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igor.riecansky@savba.sk

Received: 27 February 2017

Accepted: 12 May 2017

Published: 31 May 2017

Citation:

Murínová J, Hlaváčová N,
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There is evidence that development andmaintenance of neural connections are disrupted

in major mental disorders, which indicates that neurotrophic factors could play a critical

role in their pathogenesis. Stress is a well-established risk factor for psychopathology

and recent research suggests that disrupted signaling via brain-derived neurotrophic

factor (BDNF) may be involved in mediating the negative effects of stress on the brain.

Social isolation of rats elicits chronic stress and is widely used as an animal model of

mental disorders such as schizophrenia and depression. We carried out a systematic

search of published studies to review current evidence for an altered expression of

BDNF in the brain of rats reared or housed in social isolation. Across all age groups

(post-weaning, adolescent, adult), majority of the identified studies (16/21) reported a

decreased expression of BDNF in the hippocampus. There are far less published data

on BDNF expression in other brain regions. Data are also scarce to assess the behavioral

changes as a function of BDNF expression, but the downregulation of BDNF seems to be

associated with increased anxiety-like symptoms. The reviewed data generally support

the putative involvement of BDNF in the pathogenesis of stress-related mental illness.

However, the mechanisms linking chronic social isolation, BDNF expression and the

elicited behavioral alterations are currently unknown.

Keywords: neurotrophic factors, neural plasticity, mental disorders, schizophrenia, depression, animal models,

chronic stress, isolation rearing

INTRODUCTION

Evidence has been accumulated that development, maturation, and maintenance of neural
connections play a critical role in the pathogenesis of major mental illness including depression,
schizophrenia, and bipolar disorder. These developmental and homeostatic neural processes are
controlled by neurotrophic factors, signaling peptides which act on specific receptors to regulate
the physiology of neurons and glial cells (Williams and Umemori, 2014). There are several families
of growth factors acting in the brain, including many various molecules. Of these, brain-derived
neurotrophic factor (BDNF) has attracted a great deal of attention as probably being importantly
involved in various neuropsychiatric diseases (Autry and Monteggia, 2012; Castrén, 2014).
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BDNF is a member of the neurotrophin family of growth
factors, which also includes nerve growth factor (NGF),
neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4; Bothwell,
2014). Similarly to other neurotrophins, BDNF is first
synthesized as a precursor protein, proBDNF, which is cleaved
to the mature form (Deinhardt and Chao, 2014). BDNF binds
primarily to a transmembrane receptor TrkB (tropomyosin
receptor kinase B or tyrosine receptor kinase B). NT-4 binds
preferentially to TrkB as well, while NGF has highest affinity
for TrkA and NT-3 for TrkC receptor. Proneurotrophins,
including proBDNF, are also biologically active and all bind to a
pan-selective p75 neurotrophin receptor (Lu et al., 2005). Mature
neurotrophins are also able to interact with p75 receptor but
with low affinity. Through activation of Trk and p75 receptors,
respectively, mature neurotrophins and proneurotrophins may
produce opposing effects on target cells. Thus, while proBDNF
mediates apoptosis and long-term synaptic depression, mature
BDNF rather supports neuronal survival, growth, differentiation,
and synaptic long-term potentiation (Roux and Barker,
2002; Yoshii and Constantine-Paton, 2010). Throughout the
development, BDNF plays a crucial role in cellular proliferation,
migration, and phenotypic differentiation (Huang and Reichardt,
2001; Poo, 2001). BDNF is also required in the mature brain
for maintenance of neuronal functions, structural integrity of
neurons and neurogenesis (Poo, 2001; Autry and Monteggia,
2012).

In patients with schizophrenia, depression and bipolar
disorder, reduced expression of BDNF and/or TrkB has been
found in the hippocampus and multiple cortical areas (Autry
and Monteggia, 2012; Castrén, 2014) and there is also evidence
for reduced BDNF levels in the peripheral blood in these
disorders (Fernandes et al., 2014). Recent research indicates
that BDNF may create an important link between stress and
mental illness. Stress is a well-established environmental risk
factor of mental diseases and has a potent effect on signaling
via BDNF (Gray et al., 2013). Several types of stressors, such
as immobilization, foot shocks, or forced swimming have been
used to examine BDNF in animal studies and most of them have
shown that acute or chronic stress disrupted BDNF signaling
in the brain, mainly due to decreases in expression or release
(Cirulli et al., 2009; Neto et al., 2011; Bath et al., 2013). In
contrast, treatment with antidepressants or antipsychotics was
able to prevent, or in some circumstances reverse, the adverse
effect of stress on the BDNF pathway (Balaratnasingam and
Janca, 2012). In humans, an intensely debated issue is the role of
BDNF genotype in susceptibility to neuropsychiatric diseases. A
common functional polymorphism in the BDNF gene (termed
the Val66Met polymorphism) has been found to interact with
stress exposure to affect risk of depression (Hosang et al., 2014),
bipolar disorders (Hosang et al., 2010), schizophrenia (Alemany
et al., 2011), or suicide (Pregelj et al., 2011).

Social isolation of rats is often used to induce chronic
psychosocial stress and study the mechanisms through which
psychosocial factors influence pathogenesis of mental and
somatic diseases. In humans, the adverse effects of long-term
social isolation and psychosocial stress on mental and physical
health are well-established (Cacioppo et al., 2011). Rats naturally

live in groups and preventing them of social contacts and
interaction for a longer time deprives them of important stimuli
and represents a significant stressor (Hatch et al., 1965; Hawkley
et al., 2012). Chronic social isolation induces a variety of
symptoms in rats, including depression-, anxiety-, and psychosis-
like behaviors, but also signs of autonomic, neuroendocrine, and
metabolic dysregulation (Fone and Porkess, 2008; Karelina and
DeVries, 2011; Cacioppo et al., 2015). The terms isolation rearing
or isolation housing are commonly used to denote social isolation
of adolescent (post-weaning) or adult rats, respectively. The
consequences of isolation are more severe in rats compared with
other rodent species (Einon et al., 1981) and it has been argued
that social isolation of rats has a good etiological validity to model
human mental illness (Powell, 2010; Czéh et al., 2016). Given
the emerging important role of BDNF in stress-related mental
disorders, the aim of our investigation was to systematically
summarize current evidence for altered BDNF signaling in
experimental studies employing chronic social isolation of rats.

MATERIALS AND METHODS

Study Identification
We searched Medline PubMed, Scopus, and Web of Science
databases for papers and abstracts published until February
2017, written in English, which had investigated BDNF and
TrkB in rats exposed to chronic social isolation. Each electronic
search was performed by using a specific combinations of key
words occurring in title, abstract or paper’s key words, such
as [(isolat∗ AND (social∗ OR reared OR rearing OR housed
OR housing) AND (rat OR rats) AND (∗troph∗ OR BDNF OR
“growth factor∗”)]. Two researchers (JM and NH) independently
screened all titles and abstracts for inclusion. Only primary
research reports were considered. Full-text reports of all included
references were obtained. We included only studies, which had
assessed BDNF and TrkB expression in the brain (at the level
of mRNA or protein) of rats isolated for at least 2 weeks. We
excluded studies that had employed total isolation, i.e., when the
isolated animals had been housed separately so that they had had
no visual, auditory, and olfactory contacts with other animals.
Studies that had used resocialization following isolation were not
excluded. In addition to BDNF and TrkB expression, we also
extracted data on the age on isolation onset, isolation duration,
strain, sex, behavioral alterations, and other related findings.

RESULTS

The process of selection of papers to be included in the review
is shown in Figure 1. After removal of duplicates, the search
yielded 478 citations to be screened for inclusion. Following the
assessment of titles and abstracts, 35 citations were retained.
As a next step, full-text papers were examined, resulting in a
final selection of 21 studies. The findings from these studies are
summarized in Table 1. Studies were ordered first by the age at
the onset of isolation and then by isolation duration (range 2–12
weeks). Most studies (18/21) assessed the expression of BDNF in
the hippocampus.
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FIGURE 1 | Processing steps that followed the primary search.

Majority of studies (12/21) employed rats that were reared in
isolation from weaning. All 12 studies included the hippocampus
in their analyses and nine of them (75%) reported reduced
BDNF expression in isolated animals. In one of these studies,
decreased BDNF expression was only found in males, while no
change was reported in females. Three studies (25%) reported
no effect of isolation on BDNF expression in the hippocampus.
An increase in BDNF expression in the hippocampus was
reported in one study and this study used resocialization of
animals following a period of isolation. Six studies analyzed
the consequences of post-weaning social isolation on BDNF
expression in the frontal cortex. Three of them reported no
change, while other three (all using resocialization) found an
increase in BDNF expression in isolated animals. Amygdala was
investigated in two studies of post-weaning isolation and both
reported decreased BDNF expression in isolates. Striatum was
analyzed in two studies: one reported a decrease while another
one found no change in BDNF expression due to isolation.
Overall, no associations between study outcome and duration of
isolation were evident.

In four studies, the onset of social isolation was at post-natal
day 30–38, i.e., in the adolescent age. Decreased hippocampal
BDNF expression in isolated animals was found in three of
them (75%). In one of these studies, isolation decreased the
expression of BDNF only after sufficiently long isolation (10
weeks) and another study found reduced BDNF specifically in
CA3 subregion of the hippocampus and only in female rats.
Increased BDNF in the prefrontal cortex (PFC) was found in one
study, which used resocialization.

Five studies employed social isolation of adult rats. Four
of them (80%) reported decreased BDNF in the hippocampus
of isolated animals, while one study found no change. In the
prefrontal cortex, one study found no change, while another
study reported an increase in the expression of BDNF in isolates.

The vast majority of the studies employed male rats and
only four studies also included females. Three of them reported
no effect of isolation on BDNF while one study found a
decrease specifically in one of the hippocampal subregions.
We identified only one study investigating the expression of
TrkB receptor. This study reported decreased expression in
the cingulate and the retrosplenial cortex but an increase
in the piriform cortex and the hippocampus in isolated
animals.

The reviewed studies assessed a wide range of behaviors
and only few studies assessed the same behavioral domain.
Anxiety-like behavior was tested most often (but only in
eight studies in total) and was increased following social
isolation in 4/8 studies (unchanged in 2/8, decreased in 2/8).
Among the studies which found decreased BDNF expression,
increased anxiety-like behavior (such as shorter time spent
in the open arms of an elevated plus maze or longer
latency to feed in the novelty suppressed feeding test) was
reported in 4/6 studies (unchanged in 1/6, decreased in 1/6).
Among the studies which failed to find decreased BDNF
expression, this ratio was 0/2 (unchanged anxiety-like behavior
in 1/2, decreased in 1/2). Other symptoms that occurred in
studies reporting downregulation of BDNF included increased
behavioral despair (indicated by increased immobility in the
forced swimming test in 3/4 studies vs. decreased in 1/4),
increased anhedonia symptoms (indicated by reduced sucrose
preference in 3/3 studies), deficit in working memory (indicated
by decreased novel object exploration in the novel object
recognition task in 2/2 studies), decreased prepulse inhibition
of the acoustic reflex in 2/2 studies (tested only in post-
weaning-isolated animals), and impaired spatial learning (as
indicated by prolonged escape latencies in the Morris water
maze task in 1/3 studies vs. unchanged in 1/3 vs. improved
in 1/3).

DISCUSSION

We systematically reviewed the evidence for altered expression
of BDNF and its receptor TrkB in the brain of rats exposed to a
long-term (more than 2 weeks) social isolation, which is used to
model behavioral and neurobiological phenotype associated with
schizophrenia and depression in humans. The identified studies
are rather consistent in reporting a decreased expression of
BDNF in the hippocampus in isolated animals. This supports the
evidence that chronic stress downregulates hippocampal BDNF
expression in rats, in line with the findings from other chronic
stress paradigms (Duman andMonteggia, 2006; Gray et al., 2013;
Numakawa et al., 2013). The decrease in hippocampal BDNF
expression was independent of age at the onset of social isolation
(i.e., post-weaning period, adolescence, or adulthood). Although
there are fewer studies with adolescent and adult animals than
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TABLE 1 | Summary of results of the studies that employed rearing or housing rats in isolation.

Isolation

onset

Isolation duration

(weeks)

Strain

sex

Effect on BDNF Additional findings

(behavioral, neurobiological, etc.)

References

Post-

weaning

4 SD

♀, ♂

= BDNF protein expression in

mPFC in both ♂and ♀

↑ Social interaction with a novel conspecific

↑ Aggressive behavior

= Locomotion in the home cage

= Arc protein expression in mPFC

= c-fos protein expression in mPFC

= mPFC volume

Wall et al., 2012

Post-

weaning

4.3 SD

♂

↓ BDNF protein expression in the

hippocampus

↑ Spatial learning (↓ escape latency in MWM)

↓ Despair (↓ immobility in FST)

↑ Anhedonia (↓ sucrose intake)

↓ Arc protein expression in the hippocampus

Pisu et al., 2011a

Post-

weaning

4.3 SD

♂

↓ BDNF protein expression in the

hippocampus

↑ Anxiety (↓ time in open arms of EPM task)

↓ Arc protein expression in the hippocampus

↓ ALLO levels in the hippocampus

Pisu et al., 2011b

Post-

weaning

4.3 SD

♀, ♂

↓ BDNF protein expression in the

hippocampus in ♂

= BDNF protein expression in the

hippocampus in ♀

↑ Anhedonia in ♂(↓ sucrose intake)

↓ ALLO levels in the cerebral cortex and plasma

↓ Basal corticosterone levels in plasma

↑ Stress-induced corticosterone levels in plasma

↑ CRH protein expression in the hypothalamus in ♂

↓ CRHR1 protein expression in the pituitary in ♀

↑ GR protein expression in the hippocampus

Pisu et al., 2016

Post-

weaning

5 SD

♂

= BDNF protein levels in the frontal

cortex, striatum, hippocampus and

cerebellum

= Anxiety (time spent in open arms of EPM)

= Spatial learning (escape latency in MWM)

= Locomotion (distance in home cage and OF)

= NA, DA, 5HT and 5HIAA levels in the frontal cortex,

striatum, hippocampus and cerebellum

Simpson et al., 2012

Post-

weaning

5.7 L-E

♂

↓ BDNF protein expression in the

central amygdala and the

hippocampus

= Anxiety (time spent in open arms of EPM)

= Basal corticosterone levels in plasma

Ravenelle et al., 2014

Post-

weaning

6 SD

♀, ♂

= BDNF protein levels in the frontal

cortex, hippocampus, occipital

cortex and cerebellar vermis in

both ♂and ♀

= NGF protein levels in the frontal cortex,

hippocampus, occipital cortex and cerebellar vermis

↑ NT-3 protein levels in the occipital cortex

Parks et al., 2008

Post-

weaning

8 SD

♂

↓ BDNF protein level in the

striatum

↓ Prepulse inhibition of the startle reflex

↓ Working memory (↓ novel object exploration in

NORT)

Uys et al., 2016

Post-

weaning

12 F-H

♂

↓ BDNF mRNA expression in the

basolateral amygdala and dentate

gyrus

↑ BDNF mRNA expression in the

retrosplenial cortex

↑ DA D2 receptor binding in NAc, the basolateral

amygdala, central nucleus of the amygdala and the

substantia nigra

↓ TrkB mRNA expression in the cingulate cortex and

the piriform cortex

↑ TrkB mRNA expression in the hippocampus and

retrosplenial cortex

Djouma et al., 2006

Post-

weaning

2 (+ next 3 weeks

of social housing)

SD

♂

↓ BDNF protein expression in the

hippocampus and NAc

↑ BDNF protein expression in PFC

Impaired reversal learning in MWM

= Spatial learning in MWM

Han et al., 2011

Post-

weaning

2 (+ next 3 weeks

of social housing)

SD

♂

↓ BDNF mRNA and protein

expression in the hippocampus

↑ BDNF mRNA and protein

expression in mPFC

↓ H3 acetylation of BDNF gene in the hippocampus

↑ H3 acetylation of BDNF gene in mPFC

↓ Prepulse inhibition of the startle reflex

Li et al., 2016

(Continued)
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TABLE 1 | Continued

Isolation

onset

Isolation duration

(weeks)

Strain

sex

Effect on BDNF Additional findings

(behavioral, neurobiological, etc.)

References

Post-

weaning

2 (+ next 4 weeks

of social housing)

SD

♂

↑ BDNF protein expression in PFC

and the hippocampus

Meng et al., 2011

Adolescent 6, 10 W

♂

= BDNF protein levels in the

hippocampus after 6 weeks of

isolation

↓ BDNF protein levels in the

hippocampus after 10 weeks of

isolation

↑ Anxiety (↑ latency to feed in NSFT)

↑ Despair (↑ immobility in FST)

↓ Hippocampal progenitor cell proliferation and survival

↓ Serum and hippocampal ALLO levels

(no differences between the duration of isolation)

Evans et al., 2012

Adolescent 9 W

♂

↓ BDNF protein levels in the

hippocampus

= Locomotion (number of line crossing in OF)

↑ Anxiety (↑ latency to feed in NSFT)

↑ Despair (↑ immobility in FST)

↓ Hippocampal progenitor cell proliferation

Sun et al., 2013

Adolescent 2 (+ next 2 weeks

of social housing)

W

♂

↑ BDNF protein levels in mPFC

= BDNF protein levels in NAc

Deficit in latent inhibition Shao et al., 2013

Adolescent 2.9 (+ next 2.9

weeks of social

housing)

SD

♀, ♂

↓ BDNF mRNA expression in CA3

of the hippocampus in ♀

= BDNF mRNA expression in CA1

and dentate gyrus of the

hippocampus

↓ Anxiety (↑ time spent in the open arms of EPM) in ♂

↑ AVP mRNA expression in PVN in ♀

↓ Orexin mRNA expression in PVN in ♂

= Basal plasma ACTH levels

↑ Stress-induced plasma corticosterone levels in ♀

↓ Stress-induced plasma corticosterone levels in ♂

Weintraub et al., 2010

Adulthood 3 W

♂

↓ BDNF mRNA expression in the

hippocampus

↑ BDNF mRNA expression in PFC

↓ GR mRNA expression in the hippocampus and PFC

↑ CRH mRNA expression in the hippocampus and

PFC

↑ Cdk5 protein levels in PFC

↑ p25 and p35 protein in the hippocampus and PFC

↑ GRS232 phosphorylation in the hippocampus and

PFC

↓ JNK1 and JNK 2/3 protein levels in the

hippocampus and PFC

↓ Basal serum corticosterone levels

Adzic et al., 2009

Adulthood 5 FRL,

FSL

♂

= BDNF mRNA expression in the

hippocampus

= Locomotion (distance moved in OF)

= Despair (floating in the FST)

↓ Anxiety (↑ time spent in open arm in the EPM)

↓ Working memory (↓ novel object exploration in

NORT)

Fischer et al., 2012

Adulthood 6 SD

♂

↓ BDNF protein levels in the

hippocampus

↑ Anhedonia (↓ sucrose intake)

↑ Despair (↑ immobility in FST)

↑ Anxiety (↑ latency to feed in NSFT)

↓ DA and 5HT levels in cerebrospinal fluid

↓ Hippocampal progenitor cell proliferation

Ma et al., 2016

Adulthood 8 SD

♂

↓ BDNF expression in the dorsal

hippocampus

↓ Synaptophysin expression in the PFC, ventral and

dorsal hippocampus, and caudal putamen

↓ PSD93 expression in PFC, ventral and dorsal

hippocampus, and amygdala

↓ Number of dendritic spines in PFC, ventral and

dorsal hippocampus

↓ pS473-AKT expression in the dorsal hippocampus

(active form)

↓ pS9-GSK-3β expression in the dorsal hippocampus

(inactive form)

↓ Working memory (↓ novel object exploration in

NORT)

↓ Spatial learning (↑ escape latency in MWM task)

Gong et al., 2016

(Continued)
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TABLE 1 | Continued

Isolation

onset

Isolation duration

(weeks)

Strain

sex

Effect on BDNF Additional findings

(behavioral, neurobiological, etc.)

References

Adulthood 8 SD

♂

↓ BDNF protein levels in the

hippocampus

= BDNF protein levels in the

striatum and PFC

= Basal plasma corticosterone levels Scaccianoce et al.,

2006

SD, Sprague Dawley; L-E, Long Evans; F-H, Fawn-Hooded; W, Wistar; FRL, Flinders Resistant Line; FSL, Flinders Sensitive Line.

♂, male; ♀, female; ↓, decreased; ↑, increased; =, no change.

5HIAA, 5-hydroxyindoleacetic acid; 5HT, 5-hydroxytryptamine (serotonin); ACTH, adrenocorticotropic hormone; ALLO, allopregnanolone; Arc, activity-regulated cytoskeleton-associated

protein; AVP, arginine vasopressin; BDNF, brain-derived neurotrophic factor; Cdk5, cyclin-dependent kinase 5; CRH, corticotropin releasing hormone; CRHR1, corticotropin releasing

hormone type 1 receptor; DA, dopamine; EPM, elevated plus maze; FST, forced swimming test; GR, glucocorticoid receptor; GRS232, glucocorticoid receptor phosphorylation at

serine 232; H3, histone protein 3; JNK, c-jun N-terminal kinase; mPFC, medial prefrontal cortex; mRNA, messenger RNA; MWM, Morris water maze; NA, noradrenaline; NAc, nucleus

accumbens; NGF, nerve growth factor; NORT, novel object recognition test; NSFT, novelty suppressed feeding test; NT-3, neurotrophin-3; OF, open field; PFC, prefrontal cortex; pS473-

AKT, serine-473-phosphorylated Akt (active form); pS9-GSK-3β, serine-9-phosphorylated GSK-3β (inactive form); PSD93, post-synaptic density protein of 93 kDa; PVN, paraventricular

nucleus; TrkB, tyrosine receptor kinase B.

with post-weaning-isolated rats, this shows that the effects of
stress upon BDNF are not specific for any life period.

Conclusions for other brain regions must be drawn with
caution due to lower number of studies compared with
those targeting the hippocampus. The current data suggest no
significant effects of social isolation on BDNF expression in the
cerebral cortex. Future studies should address the cortical (in
particular PFC) expression of BDNF more thoroughly since it
may be of importance for considering face validity of social
isolation as a model for human mental illness. Namely, post-
mortem studies in schizophrenia patients quite consistently
report decreased BDNF expression in PFC (even more often than
in the hippocampus, for review see Reinhart et al., 2015) and thus
apparently differ from studies in post-weaning isolation-reared
rats, considered as a model for schizophrenia (Powell, 2010;
Jones et al., 2011). Interestingly, an elevated BDNF expression
in PFC was consistently found in the studies which employed
resocialization of animals following a period of isolation. The
increased BDNF expression thus might reflect a compensatory
mechanism to recover from the detrimental effects of social
isolation. The upregulation of BDNF is a well-established effect of
antidepressant drugs and is considered tomediate their treatment
efficacy (Duman and Monteggia, 2006; Autry and Monteggia,
2012; Castrén, 2014). In contrast to antidepressants which elevate
BDNF in both PFC and the hippocampus, resocialization seems
not to alter BDNF expression in the hippocampus (the increase
was found only in 1/4 studies). Further studies are needed to
explore the nature and the physiological significance of this
potentially important phenomenon.

It has been observed that chronic stress elevates BDNF and
increases growth of dendrites and spines in the amygdala and it
was proposed that the differential effects of stress on BDNF and
neural plasticity in the hippocampus and the amygdala may play
role in the pathogenesis of stress-related mental disorders (Gray
et al., 2013; Bennett and Lagopoulos, 2014; McEwen et al., 2016).
We identified only two studies targeting the amygdala and both
reported decreased BDNF expression. It thus appears that the
effects of chronic stress on the amygdala might depend on the
experimental paradigm.

We were surprised to identify only one study that had
explored the effect of social isolation on the expression of TrkB
receptors (Djouma et al., 2006). This study found a decrease in
TrkB expression in the cingulate cortex and the piriform cortex
but an increase in the hippocampus and the retrosplenial cortex.
Given the lack of other reports we can make no consensual
statement concerning TrkB expression and further studies are
needed to establish more firmly that social isolation affects the
expression of TrkB receptors in the brain.

Which are the mechanisms mediating the effects of social
isolation on BDNF, in particular the decreased expression in
the hippocampus? Surprisingly, among all the studies included
in this review, only two addressed the possible mechanisms
toward reduced hippocampal BDNF expression. Li et al. (2016)
reported that post-weaning isolation rearing had decreased
BDNF mRNA and protein expression in the hippocampus,
which was accompanied with decreased acetylation of histone
H3 of the BDNF gene, suggesting that histone modifications
could play a role in downregulating BDNF. However, it is not
clear that these changes were due to social isolation since this
study used resocialization of rats after isolation. The study by
Adzic et al. (2009) revealed modifications of glucocorticoid
receptors following isolation of adult rats. The authors argued
that these changes could decrease the transcriptional activity of
the glucocorticoid receptor upon the BDNF gene. Such a lack
of empirical data does not allow us to draw any conclusions
on the mechanisms underlying the reduced hippocampal BDNF
expression in socially isolated rats. Since the discussion of the
engaged processes remains hypothetical so far, we will just briefly
address the major candidate mechanism here.

The fact that isolation negatively affects both BDNF protein
and mRNA levels in the hippocampus (see Table 1) indicates
a reduced gene transcription rather than involvement of post-
transcriptional processes. The transcription of the BDNF gene
is regulated by transcription factors and epigenetic chromatin
modifications (West et al., 2014). The BDNF gene of rodents
(and also humans) is complex, containing several exons linked
to separate promoters which interact with multiple transcription
factors, including, among others, cAMP/Ca2+-response element
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binding protein (CREB), activator protein-1 (AP-1), and nuclear
factor kappa B (NF-κB). Epigenetic regulation of the BDNF
transcription is achieved by modifications of DNA (methylation)
and histone proteins (methylation, acetylation) and also involves
the action of methylated CpG-binding proteins, such as MePC2
(Boulle et al., 2012). Both transcription factors and chromatin
modifications have been implicated in stress-related changes of
BDNF gene transcription.

It has been suggested that the reduction of BDNF in chronic
stress is due to a long-term exposure to high levels of adrenal
glucocorticoids (GCs, predominantly corticosterone in rats),
which are the major mediator of the stress response (Gray
et al., 2013; Numakawa et al., 2013; Suri and Vaidya, 2013;
Castrén, 2014). This argument is based largely on the well-
established finding that chronic treatment with high doses of
CGs downregulates BDNF expression in the hippocampus (Chao
and McEwen, 1994; Smith et al., 1995; Dwivedi et al., 2006;
Jacobsen and Mørk, 2006). While the existence of glucocorticoid
response elements within the BDNF gene is probable (Hansson
et al., 2006), GCs may affect BDNF gene transcription also by
their interactions with other transcription factors, such as CREB
or AP-1 (Schaaf et al., 2000; Suri and Vaidya, 2013; Castrén,
2014) and may also act via epigenetic modifications of the BDNF
gene (Stankiewicz et al., 2013). However, several findings are
not consistent with the idea that GCs play a central role in
the reduced transcription of the BDNF gene in chronic social
isolation. First, there is little evidence for a chronic increase in
basal GC levels in socially isolated rats (Weiss et al., 2004; Serra
et al., 2005; Fone and Porkess, 2008; Cacioppo et al., 2015).
Also the studies included in this review reported unchanged or
decreased basal plasma corticosterone concentrations. Though,
it is possible that basal GC concentrations are only increased
during an early phase of isolation, which may be sufficient
to induce lasting changes of BDNF transcription. Second, the
inhibition of BDNF expression by stress exposure occurs also
in adrenalectomized rats, in which the physiological stress-
related elevations of corticosterone are eliminated (Smith et al.,
1995). Finally, Li et al. (2017) have recently demonstrated that
the effects of a prolonged corticosterone administration differ
between adolescent and adult rats: Hippocampal expression
of BDNF was decreased in the adult, but increased in the
adolescent rats. Social isolation, in contrast, seems to decrease
hippocampal BDNF irrespective of age at which the animals
are isolated. These findings indicate that the downregulation of
BDNF after chronic isolation cannot be attributed in a simple and
straightforward manner to high levels of GCs. Research shows
that the relationship between GCs and BDNF is complex and
should be rather viewed as complementary, whereby GCs and
BDNF jointly contribute to stress adaptation (Gray et al., 2013;
Jeanneteau and Chao, 2013; Numakawa et al., 2013; Suri and
Vaidya, 2013; Castrén, 2014).

Numerous findings show a link between BDNF and the
serotoninergic system (Martinowich and Lu, 2008; Homberg
et al., 2014). Stress, including social isolation stress, exerts
multiple influence on the serotoninergic system (Chaouloff
et al., 1999; Weiss and Feldon, 2001; Fone and Porkess, 2008;
Mahar et al., 2014). Serotonin signaling has an influence on

BDNF gene transcription through altered activity of CREB,
but also other transcription factors (Martinowich and Lu,
2008; Homberg et al., 2014). Moreover, there is evidence that
serotonin can affect BDNF chromatin remodeling (Ignácio et al.,
2014). This suggest that the serotoninergic system might play
a role in mediating the effects of social isolation on BDNF
expression. There is also increasing evidence that chronic
social isolation impairs antioxidant defenses and disrupts redox
homeostasis in the brain (Schiavone et al., 2009; Filipović
et al., 2017). BDNF transcription factors NF-κB and AP-1 are
sensitive to oxidative and nitrosative status (Kamata et al., 2002;
Parohova et al., 2009) and have been implicated to play a role
in the pathogenesis of neuropsychiatric disorders, including
schizophrenia and depression (Altinoz et al., 2016; Ménard
et al., 2016). Yet relatively little is known about this potentially
important pathway linking stress and BDNF expression in the
brain.

There are few doubts that social isolation is stressful for rats
(Hatch et al., 1963). Besides stress, however, another consequence
of isolation is an overall decrease in sensory input and motor
activities. It is known that sensory stimulation and physical
activity both stimulate BDNF expression (Cotman et al., 2007;
Karpova et al., 2010; Phillips et al., 2014; Sale et al., 2014).
Therefore, in the search for mechanistic links toward the
decreased BDNF expression in social isolation of rats, sensory-
motor deprivation should also be considered as a possible causal
factor.

Since the methods of behavior assessment varied considerably
among the studies, to summarize the results across the studies
was uneasy. Anxiety-like behavior was the only domain where
the occurrence of the symptoms could be compared between
the studies which had found or had not found the decreased
BDNF expression. Increased anxiety-like behavior was present
more often when BDNF expression in the brain was decreased,
suggesting a link between BDNF and anxiety symptoms.
Depression-like symptoms (the signs of behavioral despair or
anhedonia), deficits in working memory and sensorimotor
gating also co-occurred with decreased BDNF expression.
However, data are too scarce to enable us to analyze the
behavioral changes as a function of BDNF expression. Moreover,
it remains to be established whether the decreased BDNF
expression plays a causal role in the pathogenesis of the
isolation-induced behavioral alterations (cf. Taliaz et al., 2010).
Surprisingly, none of the reviewed studies analyzed the pathways
downstream of BDNF/TrkB such as the phospholipase C
pathway, the PI3K/Akt (phosphatidylinositol 3-kinase/protein
kinase B) pathway, or the MAPK/ERK (mitogen-activated
protein kinase/extracellular signal related kinase) pathway,
which mediate the effects of BDNF on synaptic plasticity and
neurogenesis in the hippocampus (Ninan, 2014). For instance,
recent evidence indicates that mTORC1 (mechanistic target
of rapamycin complex 1), a target of MAPK/ERK signaling,
is inhibited by chronic stress and is involved in stress-
induced synaptic dysfunction and depression-like behavioral
changes (Ota et al., 2014; Duman et al., 2016, see also
Zhou et al., 2014). Due to decreased BDNF, the activity of
the MAPK/ERK/mTORC1 pathway might be compromised in
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chronic social isolation. Yet, the involvement of this as well as
other BDNF-sensitive candidate mechanisms awaits empirical
exploration.

To conclude, there is a good evidence that the expression
of BDNF is decreased in the hippocampus of rats reared or
housed in social isolation. Current data do not indicate that the
expression of BDNF is changed in the cerebral cortex. There
are too few data to draw conclusions for other brain regions.
The expression of BDNF seems to be increased in PFC in
animals that were returned to social housing after a prolonged
period of isolation, indicating a compensatory mechanism.
Studies are lacking on the effects of social isolation on the
expression of TrkB receptors in the brain. In general, the research
findings are in agreement with putative involvement of BDNF
in the pathogenesis of stress-related mental disorders. However,
almost entirely absent are empirical data on the neurobiological
mechanisms underlying the altered BDNF expression as well as
the involvement of signaling pathways downstream of BDNF
in chronically isolated animals. Given the established use
of social isolation to model the symptoms of schizophrenia
and depression, future research should focus on exploring

the mechanistic links between chronic social isolation, BDNF
expression and the elicited behavioral alterations.
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