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Objectives/Hypothesis: Idiopathic subglottic stenosis (iSGS) is an unexplained obstruction involving the lower laryngeal and
upper tracheal airway. Persistent mucosal inflammation is a hallmark of the disease. Epithelial microbiota dysbiosis is found in other
chronic inflammatory mucosal diseases; however, the relationship between tracheal microbiota composition and iSGS is unknown.
Given the critical role for host defense at mucosal barriers, we analyzed tissue specimens from iSGS patients for the presence
of microbial pathogens.

Methods: Utilizing 30 human iSGS, 20 intubation-related tracheal stenosis (iLTS), and 20 healthy control specimens, we
applied molecular, immunohistochemical, electron microscopic, immunologic, and Sanger-sequencing techniques.

Results: With unbiased culture-independent nucleic acid, protein, and immunologic approaches, we demonstrate that
Mycobacterium species are uniquely associated with iSGS. Phylogenetic analysis of the mycobacterial virulence factor rpoB
suggests that, rather than Mycobacterium tuberculosis, a variant member of the Mycobacterium tuberculosis complex or a
closely related novel mycobacterium is present in iSGS specimens.

Conclusion: These studies identify a novel pathogenic role for established large airway bacteria and provide new targets
for future therapeutic intervention.
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INTRODUCTION
Idiopathic subglottic stenosis (iSGS) is a debilitat-

ing extrathoracic obstruction involving the lower laryn-
geal and upper tracheal airway. It arises without known

antecedent injury or associated disease. Emerging study
has demonstrated affected patients possess tightly con-

served clinical demographics,1 histopathologic findings,2

anatomic injury,3 and physiologic impairment.4 Despite

description of iSGS more than four decades ago,5 only
recently has the inflammatory fibrosing phenotype been

characterized at the molecular level. Data show highly
upregulated activation of the inflammatory IL-17A/IL-23

pathway in the mucosal scar in iSGS, yet the mecha-
nisms responsible for the characteristic demarcated air-

way inflammation are unknown.
In alternate pulmonary pathologies,6–9 both struc-

tural and functional changes in the lung epithelium
appear to be integral to fibrotic remodeling, occurring in
the setting of chronic airway inflammation. Epithelial
microbiota dysbiosis, with subsequent sustained host
inflammation, is found in other chronic inflammatory
mucosal diseases.10–18 Although the trachea is lined
with respiratory epithelia, which readily support coloni-
zation by a diverse microbiome at other upper respira-
tory sites such as the oropharynx,19,20 to date nothing is
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known of the composition of the resident microbiome of
the large airway or its contribution to airway remodeling
in idiopathic subglottic stenosis. Microbiological studies
that rely on culture-based techniques underestimate the
diversity of species present10 and offer limited detection
of intracellular pathogens. The application of culture-
independent approaches offers the opportunity to both
provide a broader picture of tracheal microbiome compo-
sition and identify discrete pathogenic species associated
with disease states.

Previously, work has demonstrated activation of the
canonical IL-23/IL-17A pathway in the tracheal mucosa
of iSGS patients, and has identified cd T cells as the pri-
mary cellular source of IL-17A.21 Given the established
role of cd T cell IL-17A in host defense at mucosal bar-
riers, we analyzed tissue specimens from iSGS patients
for the presence of microbial pathogens. Our unbiased
molecular interrogation of the tracheal microbiota of
iSGS patients provides detailed nucleic acid, protein,
and immunologic evidence to demonstrate Mycobacte-
rium species within tracheal scar. Together with our pre-
vious work, these studies offer new insights into the
pathogenesis of iSGS. They suggest that human tracheal
mucosal health is highly dependent on the composition
of the resident microbiota, identify a novel pathogenic
role for established large airway bacteria, and offer tar-
gets for future therapeutic interventions.

MATERIALS AND METHODS
This study was performed in accordance with the Declara-

tion of Helsinki, Good Clinical Practice, and was approved by

the institutional review board (IRB) at Vanderbilt University

Medical Center (IRB: 140429).

Patients
In all, 30 iSGS, 20 intubation-related tracheal stenosis

(iLTS), and 20 normal control patients were utilized for experi-

ments (Supp. Fig. S1.). Each iSGS and immunoglobulin-like

transcripts (iLTS) diagnosis was confirmed using previously

described clinical and serologic criteria.22 The control popula-

tion consisted of patients without known tracheal pathology,

malignancy, or systemic infection. Tracheal scar or freshly iso-

lated peripheral blood mononuclear cells (PBMC) was the

source of all specimens from the iSGS and iLTS patients, and

normal trachea or PBMC was the source for the control

patients.

Culture Independent Quantitative Polymerase
Chain Reaction Profiling of Respiratory
Microbime

DNA Isolation. Genomic DNA (gDNA) was extracted

with the Qiagen DNAeasy extraction kit (Qiagen, Valencia, CA)

according to the manufacturer’s instructions, with slight modifi-

cation as previously described.23,24 The gDNA concentration

and quality were confirmed using the Bioanalyzer 2100 system

(Agilent, Santa Clara, CA). Human respiratory pathogen quan-

titative polymerase chain reaction (qPCR) array (Qiagen) was

performed as per manufacturer’s instructions in a StepOnePlus

instrument (Applied Biosystems, Foster City, CA). Expression

analysis was performed using PCR array analysis software

(Qiagen).

In Situ Hybridization for Mycobacterial Gene
Product GyraseA

Paraffin-embedded iSGS and iLTS airway stenosis tissues

and healthy controls (US Biomax Inc., Rockville, MD; # RS321)

were pretreated and probed for Gyrase A (Advanced Cell Diag-

nostics, Hayward, CA, #436701) following a modified RNAscope

2.0 Assay’s HD Detection Kit (Red) (Advanced Cell Diagnostics)

protocol.25 Tissue was digested with proteinase-K (1:100 dilu-

tion) (Sigma-Aldrich Co., LLC. St. Louis, MO) in 20 mM Tris-Cl

(p.H. 8.0) for 5 minutes at room temperature. Experimental

controls run in parallel included bacterial gene DapB as a nega-

tive control to assess background signal and Homo sapiens HS-

PPIB to assess positive signals and protocol efficacy.

Sanger Sequencing of Mycobacterial Species
Molecular subtyping of Mycobacterial Species. Nested

PCR analysis was performed as previously described for Myco-

bacterial rpoB26 (with conditions and primers listed in supple-

mental data [Supp. Table S1]). Negative and positive controls

were run in parallel. Genomic DNA extracted from M. tubercu-

losis strain H37rv served as a positive control (Vircell Technolo-

gies, Granada, Spain), whereas PCR master mix inoculated

with 5 lL of sterile water, and PCR master mix alone were

used as negative controls.

Determination of DNA Sequence of Amplified
Products

The rpoB gene products were run on a 2% gel and purified

the 360 bp band using the Qiagen QIAquick Gel Extraction kit

(Qiagen) and sequenced directly on both strands in the Vander-

bilt Cancer Center Core Sequencing Laboratory, Nashville, Ten-

nessee. Alignments of the rpoB sequences were performed using

Sequencher 5.3 software (Gene Codes Corporation, Ann Arbor,

MI).

Immunogold Labeling
Human tracheal mucosal biopsies were obtained in the

operating room and immediately fixed with chilled buffer (50

mM sodium cacodylate [pH 7.4]) containing 2.5% glutaralde-

hyde and 2.0% paraformaldehyde and placed in 48C overnight.

The samples were then prepared as previously described.27

Briefly, samples were blocked with 0.1% coldwater fish skin gel-

atin in 50 mM sodium cacodylate buffer and stained with rabbit

polyclonal anti-Mycobacterium tuberculosis (Mtb) antibodies

(LS-C72966, LSBio, Inc., Seattle, WA), followed by goat anti-

rabbit IgG conjugated to 20 nm gold particles (Electron Micros-

copy Sciences, Hatfield, PA). Samples were washed three times

with phosphate buffered saline containing 0.1% Tween 20 and

analyzed with an FEI T-12 transmission electron microscope

(FEI, Hillsboro, Oregon) equipped with a side-mounted digital

camera. A total of 30 to 35 individual cells in each group were

imaged to analyze subcellular architecture and presence of

bacteria.

Elispot
Preparation of PBMC and 6-kDa early secreted antigenic

target (ESAT-6) peptides,23 and Elispot assay were performed,

as described previously.28 The number of specific interferon

gamma (IFN-c) secreting T cells was calculated by subtracting

the mean negative control value from the mean spot-forming

cell (SFC) count for duplicate wells inoculated with peptide.

Negative controls always had < 50 SFC per 106 input cells. A
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positive response was defined as a concentration of at least 50

SFC/106 PBMC, which is at least three times higher than the

background level. Research assistants were blind to the clinical

diagnoses of the study participants throughout the analysis.

Statistical Analysis
Statistical significance was set at a P value less than 0.05,

and a mean difference equal to or greater than two-fold change

in expression levels. Normal distribution of the variables was

tested using the Shapiro-Wilk test. Differences between the x

and y groups were determined using the Kruskal-Wallis and

Mann-Whitney tests for normal and nonnormal distributions,

respectively. Data were expressed as median 6 standard devia-

tion for nonnormal distributed variables. All statistical analyses

were performed with Prism version 6.0 software (GraphPad

Software Inc., La Jolla, CA).

RESULTS

Culture-Independent Profiling of Respiratory
Microbial Flora

Given the role of cd T cell IL-17A in host defense
against pathogens at epithelial and mucosal barriers, we
analyzed tissue specimens from iSGS patients for the
presence of microbial species. All iSGS patients (10 of
10) demonstrated PCR positivity to Mycobacterium spe-
cies (Fig. 1A), whereas only two of 10 iLTS patients
were positive by PCR (P < 0.001). In contrast, among
iLTS patients, 10 of 10 showed PCR positivity to Acineto-
bacter baumannii (an established ICU pathogen29),
whereas only one of 10 iSGS patients showed a positive
signal for this pathogen (P < 0.001).

Further confirmatory testing was preformed on an
additional 10 iSGS, 10 iLTS, and 10 healthy controls
with in situ hybridization probing RNA expression of the
specific mycobacterial virulence factor DNA gyrase subu-
nit A.30 Seven of 10 iSGS specimens tested positive, pre-
dominantly in the tracheal epithelium, whereas only one
of 10 iLTS specimens and 0 of 10 healthy control sam-
ples showing detectable signal (P 5 0.03) (Fig. 1B).

Localization of Mycobacterium Species Within
iSGS Tracheal Scar

To further investigate for Mycobacterium species
within tracheal scar tissue, we utilized Immunogold
labeling and high-resolution transmission electron
microscopy. This analysis revealed multiple structures
with associated labels that exhibit typical size (500 nm–
2 lm) and shape (coccoid or bacillus) of Mycobacterium
species within the extracellular matrix (Fig. 1D-E),
whereas controls using secondary antibody alone (data
not shown) or an unrelated antibody to Haemophilus
influenzae (Fig. 1C) were negative. Digital quantification
of gold labels per bacterial cell by computerized algo-
rithm confirmed visual analysis of anti-Mycobacterium
tuberculosis complex (Mtbc) antibody binding in iSGS
tissues (P < 0.005) (Supp. Fig. S2).

Systemic Immunologic Response to
Mycobacterium Antigens in iSGS

After detection of nucleic and amino acid signal for
mycobacteria within iSGS, we sought to assess the sys-
temic immunologic response in iSGS. Utilizing Elispot,
we analyzed antigen-specific responses of peripheral leu-
kocytes from iSGS patients to the mycobacterial ESAT-6.
We chose ESAT-6 peptides due to prior reports of sys-
temic cellular immune responses to these conserved
MtbC virulence factors in sarcoidosis.28,31 Peripheral
blood mononuclear cells from iSGS patients showed a
mean IFN-c spot-forming-cell (SFC) count of 165.9
(standard error of the mean [SEM] 6 42.4) compared
with 27.4 (SEM 6 18.1) in normal controls (P < 0.0076)
(Fig. 1F.). This IFN-c response suggests systemic immu-
nologic memory to MtbC exposure and is consistent with
a pathological role for MtbC in iSGS.

Mycobacterium Species Subtyping via Sanger
Sequencing

It was not possible to subtype the Mycobacterium
species based on the initial primers in our discovery
assay; therefore, we utilized Sanger sequencing26 to fur-
ther classify the Mycobacterium species in a subset of
samples based on the rpoB gene sequence. The rpoB
PCR yielded a product of 360 bp, which Sanger sequence
analysis identified as MtbC in eight iSGS samples.
Seven of the eight positive iSGS specimens showed con-
sistent polymorphisms in the same locations (at 2,312
and 2,313 base pairs) (Fig. 2A). Whereas the predicted
protein coding sequence from iSGS specimens was
homologous to Mtb reference sequences (Fig. 2B), phylo-
genetic analysis of the amino acid sequencing suggests
that rather than Mtb, a variant member of the MtbC or
a closely related novel mycobacterium (Fig. 2C) is pres-
ent in iSGS specimens.

DISCUSSION
We demonstrate through multiple distinct

approaches the presence of Mycobacterium within tra-
cheal scar of iSGS patients. Our prior findings suggest a
major role for cd T cells in the IL-17A-dependent tissue
inflammation and fibrotic remodeling seen in the air-
ways of iSGS patients.21 Given the established role for
cd T cells in the early production of IL-17A in MtbC
infection,32 and the critical role for IL-17A in host clear-
ance of pulmonary MtbC,33 our prior results are consist-
ent with our current work demonstrating mycobacterial
species within the airway scar of iSGS patients.

An early report describing iSGS as a clinical entity
could not isolate bacterial sepcies34 in routine microbio-
logic culture. Similarly, all iSGS patients included in our
study were culture-negative. However, since this publi-
cation in 1993, culture-independent techniques have
become an established alternate methodology for identi-
fication of infectious agents. Polymerase chain reaction
was used to identify the etiologic agents of bacillary
angiomatosis (Bartonella henselae)35 and Whipple’s dis-
ease (Tropheryma whippelii).36
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Fig. 1. Mycobacterium species in iSGS patients. The qPCR results for panel of respiratory pathogens from 10 iSGS and 10 iLTS patients.
(A) Yellow indicates positive PCR products; blue indicates negative result. Ten of 10 iSGS patients had detectable PCR products for myco-
bacterium tuberculosis complex (MtbC), compared with two of 10 iLTS patients (two-tailed, chi-squared test with continuity correction; P <
0.001). (B) Representative images from in situ hybridization for RNA of Mycobacterium gene product gyraseA (arrows depicting positive sig-
nal in iSGS specimen). Accompanying summary graph depicting seven of 10 iSGS patients with detectable in situ hybridization signal,
compared with one 10 iLTS and 0 of 10 controls (two-tailed, chi-squared test; asterisk denotes P < 0.001). Immunogold labeling with an
anti-MtbC antibody and high-resolution transmission electron microscopy analyses revealed multiple structures with associated labels that
exhibit typical size (500 nm–2 lm) and shape (coccoid or bacillus) of Mycobacterium spp. Treatment with secondary antibody alone (not
shown) or an unrelated antibody to Haemophilus influenzae (C) revealed sparse labeling that was significantly less than the labeling
achieved with the anti-Mtb treatment (D, E). Distribution of IFN-c production from ESAT-6 stimulated peripheral blood mononuclear cells
isolated from the peripheral blood of iSGS patients (red; n 5 10) or healthy controls (green; n 5 10). Bars represent the median (50th
percentile), asterisk denotes significance (two-tailed, Mann Whitney test; P < 0.005) (F). Ctrl 5 control; IFN-c 5 interferon gamma; iLTS 5

iatrogenic laryngotracheal stenosis; iSGS 5 idiopathic subglottic stenosis; MtbC 5 mycobacterium tuberculosis complex; PCR 5 polymer-
ase chain reaction; qPCR 5 quantitative polymerase chain reaction.
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The use of antigen-specific immune responses to
microbial antigens has also been utilized to identify
novel infectious agents, including Sin Nombre virus in
hantavirus pulmonary syndrome,37 as well as a previ-
ously unknown coronavirus in severe acute respiratory
syndrome38,39 and Mycobacterium in sarcoidosis.28,40

Peripheral blood mononuclear cells from iSGS patients
that are stimulated ex vivo with mycobacterial virulence
factor ESAT-6 demonstrate a pronounced IFNc response.
This finding suggests that, despite negative culture
results from iSGS specimens, mycobacterial antigens
induce T-cell-specific responses in the blood of iSGS
patients at similar frequencies to those of tuberculosis
subjects.28 The observation of a pronounced cellular
immune response to Mycobacterium EAST-6 antigens in
all 10 iSGS patients tested strongly supports the results
from our molecular and protein analysis of iSGS scar.

The inability to identify mycobacterial microorgan-
isms by routine histologic staining or to culture microor-

ganisms from pathologic tissues provides caution to the
establishment of a causative role for infectious agents in
iSGS pathogenesis. However, based on prior microbiolog-
ical experience with fastidious mycobacteria, there are
several explanations for the failure to detect microbial
species in iSGS in the initial reports of the disease: The
bacteria may be present in quantities below the detec-
tion of histologic staining.41 Alternatively, the agent may
have an ultraslow growth pattern that necessitates incu-
bation periods much longer than the standard 6 weeks
that cultures are held for isolation of Mycobacterium
tuberculosis, which is similar to the time needed for iso-
lation of M. ulcerans.42 Conversely, iSGS pathogenesis
may reflect an immune response to infectious antigens
and might not be dependent on actively replicating
organisms, which is similar to the hypersensitivity pneu-
monitis that is induced by Mycobacterium avium.43

An association between Mycobacterium and iSGS
immunopathogenesis is supported by the detection of

Fig. 2. Sanger sequencing of Mycobacterium species. Sanger sequencing of the mycobacterium rpoB gene in iSGS scar demonstrating
99% positional identity with MtbC in eight of 20 iSGS samples. (A) Seven of the eight positive samples demonstrated two identical synony-
mous substitutions at positions 2312 and 2313. (B) Predicted identical rpoB amino acid sequence in MtbC and iSGS specimens. Analysis
of rpoB DNA sequences from 29 Mycobacterium species and from patients with iSGS showing distinct clustering of iSGS samples. Phylo-
grams based on nucleotide alignments were generated with HKY85 distances matrices using Paup 4.0b10 (Sinauer Associates, Sunder-
land, MA). (C) Bootstrap values > 50 (based on 500 replicates) are represented at each node. The branch length index is represented
below the phylogram. iSGS 5 idiopathic subglottic stenosis; MtbC 5 mycobacterium tuberculosis complex.
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mycobacterial proteins and nucleic acids in iSGS scar, as
well as local and peripheral cellular immune responses
to mycobacterial antigens in iSGS subjects. However, it
remains unresolved whether the identified mycobacterial
constituents drive disease or whether inflammation per
se creates a niche for the outgrowth of specific bacteria.
It should be noted, however, that tracheal stenosis aris-
ing after intubation (iLTS; which also possess an inflam-
matory tissue phenotype in the airway) appears in our
cohort to have a much lower percentage of patients with
detected Mycobacterium. Given the disease rarity, these
results will require confirmation in larger cohorts pooled
from multiple institutions.

The presence of Mycobacterium within iSGS scar is
particularly striking in light of proven association of
Mycobacterium with otherwise healthy, older white
females (the Lady Windermere syndrome).44 The charac-
teristics of these patients (women without immunocom-
promise or underlying chronic lung disease and proven
pulmonary Mycobacterium infection) closely mirror the
iSGS population. Lady Windermere patients are predom-
inantly Caucasian (86%) women (81%) presenting in
their mid-sixties. The dramatic demographic similarities
of the two diseases (NTM pulmonary infection/Lady
Windermere syndrome and iSGS) offers clinical prece-
dent for a pathogenic role for Mycobacterium in the
development or progression of iSGS.

Although our results demonstrate Mycobacterium
species within the tracheal scar of iSGS patients, the
role of host genetics to iSGS pathogenesis has not yet
been explored. Interestingly, strong alternate evidence
links host genotype to mycobacterial susceptibility via
the IL-23/IL-17A axis. Molecular analysis of patients
suffering from Mendelian susceptibility to mycobacterial
disease has implicated polymorphisms in both the ligand
(IL-12B)45,46 and receptor (IL-12Rb1)47,48 responsible for
IL-17A activation. Similarly, although iSGS affects
women nearly exclusively, the influence of estrogen on
disease initiation and recurrence is unknown. Estrogen
has been shown to directly drive IL-23/IL-23R signaling
and increase IL-17A production in severe asthma.49 The
role of estrogen in promoting mycobacterial colonization/
infection, or its role in accelerating the host response to
pathogen, are questions meriting future study.

CONCLUSION
Although iSGS has long been considered strictly an

anatomic abnormality requiring a surgical remedy, we
offer the first evidence that the disease may represent a
manifestation of altered local microbial flora coupled to
a pathologic host inflammatory response. We demon-
strate through multiple distinct approaches, a unique
association of mycobacterial species and iSGS airway
mucosa. Together with prior reports demonstrating sig-
nificantly upregulated local IL-17A, evidence of Myco-
bacterium species within tracheal scar offers new
avenues for therapeutic intervention in iSGS patients.
Several established reagents are available to inhibit the
IL-17A pathway.50–52 Alternatively, multiple drugs are
available targeting Mycobacterium species. Interestingly,

limited cases series supports a clinical benefit for one of
these reagents in iSGS patients.1 The benefit of IL-17A
inhibition in the absence of pathogen control is unclear;
thus, future clinical trials could test the clinical response
of immunomodulation in combination with antibacterial
therapy. Therefore, the implications this work may
extend beyond the confines of iSGS to other disease aris-
ing at the interface of pathogen and host inflammatory
response.
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