al.,
1986) via modulation of calcium levels (Goffer et al., 2013; Morris
and Berk, 2015) and calcium/calmodulin-dependent activation
of tyrosine hydroxylase (Greenwood et al., 2011) and mitigate
BH4 depletion by inhibiting iNOS induction (Kitagami et al.,
2003). Greenwood et al. (2011) demonstrated that young adult
male Fischer rats that participated in voluntary wheel—running
for 6 weeks exhibited a conditioned place preference for the
wheel as well as increased 1FosB/FosB immunoreactivity in
the nucleus accumbens, increased tyrosine hydroxylase mRNA
levels in the VTA, and compensatory down-regulation of D2
receptor mRNA in the nucleus accumbens; these findings suggest
that (1) long-term voluntary PA is rewarding and alters gene
transcription in mesolimbic reward neurocircuitry (Greenwood
et al., 2011), (2) post-exercise increases in serum Ca2+ may
activate tyrosine hydroxylase enzyme and dopamine synthesis,
and (3) PA may reverse inflammation-induced disruptions in
dopaminergic transmission in the nucleus accumbens and ventral
striatum in models of depression. Another study showed that
wheel running increases tyrosine hydroxylase mRNA in the LC
(Droste et al., 2006) and substantia nigra (Foley and Fleshner,
2008). Receptor-binding studies suggest that 9 weeks of voluntary
PA induced hypersensitivity to dopamine release (Gilliam et al.,
1984; MacRae et al., 1987). In line with the aforementioned,
it has been suggested that voluntary wheel running alters
behavior because the activity is intrinsically rewarding and affects
neuroplasticity in the mesolimbic reward pathway (Greenwood
et al., 2011). Thereby, PA could serve as a feed-forward
mechanism and further increase PA, a phenomenon that would
reduce inflammation and metabolic disease in the long- term
(Waters et al., 2008).

Glutamatergic Interactions
Excitatory glutamatergic neurotransmission provides a basis for
communication in the forebrain, cortex, hippocampus, caudate
nuclei, thalamic nuclei, and cerebellar nuclei (Paul and Skolnick,
2003). Once released into the synaptic cleft, glutamate acts
upon pre- and post-synaptic ionotropic N-methyl-d-aspartate
(NMDA) glutamate receptors (NMDARs) in brain regions that
modulate monoaminergic activity, emotionality, learning, and
behavior (Ghasemi et al., 2014, 2017). NMDARs are tetrameric
structures comprised of 7 subunits, including an obligatory
GluN1 subunit along with various combinations of GluN2 and
GluN3 subunits that differ according to anatomical distribution,
developmental profile, and functional activity. Multiple binding
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sites exist on NMDARs, including those for glycine (D-serine),
Mg2+, and other polyamines.

Some evidence suggests that the fronto-limbic glial alterations
that occur in depression (Rajkowska and Miguel-Hidalgo,
2007) and comorbid inflammation are the result of an
imbalance between the quinolinic acid and kynurenic acid
arms of the pathway. Cytokine activation of the kynurenine
pathway induces the breakdown of kynurenine into either
quinolinic acid or kynurenic acid. The two end- products
have diametrically opposing functions that can contribute to
neurodegenerative or neuroprotective processes in the brain.
Quinolinic acid is a neurotoxic endogenous NMDA receptor
agonist, whereas kynurenic acid is a neuroprotective endogenous
NMDA receptor antagonist. Within the brain, quinolinic acid
is exclusively produced in microglial cells, intimating that
microglial activation by proinflammatory cytokines may bias
quinolinic acid production and facilitate NMDA agonism
(Myint et al., 2007; McNally et al., 2008) along with astrocytic
activation and apoptosis (Guillemin et al., 2005). The loss
of astrocytes is particularly problematic because they uptake
synaptic glutamate to prevent neuronal excitotoxicity, provide
metabolic support to neurons via lactate production, produce
neuroprotective mediators, and defend against oxidative stress.
Quinolinic acid agonism of extrasynaptic NMDARs also inhibits
the activity of cAMP response element binding (CREB) protein
to block induction of BDNF gene expression (Hardingham
et al., 2002). Interestingly, the NMDA antagonist ketamine
decreased lipopolysaccharide-induced TNF-α production in
astrocyte and microglial cultures (Shibakawa et al., 2005). In
the hippocampus, ketamine down-regulated pro-inflammatory
cytokines (Wang et al., 2015), an effect that might reduce
depression-related hippocampal atrophy and preserve HPA
axis feedback (Chen and Guillemin, 2009; Leonard and Maes,
2012). Memantine, another NMDA antagonist, has been shown
to mitigate lipopolysaccharide-induced neuroinflammation and
restore behaviorally- induced gene expression and spatial
learning in the rat (Rosi et al., 2006). Together, these studies
suggest that inflammation-induced astrocytic pathology may
play an important role in depression via the production of
pathogenic substances and loss of normal function. By corollary,
strategies that normalize astrocytic function may improve
neuronal health and decrease microglial activation.

Notably, evidence suggests that PA positively modulates the
glutamatergic system in states of depression and inflammation.
PA increases glutamate turnover and prevents excitotoxicity
(Jia et al., 2009; Herbst and Holloway, 2016) by improving
calcium regulation (Sutoo and Akiyama, 1996). PA also exerts a
neuroprotective effect on the brain by modulating glial function.
Recently it was shown that rodents exposed to long-term PA (5
days per week× 4 weeks) demonstrate increased BDNF synthesis
and release in the dentate gyrus along with altered orientation
and morphology of astrocytes (Fahimi et al., 2017). The latter
findings suggest the antidepressant effects of aerobic PA may
stem in part from (1) PA-induced changes in astrocytic projection
length and density that enhance glutamate clearance from the
synapse to mitigate glutamate excitotoxicity and (2) astrocytic
production of neuroprotective mediators. Others have shown

that PA induces an increase in astrocyte cell body area and
number of contacts between astrocytic endfeet and blood vessels
in the hippocampus, medial prefrontal cortex, and orbitofrontal
cortex (Brockett et al., 2015). Since astrocytic endfeet express
glucose transporters (Iadecola and Nedergaard, 2007), it seems
plausible that PA-induced upregulation of astrocytic endfeet
contact with blood vessels may serve as a means to respond to
intense energy demand (van Hall et al., 2009), an adaptation
that may be particularly important during inflammation and
depression. Finally, it has been shown that PA reduced age-
related microglial proliferation rate in aged mice 1.5-fold as well
as the number of activated microglia 1.8-fold, suggesting that
PA reduced inflammatory molecules that stimulate microglia
proliferation (Kohman et al., 2012).

AT THE NEXUS OF ANTIDEPRESSANT
EFFICACY AND PA: PGC-1α

The nuanced relationship between PA and immune function
is complex and incompletely understood, particularly in
depression. On the one hand, extreme PA results in inflammation
and immunosuppression. On the other hand, moderate PA
promotes an anti-inflammatory environment (Gleeson, 1985).
At the nexus of PA and immune interactions is a regulator of
adaptation: the muscle-derived protein peroxisome proliferator-
activated receptor C coactivator-1α (PGC-1α). PA upregulates
skeletal expression of PGC-1α (Irrcher et al., 2003; Russell et al.,
2003), which is important because this factor controls pro-
inflammatory gene expression in muscle partly via inhibition of
the NF-κB pathway. The NF-κB pathway contributes to cytokine
production and cell survival (Eisele et al., 2013). A reification
of the aforementioned concept can be seen in persons with
comorbid depression and Type-2 diabetes.

Persons with Type-2 diabetes exhibit persistently elevated
basal levels of inflammatory cytokines, which contribute to
a state of insulin resistance (Hotamisligil, 2006). Low-grade
inflammation putatively results when macrophages inundate
white adipose tissue, liver, and skeletal muscle and elicit
the persistent secretion of several types of “adipokines,”
including the proinflammatory cytokines TNF-α, IL-1, IL-6,
and monocyte chemoattractant protein-1 (MCP1) (Skurk et al.,
2007). Interestingly, muscle tissue levels of TNF-α and IL-6
negatively correlate with PGC-1α levels in healthy and glucose-
intolerant models (Handschin et al., 2007). Therefore, it seems
plausible that the reciprocal regulation of PGC-1α and NF-κB is
themolecular pivot in skeletal muscle that determines the balance
between the trained anti-inflammatory environment endemic
to conditions of health and the atrophic pro-inflammatory
conditions endemic to states of disease (Figure 2). To better
understand this pivot, a closer examination of IL-6 becomes
warranted.

IL-6 is produced in skeletal muscle and adipose tissue, with
adipose tissue contributing 10% to 35% of the body’s basal
circulating IL-6 level, a percentage that increases alongside
rising body fat composition (Mohamed-Ali et al., 1997; Fried
et al., 1998; Pedersen and Febbraio, 2012). Chronically elevated
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FIGURE 2 | PA induces the upregulation of PGC-1α expression via multiple signaling pathways. Included among the pathway inputs are contributions from

β-adrenergic receptor signaling, Ca2+, AMPK, ROS, and NO. Cytosolic PGC-1α protein translocates to the nucleus and mitochondria once activated. Various

transcription factors can modulate metabolic processes, including MEF2, FoxO, ATF, and CREB. In turn, the factors are impinged upon by a multiplicity of signaling

pathways. For instance, PA and cytokines activate p38 MAPK, which then induces the activation of MEF2 and ATF2. Insulin activates AKT, which then inhibits FoxO.

PGC-1α and NFkB family p60 subunits reciprocally modulate one another to regulate inflammatory pathways.

baseline IL-6 plasma levels are associated with obesity, insulin
resistance, and Type-2 diabetes (Kern et al., 2001; Duncan et al.,
2003; Dandona et al., 2004). Obesity-related elevations in IL-
6 appear to help fuel the process of low-grade inflammation
that accompanies obesity in a feedback response designed to
offset energy excess. Bolstering the latter notion is evidence that
PA increases IL-6 mRNA expression (Ostrowski et al., 1998;
Starkie et al., 2001) in a manner that is contraction and duration
dependent (Steensberg et al., 2000), suggesting that IL-6 signals
the liver to increase glucose output to regulate blood glucose
concentration during times of energy need (Steensberg et al.,
2000). Other work shows that IL-6 can increase up to 100-fold
with prolonged PA (Fischer, 2006), a trend that was attenuated
with carbohydrate ingestion during PA (Nehlsen-Cannarella
et al., 1985; Starkie et al., 2001) and pre-exercise glycogen
depletion (50%) (Steensberg et al., 2001). Others showed that
cytokines can induce white fat browning in peripheral tissue to
promote energy expenditure (Lee et al., 2013; Petruzzelli et al.,

2014). Furthermore, the induction of cytokine release by NFκB
p65 in fat tissue induces energy expenditure in mice (Tang
et al., 2010; Jiao et al., 2012). Notably, the chronic IL-6 and
TNF-α secretion that results from obesity induces suppressor
of cytokine signaling proteins (SOCS) 1 and 2. The net effect
is a decrease in insulin-induced activation of insulin receptor
substrate (IRS) with a reduction in the metabolic effects of
insulin (Tanti et al., 2012) and failed skeletal muscle regeneration
and atrophy (Coletti et al., 2005) via mechanisms that likely
involve upregulation of TLRs (Lambert et al., 1985; Francaux,
2009; Gleeson et al., 2011; Drummond et al., 2013). With time,
the hyperinsulinaemic response results in a decline in secretory
capacity of β-cells that are responsible for insulin secretion.
Conversely, administration of salicylate or blocking of IKK kinase
reversed obesity and diet-induced insulin resistance (Gao et al.,
2003; de Alvaro et al., 2004). Similarly, exercise improves insulin
sensitivity and glucose uptake in muscle (Wojtaszewski et al.,
2000, 2003; Sakamoto et al., 2004). Implicated mechanisms
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include increased phosphorylation of insulin receptor substrate
(IRS) (Weigert et al., 2006).

Paradoxically, endurance-trained athletes exhibit increased
levels of intramuscular triglycerides and yet are highly insulin
sensitive (Goodpaster et al., 2001). Yet unlike sedentary
individuals with comorbid depression and Type-2 diabetes,
endurance-trained athletes appear to exhibit a higher
mitochondrial density and mitochondrial enzyme capacity,
which enhances oxidative phosphorylation and reduces the
degree of insulin-sensitizing metabolic byproducts (Attie and
Kendziorski, 2003; Mootha et al., 2003; Patti et al., 2003;
Tarnopolsky et al., 2007). Moreover, the exercise-induced IL-6
profile in athletes differs from that with chronic inflammation.
Whereas IL-6 is released from contracting muscle fibers
following flux in Ca2+ and glycogen in exercising athletes
(Pedersen, 2009), it appears to be primarily elicited from TLRs
in persons with inflammation. Together, the aforementioned
evidence suggests that an acute elevation in IL-6 exemplifies an
attempt to mitigate energy crises during times of deprivation
or excess, but that chronic inflammation promotes sickness
behaviors, muscle wasting, and insulin resistance. Undoubtedly,
the maintenance of metabolic equilibrium during inflammation
involves PGC-1α, the master regulator of energy expenditure
and mitochondrial biogenesis.

PGC-1α co-localizes to mitochondria-rich tissues, including
skeletal muscle, liver, and brain. Transgenic studies of PGC-
1α in rodents suggest the factor modulates local and systemic
inflammation, including levels of TNF-α and IL-6 (Handschin
and Spiegelman, 2008; Handschin, 2009; Arnold et al., 2011).
The ability of PGC-1α to respond to changing metabolic
needs during inflammation stems from its ability to selectively
bind transcription factors, particularly peroxisome proliferator-
activated receptor (PPAR)γ (Puigserver and Spiegelman, 2003),
PPARα (Vega et al., 2000), estrogen-related α (ERRα) (Huss
et al., 2002), forkhead box O (FoxO) (Puigserver et al., 2003),
hepatocyte nuclear factor 4α (HNF4α) (Yoon et al., 2001), and
nuclear respiratory factors (NRFs) (Wu et al., 1999). These
coregulators affect biological responses that enable cells modulate
mitochondrial biogenesis, cellular respiration rates, and energy
substrate uptake and utilization—changes that are particularly
important for contractile and metabolic adaptations in skeletal
muscle (Puigserver and Spiegelman, 2003; Wende et al., 2007;
Scarpulla, 2008). For example, PGC-1α coactivation of NRF-
1,2 elicits the expression of nuclear-encoded mitochondrial
proteins and mitochondrial transcription factor A (Tfam) to
stimulate mitochondrial DNA replication and transcription
(Kelly et al., 2003; Puigserver and Spiegelman, 2003; Lin et al.,
2005). Cell culture studies of myoblasts show that overexpression
PGC-1α effectuates an upregulation in respiratory subunit
mRNAs, cytochrome c oxidase subunit 4 (COXIV) protein
levels, and steady-state levels of mitochondrial DNA (Wu
et al., 1999) in an adaptation to facilitate increased oxygen
utilization. PGC-1α activity is regulated after PA via translational
modifications that include phosphorylation (Jäger et al., 2007),
deacetylation (Cantó et al., 2009), and sumoylation (Rytinki and
Palvimo, 2008), changes that enhance expression of target genes
and PGC-1α itself. Several pathways appear to contribute to

these exercise-relatedmodifications, including Ca2+/calmodulin,
AMPK, p38/MAPK, and nitric oxide (NO) pathways.

PGC-1α activity is partially regulated bymuscle-induced Ca2+

changes and their downstream signaling pathways. PA induces
Ca2+ signaling via calmodulin-dependent protein kinase IV
(CaMKIV) and calcineurin A, changes that activate myocyte
enhancer factor (MEF) 2 (which is important for glucose
transport) and impinge upon PGC-1α transcription (Handschin
et al., 2003). Interestingly, transgenic mice overexpressing
calcineurin A in skeletal muscle exhibit increased slow twitch
myofibers, glucose transporter type 4 (GLUT4), mitochondrial
enzymes, and PGC-1α (Naya et al., 2000; Ryder et al., 2003),
suggesting that PGC-1α may have an insulin-sensitizing role.
Corroborating the latter notion are studies showing a negative
correlation between muscle PGC-1α levels and mitochondrial
activity in insulin resistance and diabetes (Attie and Kendziorski,
2003; Mootha et al., 2003; Patti et al., 2003). In an alternate
signaling path, CaMKIV activates cAMP response element (CRE)
binding (CREB) protein to augment PGC-1α transcription in
various tissues (Herzig et al., 2001; Wu et al., 2002; Handschin
et al., 2003) and, in an autoregulatory manner, activates MEF2C
andMEF2D (Michael et al., 2001; Lin et al., 2005). Another factor
that upregulates PGC-1α during PA is p38MAPK via activation of
transcription factor 2 (ATF2) (Cao et al., 2004). Also, aerobic PA-
induced Ca2+ release upregulates PGC-1α activity and initiates
its translocation to the nucleus, where it interacts with LRP130 to
inhibit transcriptional activity of FoxO, which suppresses muscle
protein degradation and atrophy (Vechetti-Junior et al., 2016).
Via these mechanisms, aerobic PA and its induction of PGC-
1α influences muscle fiber type composition, modulates GLUT4
gene expression (Michael et al., 2001), and promotes protein
synthesis in muscle cells.

PA also generates reactive oxygen species (ROS), which
induces inflammatory cytokine production in skeletal muscle (Ji,
2008), an effect that can be mitigated by the upregulation of
mitochondrial ROS-detoxifying enzymes via PGC-1α (St-Pierre
et al., 2003; Valle et al., 2005). Deficits in PGC-1α secondary
to disuse may promote an inflammatory state that attenuates
early benefits of exercise, particularly in those with comorbid
depression and chronic inflammation. Yet restoration of PA
effectuates a reduction in the ubiquitin-proteasome actions of
atrogin-1 and Murf-1, proteins that are involved in atrophy
under catabolic conditions (Dupont-Versteegden et al., 1985;
Haddad et al., 1985; Okamoto et al., 2011; Suetta et al., 2012),
via upregulation of PGC-1α, a metabolic change that promotes
muscle recovery by inhibiting the FoxO pathway, possibly by
involvement of LRP130 (Vechetti-Junior et al., 2016).

PA also induces changes in AMP-activated protein kinase
(AMPK), an energy sensor that becomes active when the
AMP/ATP ratio is high (Jørgensen et al., 2005; Pedersen
and Febbraio, 2012). Activated AMPK enhances mitochondrial
biogenesis and function, for which PGC-1α plays an essential role
in activation (Jäger et al., 2007). The up-regulation of PGC-1α
putatively occurs following direct phosphorylation by activated
AMPK (Jäger et al., 2007). Then, activated PGC-1α may exert
significant impact on mitochondrial signal transduction by up-
regulating the expression of ERRα, nuclear respiratory factor
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(NRF)-1, and NRF-2 (Ye et al., 2016), which is important for
antioxidant defense (Asghar et al., 2007). Other work suggests
that PGC-1α is requisite for the upregulation of skeletal muscle
VEGF expression, an effect that is AMPK- mediated (Leick
et al., 2009). In addition to its importance in muscle physiology,
the AMPK pathway may be particularly important for central
neurons that possess small energy reserves (Ronnett and Aja,
2008) as suggested by concomitant AMPK activation in the
rodent hippocampus and antidepressant-like effects following
ketamine administration (Xu et al., 2013). Via these complex
pathways, PGC-1α mediates many known beneficial effects of PA
in skeletal muscle physiology and immune function.

Additionally linking PGC-1α with depression is recent
groundbreaking preclinical work that demonstrated that
exercise-induced augmentation of PGC-1α directly influenced
mood by altering the kynurenine pathway via immune-
dependent mechanisms (Agudelo et al., 2014). Initially this work
proved onerous because PGC-1α is expressed in a variety of
systems throughout the body making it difficult to disentangle
whether the effects of PA originated from central or peripheral
mechanisms. To tackle the problem, Agudelo and colleagues used
mice that were genetically modified to produce excessive levels
of PGC-1α in type-II skeletal muscle fibers and exposed them to
chronic stress in an attempt to induce depressive-like symptoms
(Agudelo et al., 2014). They found that mice overexpressing
PGC-1α were far more resistant to depressive symptoms
in comparison to mice with normal levels of PGC-1α. The
researchers then attempted to induce depressive-like symptoms
in mice that were genetically engineered to produce lower levels
of PGC-1α in their skeletal muscles. This time, after a significant
amount of stress, the low PGC-1α mice appeared to “lose hope,”
as evidenced by their decreased survival efforts during forced
swimming (an indicator of depression), behaviors that were
inflammation-dependent (Agudelo et al., 2014; Phillips and
Salehi, 2016). Importantly, PGC-1α overexpression effectuated
an increased production of kynurenine aminotransferase (KAT),
an enzyme that converts kynurenine into kynurenic acid, a
substance that cannot pass from the blood to the brain. The
conversion of kynurenine into kynurenic acid has tremendous
translational potential given that high levels of kynurenine are
found in persons with mental illness and rodents administered
kynurenine display depressive behavior. Fascinatingly, recent
human studies show that aerobic PA increases skeletal muscle
KAT levels and, thereby, shifts kynurenine metabolism in
the periphery toward kynurenic acid (Schlittler et al., 2016).
Altogether, these results suggest that PA induces the release
of “hope molecules” from the skeletal muscles of rodents to
influence mood disorder symptoms.

To date, much of the aforementioned work has not been
extended to large-scale patient populations with comorbid
depression and inflammation. Nevertheless, the work provides
a strong theoretical basis for the idea that PA can modulate
PGC-1α, increase mitochondrial density, alter muscle fiber
type, mitigate inflammation, and reduce depressive symptoms,
particularly in persons with comorbid depression and diabetes.
Undoubtedly, the ability of PA to optimize insulin control
would exert significant peripheral and central effects. Acute

aerobic PA significantly increases muscle glucose uptake via
insulin-dependent mechanisms for 1 h after cessation, and
increased glucose uptake persists 12–48 h following prolonged
activity via insulin-independent mechanisms (Magkos et al.,
2008). Also, improvements in insulin signaling may persist for
24 h when the intensity is increased to near-maximal effort
intermittently during trainings of shorter duration (20min)
(Manders et al., 2010; Gillen et al., 2012), with some evidence
suggesting that those with the highest baseline insulin resistance
yield the greatest effects early in disease progression (Dubé
et al., 2012). High-intensity interval training robustly enhances
skeletal muscle oxidative capacity and insulin sensitivity in
adults with Type-2 diabetes (Cochran et al., 2014; Jelleyman
et al., 2015). Similarly, resistance training enhances insulin
action (Bacchi et al., 2013), and some evidence suggests
that a combination of endurance and resistance exercise
effectuates greater improvements (Sigal et al., 2007). Improved
insulin sensitivity is paramount as insulin signaling regulates
mitochondrial function, energy homeostasis, circuit structure
and function (via transmitter receptor trafficking), and plasticity
(via alterations in synapse density) (Chiu et al., 2008), effects that
may be particularly important in the aging hippocampus (Zhao
et al., 2008; De Felice et al., 2009) given its importance for HPA
regulation.

So, the question arises as to whether there is currently enough
evidence to support the deployment of PA to positively influence
depressive symptoms in clinical populations. To answer this
important question, Cooney and colleagues conducted a meta-
analysis of randomized trials that were published up to March
2013 in which exercise (defined according to American College
of Sports Medicine criteria) was compared to standard treatment,
no treatment or a placebo treatment, pharmacological treatment,
psychological treatment, or other active treatment in adults (aged
18 and over) with depression (Cooney et al., 2013). Thirty-nine
studies with a total of 2,326 participants were included in the
review. The authors reported that aerobic exercise produced
effects comparable to treatment by either antidepressants or
psychotherapy. Another meta-analytic study by Silveira and
colleagues demonstrated that aerobic PA moderately reduced
the signs of depression, with populations over 60 years of age
and those with mild depression deriving the greatest response
(Silveira et al., 2013). Notwithstanding, there is currently
little evidence to indicate which modality of PA is optimal
(aerobic, strengthening, flexibility, or combinations). Stanton
and Reaburn tried to determine optimal parameters for using
PA to treat depression (e.g., frequency, intensity, duration, and
type of exercise). All five randomized controlled studies meeting
inclusion criteria were aerobic in nature (walking on treadmill or
outdoors, cycling on a stationary bike, or training on an elliptical
machine) (Stanton and Reaburn, 2014). Positive evidence was
found that aerobic PA of moderate intensity, undertaken 3 times
weekly, was effective in treating depression, with the ultimate
recommendation for duration being a minimum of 9 weeks
(Stanton and Reaburn, 2014).

Given evidence that it may be more difficult for persons
with comorbid depression and inflammation to benefit from
conventional antidepressants, it seems likely that associating
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pharmacological and nonpharmacological interventions
that reduce inflammation may enhance treatment response
in persons with comorbid depression and inflammation.
Bolstering this notion is evidence that inflammatory cytokines
may cancel mechanisms requisite for antidepressant efficacy
by increasing monoamine transporter activity, reducing
monoamine precursors, reducing enzyme cofactors necessary for
monoamine synthesis, activating NF-κB, and reducing glutamate
transporters. Fornaro et al. (2013) reported that non-responders
to duloxetine exhibited increased levels of proinflammatory
cytokine levels in comparison to early-responders. Yoshimura
et al. (2009) showed that antidepressant efficacy was contingent
upon the restoration of pro- and anti-inflammatory balance
and lowering of baseline IL-6 levels (Yoshimura et al., 2009).
Post-hoc analysis of clinical trial results by Raison et al. (2013)
demonstrated that persons with treatment-resistant depression
and high baseline CRP (>5 mg/L) exhibited a higher rate of
treatment response (62 vs. 33%) when administered infliximab
as compared to a placebo-treated group. Conversely, persons
with low CRP (<5 mg/L) levels who were administered placebo
experienced a greater reduction in depressive symptoms in
comparison to those administered infliximab, a finding that
argues against administration of anti-inflammatory agents in
cases of depression without apparent inflammation (Raison
et al., 2013).

So the question arises as to what can be expected when
combining antidepressants with PA: an enhanced effect, a lower
antidepressant dose, a higher rate of responders, a decreased
rate of relapse, or a reduction in the delay of action? To
answer this question, Carneiro et al. (2015) administered
pharmacotherapy plus 16 weeks of supervised structured aerobic
exercise training program to women with clinical depression
in a randomized clinical trial, finding that aerobic exercise
was an effective adjuvant to pharmacological therapy (Carneiro
et al., 2015). Helgadóttir et al. (2017) assessed outcomes for
four interventions: treatment as usual, light intensity exercise,
moderate intensity exercise, and vigorous exercise; while all
groups experienced decrements in depressive symptoms, persons
in light exercise group reported greater symptom relief at
12-month follow-up (Helgadóttir et al., 2017). Siqueira et al.
(2016) reported that a 4-week (4x/week) add-on aerobic exercise
program significantly decreased the need to render higher doses
of sertraline as compared to sertraline monotherapy (Siqueira
et al., 2016). Kerling et al. (2015) demonstrated that treatment
response was more frequent in persons assigned to an add-on
exercise group in comparison to treatment as usual (Kerling et al.,
2015). Babyak et al. (2000) assessed the effects of a 4-month
course of aerobic exercise, sertraline therapy, or a combination
of exercise and sertraline in persons with depression, finding
that remitted persons in the exercise group exhibited significantly
lower relapse rates than subjects in themedication group (Babyak
et al., 2000). Preclinical work suggests that both voluntary PA
and antidepressant therapies induce changes in neuroplasticity
substrates in a similar time course (Russo-Neustadt et al., 1999),
although it remains to be determined whether PA-induced
reductions in inflammation could alter the time course in those
with comorbid depression and high basal levels of inflammation.

The precise activity parameters that need to be deployed
to mitigate depression and comorbid inflammation need to be
determined in future work. Some translational work suggests
that moderate PA may be an optimal intensity of PA for the
promotion of mental health by decreasing TNF-α (Paolucci
et al., 2018). Clearly, PA prescriptions are needed that take
into account the basal levels of inflammation and response to
stress (neuroendocrine and immune status) during intervention.
The end goal would be to deploy various forms of PA to
intermittently stimulate the immune response so that the levels of
pro-inflammatory mediators and stress hormones are optimized.
Doing so may require different modalities, depending upon
personal factors.

CONCLUSIONS AND FUTURE
DIRECTIONS

Undoubtedly, psychiatric illness is defined by a constellation
of different symptoms that can be influenced by multiple
neural processes and circuits. The heterogeneity of presentations
complicates the precise targeting of dysfunction and, by corollary,
therapeutics that target those impairments. This conundrum is
patently apparent in the management of depression, wherein
a growing body of work suggests that a specific subtype of
depression with comorbid chronic inflammation exists. Further
research that aims to characterize the relationship between
inflammation and depression is warranted as it may yield
novel treatments for this subgroup that has been shown to
be resistant to conventional antidepressant pharmacotherapy.
Biomarker identification efforts will be enhanced by methods
that triangulate protein and genetic analysis with neuroimaging
and behavioral analyses. Ultimately, these studies should be
used to identify the immune, endocrine, and neurotransmitter
responses in depressive subtypes so that optimal treatments,
both pharmacological and nonpharmacological, can be identified
and tailored to select patient populations. Clearly, large-scale,
multiple-site clinical investigations that study the relationship
between PA and depression are needed. Longitudinal studies
will be required to evaluate the short- and long-term benefits
of combination therapies. The effects of PGC-1α on phenotypic
traits—such as adiposity, lean mass, and fasting glucose—and
the way that they could be modulated by genetic background
(ethnicity) are not precisely understood. Studies that disentangle
the relationship between PA, cognitive engagement, diet, social
factors, and stress are desperately needed to determine the
independent and additive protective effects that each factor
exerts (Phillips et al., 2014, 2015; Phillips, 2017b,c), particularly
how these factors affect cognitive and emotional function
at the synaptic and circuit level (Das et al., 2015). Finally,
strategies for overcoming the core symptoms of depression and
comorbid health problems are needed so that PA prescriptions
can be personalized and adherence maximized. Personalized
prescriptions are particularly germane to the topic of depression
as the condition is associated with increased morbidity and
mortality (Kiecolt-Glaser and Glaser, 2002), and activation of the
inflammatory response in persons with depression may engender
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different treatment responses to various activity regimens. These
studies are vital to work at the frontiers of neuroscience that
seeks to enable novel application of PA to health and disease and
provide a personalized approach to intervention.
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