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Abstract: The global obesity epidemic continues to rise worldwide. In this context, unraveling
new interconnections between biological systems involved in obesity etiology is highly relevant.
Dysregulation of the endocannabinoidome (eCBome) is associated with metabolic complications in
obesity. This study aims at deciphering new associations between circulating endogenous bioactive
lipids belonging to the eCBome and metabolic parameters in a population of overweight or obese
individuals with metabolic syndrome. To this aim, we combined different multivariate exploratory
analysis methods: canonical correlation analysis and principal component analysis, revealed associa-
tions between eCBome subsets, and metabolic parameters such as leptin, lipopolysaccharide-binding
protein, and non-esterified fatty acids (NEFA). Subsequent construction of predictive regression
models according to the linear combination of selected endocannabinoids demonstrates good pre-
diction performance for NEFA. Descriptive approaches reveal the importance of specific circulating
endocannabinoids and key related congeners to explain variance in the metabolic parameters in
our cohort. Analysis of quartiles confirmed that these bioactive lipids were significantly higher in
individuals characterized by important levels for aforementioned metabolic variables. In conclusion,
by proposing a methodology for the exploration of large-scale data, our study offers additional
evidence of the existence of an interplay between eCBome related-entities and metabolic parameters
known to be altered in obesity.

Keywords: endocannabinoids; endocannabinoidome; human; metabolic syndrome; obesity; multi-
variate analysis; leptin; NEFA; LBP
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1. Introduction

Obesity has reached pandemic proportions worldwide, mainly because of major
lifestyle changes such as improper eating habits and lack of exercise. Nowadays, most
therapeutic interventions aimed at preventing or reversing obesity remain limited in
their impact. In this context, the need for further expanding our knowledge on obe-
sity’s etiology is urgent. While studies on key single actors multiply and uncover new
specific potential targets, these studies must imperatively be conceived in parallel with
those covering the search for new key complex interplays between sets of biological
subsystems. Among systems closely related to obesity-related comorbidities, the endo-
cannabinoid (eCB) system has been shown to greatly influence host energy homeostasis
and is involved in a number of physiological functions including food intake regula-
tion, energy balance, lipid and glucose homeostasis, neuroprotection, inflammation, and
pain modulation [1–5]. The eCB system includes a plethora of endogenous bioactive
lipids, arachidonic acid (AA)-derived lipids, enzymes responsible for their synthesis and
degradation, and membrane-bound receptors such as cannabinoid receptor 1 (CB1) and
2 (CB2) [6]. Bearing in mind that its complexity goes far beyond its simplified version,
an expanded eCB system, or endocannabinoidome (eCBome), exists that encompasses,
among others, two main bioactive lipid families, the N-acylethanolamines (NAEs) and
the 2-acylglycerols (2-MAGs), which are congeners of the AA-derived and cannabinoid
receptor activating endocannabinoids, N-arachidonoylethanolamine also known as anan-
damide (AEA), and 2-arachidonoylglycerol (2-AG), respectively. The first cluster includes
N-palmitoylethanolamine (PEA), N-stearoylethanolamine (SEA), N-oleoylethanolamine
(OEA), N-linoleylethanolamine (LEA), N-eicosapentanoylethanolamine (EPEA), and N-
docosahexanoylethanolamine (DHEA), while the second cluster includes 2-oleoylglycerol
(2-OG), and 2-linoleoylglycerol (2-LG), among others. In pathological conditions such
as obesity, the levels of some of these mediators are altered in the blood and in several
organs such as the liver, the brain or the intestine [7–10]. For example, levels of some
NAEs were shown to be higher in individuals with elevated fat mass (FM), while in-
creased levels of MAGs were found in individuals characterized by preferentially visceral
fat distribution [11]. Obesity-related alterations in the eCB system are associated with
excessive CB1 activation, which may favor increased food intake, mitigation of energy
expenditure, and accumulation of fat in the adipose tissue [10–12]. On the other hand,
eCBome mediators such as PEA, OEA, 2-OG, and 2-LG may influence energy metabolism
by activating non-cannabinoid receptors such as peroxisome proliferator-activated receptor
(PPAR) α, transient receptor potential cation channel subfamily V member 1 (TRPV1),
G protein-coupled receptor 55 (GPR55) and 119 (GPR119) [13–17].

While an increasing number of studies began to shed light on the metabolism of these
different mediators (for review see [2,18]), the complexity of the eCBome is not fully eluci-
dated, nor its interconnections with other systems. To dismantle this puzzle, we considered
data integration. Data integration reconciles, on one hand, the emergence of large-scale
data sets, consecutive of improvement of high-performance analytical techniques and, on
the other hand, the need to take into account the manner by which each biological system
acts upon another. Several statistical approaches were proposed in the literature for the
integration of two or more high-throughput data sets [19,20].

The present work aims at exploring the interplay between the circulating eCBome
and metabolic parameters affected in the context of obesity. This was done first using an
unsupervised approach to isolate relevant metabolic parameters and eCBome mediators;
then regression models were constructed to predict a metabolic variable-response according
to a specific eCBome subset. The circulating levels of 25 endogenous bioactive lipids
belonging to the eCBome were quantified by LC-MS/MS in the plasma of overweight or
obese individuals newly diagnosed with a metabolic syndrome and prediabetes.

Our preliminary explorative approaches displayed associations between subsets of
eCBome mediators and the metabolic parameters leptin, non-esterified fatty acids (NEFA),
lipopolysaccharide-binding protein (LBP), and fat mass (FM). A subsequent principal



Cells 2021, 10, 71 3 of 19

component analysis (PCA) performed on the eCBome confirmed the existence of a global
link between the latter and those metabolic variables. Each variable response according
to a specific eCBome subset was then modeled and validated internally. As such, we
show that the predictive model constructed for NEFA response was performant enough
to be applied to new observations. In contrast, our analysis performed on leptin and LBP
failed to construct models for which the prediction error was acceptable when applied on
new observations. However, when modeling was performed in a descriptive approach,
our analyses suggested the importance of some specific mediators. Finally, analysis on
metabolic parameter-related quartiles confirmed that certain eCBome mediators, consid-
ered as important in the regression model, were significantly higher in subjects whose
levels of these variables were in the top quartiles.

While providing new insights into the complex interplay existing between metabolic
parameters and the eCBome in the context of the metabolic syndrome, this paper also
proposes an approach for methodological advances to better exploit information from
large-scale data sets.

2. Materials and Methods
2.1. Subject Characteristics

The biological samples used in the present study originated from the Microbes4U
cohort [21]. Individuals were recruited at the Cliniques Universitaires Saint-Luc in Brussels
between 2015 and 2018, the study has been approved by the local ethical committee on July
2015 (comité d’éthique hospitalo-facultaire UCLouvain, Cliniques Universitaires Saint-Luc)
under the number 2015/02JUL/369, and the study was registered at clinicaltrial.gov under
the number NCT02637115.

The cohort consists of 32 overweight or obese subjects (body mass index (BMI)
> 25 kg m2) newly diagnosed with a metabolic syndrome according to the National Choles-
terol Education Program Adult Treatment Panel III definition, that is, at least three of the
five following criteria: fasting glycemia > 100 mg dL−1; blood pressure ≥ 130/85 mmHg or
antihypertensive treatment; fasting triglyceridemia ≥ 150 mg dL−1; high-density lipopro-
tein (HDL) cholesterol < 40 mg dL−1 for men, <50 mg dL−1 for women; and/or waist
circumference > 102 cm for men, >88 cm for women. Subjects were also newly diagnosed
with a pre-diabetic state as well as an insulin sensitivity <75% [22,23] (HOMA Calculator,
University of Oxford, Oxford, UK). The subjects were naïve for medications influencing the
parameters of interest (glucose-lowering drugs such as metformin, DPP4 inhibitors, GLP-1
receptor agonists, acarbose, sulfonylureas, glinides, thiazolidinediones, sodium-glucose
cotransporter-2 inhibitors, insulin, lactulose, consumption of antibiotics in the previous
2 months before the inclusion, glucocorticoids, immunosuppressive agents, statins, fibrates,
orlistat, cholestyramine, or ezetimibe). Anthropometric measurements were assessed in-
cluding body weight (kg) and BMI (kg m−2). Waist and hip circumferences (cm) were
measured using a flexible tape. Fat mass (kg) was assessed using electric bioimpedance
analysis (Body Composition Analyzer, type BC-418 MA; TANITA).

2.2. Biochemical Analysis

Plasma samples were collected after an overnight fasting (8 h minimum). Different
tubes were used: sodium fluoride-coated tubes for Milliplex analysis; and lithium-heparin-
coated tubes for others analyses. One set of tubes was sent directly to the hospital laboratory
for several blood analyses: including HbA1c (%); total cholesterol and HDL cholesterol.
The other tubes were brought to the research laboratory and kept on ice. Plasma was
immediately isolated from whole blood by centrifugation at 4200× g for 10 min at 4 ◦C and
stored at −80 ◦C for further analyses.

Plasma NEFA were measured using kits coupling an enzymatic reaction with spec-
trophotometric detection of the reaction end products (Diasys Diagnostic and Systems,
Holzheim, Germany) according to the manufacturer’s instructions.

clinicaltrial.gov
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Plasma LBP levels were measured using an appropriate ELISA kit (Human LBP
ELISA kit, Hycult Biotech, Uden, The Netherlands, catalog no. HK315) according to the
manufacturer’s instructions.

Plasma leptin levels were assessed in each blood sample in duplicate using a MIL-
LIPLEX MAP Human Metabolic Hormone Magnetic Bead Panel and measured using
Luminex technology (BioPlex; Bio-Rad Laboratories, Hercules, CA, USA) according to the
manufacturer’s instructions.

The extraction of MAGs and NAEs in plasma was done as described previously [24].
In brief, samples were mixed with TRIS (pH 7.4, 50 mM) to a final volume of 500 µL.
Toluene (2 mL) containing the ISTD was next added to the samples, which were vortexed
for 1 min and centrifuged at 4000× g for 5 min without brakes. Samples were then put
in an ethanol-dry-ice bath (−80 ◦C) to freeze the aqueous phase (bottom). The organic
phase (top) was then collected and evaporated to dryness under a stream of nitrogen.
Samples were reconstituted in 25 µL of HPLC solvent A (water with 0.05% acetic acid
and 1 mM NH4+) and 25 µL of solvent B (acetonitrile/water, 95/5, v/v, with 0.05% acetic
acid and 1 mM NH4+). A 40 µL aliquot was injected onto an RP-HPLC column (Kinetex
C8, 150 mm × 2.1 mm, 2.6 µm, Phenomenex). Quantification was achieved using a
Shimadzu 8050 triple quadrupole mass spectrometer using the same LC program as
described previously [25]. For the MAGs containing unsaturated fatty acids, the data are
presented as 2-MAGs although it represents the combination of 1(3)- and 2-isomers given
the recognized acyl migration from the sn-2- to the sn-1 or sn-3 position.

Abbreviations used for the eCB system mediators and metabolic parameters present
in this paper, are presented in Table 1. Between parentheses are abbreviations that were
used in graphical outputs

Table 1. Endocannabinoids and metabolic parameters abbreviations.

Endocannabinoids Metabolic Parameters

AEA N-arachidonoyl-ethanolamine FM fat mass
2-AG (AG12) 1(3)- and 2-arachidonoyl-glycerol HbA1c glycated hemoglobin A1c

DHEA N-docosahexanoyl-ethanolamine LBP lipopolysaccharide-binding protein
DHA docosahexaenoic acid LDL low density lipoprotein

2-DHG (DHA12) 1(3)- and 2-docosahexaenoyl-glycerol NEFA non-esterified fatty acids
2-DPG (DPAG12) 1(3)- and 2-docospentaenoyl-glycerol(n-3) TC total cholesterol

DPEA N-docosapentaenoyl-ethanolamine(n-3) T.H total/HDL cholesterol
DPA docosapentaenoic acid (n-3)
EPA eicosapentaenoic acid

EPEA N-eicosapentaenoyl-ethanolamine
LEA N-linoleoyl-ethanolamine

2-LG (LG12) 1(3)- and 2-linoleoyl-glycerol
OEA N-oleoyl-ethanolamine

2-OG (OG12) 1(3)- and 2-oleoylglycerol
PEA N-palmitoyl-ethanolamine
SEA N-stearoyl-ethanolamine

2.3. Explorative Multivariate Approaches

Regularized Canonical Correlation Analysis (rCCA), implemented in MixOmics pack-
age (version 6.10.9, Bioconductor 3.12, University of Melbourne, Australia, University of
Queensland, Brisbane and Université Paul Sabatier, Toulouse, France) [26] was used for a
preliminary exploratory process to unravel potential links between two sets of data (i.e.,
metabolic parameters and eCB-related mediators). CCA allows to explore correlations
between two sets of quantitative variables observed on the same subjects. More specif-
ically, the statistical method maximizes the correlation between a linear combination of
variables of the first set (metabolic parameters) and a linear combination of variables of
the second set (eCB) [27]. An additional regularization step is included to deal with the
high dimensionality problem [28]. rCCA was carried-out using the shrinkage method to
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estimate penalization parameters and r-coefficients were calculated between the first and
second components. The rCCA-network is produced by calculating a pair-wise similarity
matrix obtained from the latent components. Specifically, the sum of the correlations
between the variables and each canonical variate was calculated. This allows to obtain a
similarity value between each pair of variables [29]. To facilitate clarity, and to select the
relevant variables for further analysis, cut-off values of 0.5 and of 0.55 were used for the
circle plot and the network plot, respectively. A Spearman’s correlation matrix was then
built using the variable revealed by the rCCA circle plot. To control type I error rate, the
Holm’s adjustment was used. Following standardization, principal components analysis
(PCA) on the measured eCB-related mediators was performed using the “factoextra” and
“factoMinerR” packages (version 1.0.7 and 2.3, respectively). The color of the sample dots
in the individual plot was set according to the concentration of the metabolic variable of
interest. Linear regressions were then built between each metabolic variable of interest
and the two first principal components summarizing the highest variance in the eCBome
using the formula lm(variable~PC), the corresponding plots were constructed using the R
package “ggplot2” (version 3.3.2). All statistical analyses were performed on RStudio (R
version 3.6.3, Rstudio Team, Boston, MA, USA).

2.4. Variable-Response Modeling and Construction of Predictive Model

Regressions models were constructed on 100% of the observation (n = 32) to quantify
NEFA, leptin, and LBP response according to a linear combination of the eCBs revealed
by the rCCA. All models were built using either principal component regression (PCR)
or partial least square regression (PLSR). Although these methods are slightly different,
PCR and PLSR are both dimension reduction methods used to model a response variable
when there are numerous potent predictors variables. In those regression models, the
metabolic parameter was defined as the response variable and the subset of eCBs as the
predictors. The importance of each predictor in the non-cross-validated quantitative model
was assessed through estimation of the loading weight (lw), the significance multivariate
correlation (smc), the selectivity ratio (sr), and variable importance in projections (vip). For
each variable-response modeling, we compared the performance of PCR and PLSR and
the final analytical method was chosen accordingly. Model performance was evaluated
using the coefficient of determination (R2), the adjusted R2 which corrects the R2 for the
number of observations and the number of predictors, and the root-mean-square error of
prediction (RMSEP). For each model, the optimal number of components was assessed to
capture the maximal variance for both the predictors and the variable to predict with a
minimal number of components.

For internal validation of our models in a predictive approach, the dataset (n = 32) was
randomly divided into a train set (80% of the full data set; n = 26) and a validation/test set
(20% of the remaining observations; n = 6) using the “Caret” package in RStudio (Rstudio
Team, Boston, USA) (version 6.0-86). The model was constructed on the train data and the
model performance was thereafter verified using the test set. Data were normalized using
standardization procedure. Models were constructed using the “pls” package (version
6.7-3). Leave-one-out cross-validation method was used to select the optimal number of
PLS and PCR components and for internal validation of the models. For the cross-validated
model, we performed approximate t-tests of regression coefficients based on jackknife
variance estimates (jack test) to assess the statistical significance of the eCB predictors.

2.5. Univariate Analysis

For univariate analysis, selected metabolic parameters were categorized using quar-
tiles. This creates three new data frames, with a supplemental column, in which the
adherence of an individual to one of the quartiles was specified. For each metabolic pa-
rameter, a difference in the distributions of the concentrations of relevant eCBs, selected on
the basis of the previous multivariate analysis, was assessed and visualized by boxplots.
Kruskal–Wallis analysis or ANOVA was used to compare the eCB concentrations between



Cells 2021, 10, 71 6 of 19

the new categorical groups. The aforementioned statistical tests were chosen in accordance
with normality tests. All statistical analyses were performed in RStudio (R version 3.6.3).

3. Results
3.1. Unsupervised Exploratory Approaches to Unravel an Association between the eCB System and
Certain Metabolic Parameters

To explore the interplay between mediators belonging to the circulating eCBome and
biological parameters altered in the context of metabolic syndrome, we started our analysis
by performing a CCA. CCA is a multivariate analytical method that enables the integration
of two data sets in an unsupervised framework [20]. By maximizing the correlation between
two respective linear combinations of the variables (called canonical variates), CCA can
provide additional insights that could not be obtained by analyzing each pair of data alone.
The metabolic variables included in the first data set cover glycemic, lipid, inflammatory,
cardiometabolic, and anthropometric parameters. The second data set consists of the
25 eCB system-related mediators measured in the plasma. Given that the inclusion of
metabolic variable in the analysis, in addition to the eCB, resulted in having more variables
than observations, we regularized our CCA [28]. The graphical outputs of rCCA include a
correlation circle plot (Figure 1A) and a relevance network (Figure 1B). In the circle plot,
the variables are represented as vectors and the plot only shows the variables that correlate
the most with each canonical variate. The nature of the correlation between two variables is
visualized through the angles between two vectors. Accordingly, variables that correlated
positively are projected on the circle plot close to each other, while variables that correlated
negatively are projected in opposite direction [30]. The network displays graphically the
strongest relationship between metabolic variables and eCBome mediators [30]. Both the
circle and the networks generated with this exploratory analysis revealed the existence of a
potential link between a specific subset of eCBome related mediators and the biological
parameters leptin, NEFA, LBP, and FM (Figure 1A,B). Importantly, both graphical outputs
are useful to help selecting the relevant variable (i.e., variables that correlated the most with
the canonical variates). While the correlation matrix constructed on all the variables from
our original data set would have been difficult to read, legibility was achieved by including
only the variables revealed by the rCCA. Analysis of the Spearman’s rank correlation
matrix confirmed the existence of a link between certain eCB-related mediators and leptin,
LBP, and NEFA. In detail, the matrix showed that leptin was positively correlated to
DHEA; NEFA was positively correlated to AEA, EPEA, and OEA, while LBP was positively
correlated to AEA. Note that, probably as a result of the statistical constraints imposed and
necessary for the veracity of the correlation matrix, no correlation was found regarding fat
mass. This highlights the added value of combining different multivariate analysis as a
first approach to explore the relationship between two data sets. The rCCA highlights more
potential predictors than the correlation matrix. Finally, both approaches demonstrate
strong collinear relationships between lipids belonging to the eCBome (Figure 1A,C), as
it could have been predicted considering their metabolic relationships. In the following
sections, we decided to focus our analysis on the links between the eCBome and the four
metabolic variables, LBP, leptin, FM, and NEFA.

3.2. Linear Regression with Principal Components Analysis

To further explore the correlation existing between the selected metabolic features
and the eCBome in our cohort, we performed a PCA on the whole quantified eCB data set.
Like rCCA, PCA is an unsupervised multivariate dimension reduction technique. PCA
constructs linear combinations of the different variables to identify the largest sources of
variance in the data. It is then possible to realize two respective linear regressions between
the two first principal components, accounting for most of the variance in the eCBome, and
the metabolic parameter of interest. In other words, the variable to explain is the metabolic
parameter and the predictor is one of the first two components obtained from the PCA.
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Figure 1. Unsupervised exploration of the relationship between measured eCB system-related mediators and biological
parameters using regularized canonical correlation (rCCA) and correlation matrix. (A) Correlation circle plot allocating
biological parameters and eCBome features along the main components derived from the integration of both data sets.
The components correspond to the equiangular vector between x- and y-variates. The features in the area outside the
inner concentric circle (radius < 0.5) were retained as significant and shown in the scatter plot. (B) Relevance network of
top correlations between biological parameters (circles) and eCBome lipids (rectangles) with a cut-off = 0.55. Lines are
colored according to the strength of the association score between two variables with red showing positive correlations.
(C) Correlation matrix (Spearman with Holm’s adjustment); positive correlations are displayed in blue and negative
correlations in red color. The color intensity and the size of the circle are proportional to the correlation coefficients. “X” refers
to the first data set, the metabolic biological parameters while “Y” refers to the second data set, the endocannabinoids.
Abbreviations: see Table 1.

This method is equivalent to the PCR which enables to cope with the multicollinearity
issue at play, since the predictors in the linear regression were highly correlated with
each other in the original data set (Figure 1C). The first principal component accounts
for 49.8% of the overall variability in the quantified eCBome, while the second principal
component explains 19.3% of it. The PCA generates an individual plot displaying the
variability across individuals (Figure 2A). The four graphics only differ by the color of the
individual dots. Indeed, dots color intensity was established to be the direct representation
of the metabolic variable concentration measured in each participant. We observed that,
for NEFAs and leptin, the color gradient follows the dimension 1 of the PCA. This suggests
that individuals with a higher amount of leptin/NEFA are also characterized by a higher
tone of eCBome mediators. This hypothesis was confirmed by linear regressions performed
between each metabolic parameter and the first principal component that summarizes
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best the variance in the whole quantified eCBome (Figure 2B). More specifically, there are
linear, positive, and significant relationships between NEFA, leptin, LBP, FM, and the first
principal component (NEFA: R2 = 0.63, pv = 7.12 × 10−8; leptin: R2 = 0.27, pv = 0.0023;
LBP: R2 = 0.15, pv = 0.027; FM: R2 = 0.17, pv = 0.018) (Figure 2B). Furthermore, there
is a linear, negative, and significant relationship between LBP and the second principal
component (R2 = 0.17, pv = 0.016) (Figure 2C). In the view of those results and given that
no correlation was found for FM in the correlation matrix and few in the network, we next
decided to focus our analysis on the three metabolic variables, LBP, leptin, and NEFA.
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components and the referred variable. (C) Scatterplots showing the linear relation between second principal components
and the metabolic variable. The confidence interval is displayed in grey around the mean. (B,C) Each linear regression plot
is accompanied by the R square, the p value and the coefficient of correlation (Pearson). Abbreviations: see Table 1.
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3.3. Modeling Variable Response According to Selected eCBs and Construction of
Predictive Models

Starting from the mathematical principle that it is never in favor of the model to intro-
duce too many predictors because this increases the risk of taking into account variables
that do not help in the construction of the model but rather brings the reverse noise while
reducing the adjusted R2, we seek to reduce the number of predictors. As a matter of
fact, our preliminary exploratory analysis revealed—for each of the selected metabolic
parameters—a close association with a specific subset of eCBome-related mediators. We
then wondered whether a specific linear combination of this subset of eCBs and eCB-like
mediators could predict variable response for leptin, NEFA, and LBP within our cohort in
a descriptive approach. We then reconstructed the model with cross-validation and tested
whether the model was efficient enough to predict variable response in new observations,
in a predictive approach. Finally, for each of those models, we isolated the eCBome me-
diators that most influenced the model. For this step, we tested two different dimension
reduction methods amenable with regression, the PCR and PLSR. Both methods are ef-
ficient to overcome multicollinearity issues because the new regressors variable become
orthogonal to one another. For each variable, the model resulting in the best predictive and
descriptive performance will be presented. Importantly, the subsequent search for relevant
predictors in our models highlighted variables that were not previously revealed by the
Spearman’s correlation matrix.

3.3.1. NEFA Response Modeling

The best performance was obtained with PLSR, for which the first four components
explained 91% of the variance in the eCBome while explaining 91% of NEFA variance. The
non-cross-validated model had an adjusted R2 of 0.86 and an RMSEP of 0.30.

The cross-validated regression model constructed on all observations with four com-
ponents had an R2 of 0.74, an adjusted R2 for the number of predictors of 0.60, and a
RMSEP of 0.49. For our predictive approach, we performed leave-on-out cross validation
on our model built on 80% of our sample, called the training set. Cross-validation is an
important step to avoid overfitting the model if the finality is to build one that would have
performance in predicting specific variable-response according to chosen predictors from
new samples, called the test data (20% remaining observations). The model built of the
training set was characterized by an R2 of 0.79, an RMSEP of 0.398, and an adjusted R2

of 0.63 (Figure 3A). Once the model is built, it is important to test if applying this model
on the new samples, independent from the training set, allow to predict leptin in those
samples. As we actually know the concentration of leptin of these samples, because they
are the remaining 20% of the data set, we can estimate whether the original model has a
good predictive performance. When the model was applied to the test data the R2 is 0.89
(Figure 3B), which is close from the train data R2 and the RMSEP was 0.75, which is accept-
able given the number of observations used to construct the model. This result suggests
that our model is performant enough to predict with approximate accuracy the NEFA
from new samples according to the select eCBome profile. Once the model was validated,
we asked our self which are predictors influencing the most the model. These analyses
were performed using all the observations (n = 32), in order to take advantage of all of
our biological resources, but still of the reduced ECB-subset. The jack test performed on
the cross-validated model including all the observations showed that the most influential
eCB-related entities were DHEA, AEA, DPEA, OEA, and SEA, among these mediators,
AEA had the largest positive influence on NEFA and DPEA the largest negative influence
on NEFA (Table 2).
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Figure 3. Modeling and validation of variable response according to a selected subset of the eCBome. (A,B) PLSR correlation
plot between predicted and measured NEFA levels according to the selected eCBome mediator subset, illustrating the
predictive quality of NEFA in the (A) training group (n = 26) and (B) the test group (n = 6). (C) PLSR correlation plot
between predicted and measured leptin according to the selected eCBome mediator subset, constructed on all observations
without cross-validation (n = 32). (D) Scale plot illustrating the lw, rc, smc, sr and vip for each of the eCBome predictors in
the variable-response prediction model. (E) PLSR correlation plot between predicted and measured LBP according to the
selected eCBs mediator subset, construct on all observations without cross-validation (n = 32). (F) Scale plot illustrating the
lw, rc, smc, sr, and vip for each of the eCBs predictors in the variable-response prediction model. (A,C,E) The black line
illustrated a perfect correlation (R2 = 1), the red line showed the measured correlation (five components for NEFA, four
components for leptin, three components for LBP). (D,F) Color legend: red = smc (significance multivariate correlation);
dark green = vip (variable importance in projections); light green = sr (selectivity ratio); dark blue = lw (loading weight);
light blue = rc (regression coefficient). Abbreviations: see Table 1.
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Table 2. Jack test results table showing the PLS regression coefficients using four components for
the cross-validated NEFA prediction model constructed from all observations (n = 32) and using the
reduced ECB-subset as predictors.

Predictors Estimate Std Error T Value Pr(>|t|) *

PEA 0.049287 0.203249 0.2425 0.809993
SEA −0.575454 0.274860 −2.0936 0.044567 *
OEA 0.597778 0.267343 2.2360 0.032689 *
LEA −0.139934 0.267431 −0.5233 0.604519
AEA 0.898707 0.201773 4.4541 0.000102 ***
EPEA 0.494766 0.264972 1.8672 0.071350
DPEA −0.625028 0.221271 −2.8247 0.008202 **
DHEA −0.371274 0.177796 −2.1687 0.037895 *
DPA −0.020114 0.206108 −0.0976 0.922886
EPA 0.271866 0.217275 1.2513 0.220202
DHA 0.200733 0.182672 1.0989 0.280285

Abbreviations: see Table 1. * p < 0.01; ** p < 0.001; *** p < 0.000.

3.3.2. Leptin Response Modeling

The best performance was obtained with PLSR, for which the first three components
captured 93% of the variation in the predictors and 40% of leptin variation. The non-cross-
validated model had an R2 of 0.42, an adjusted R2 of 0.18 and RMSEP of 0.75 (Figure 3C).
Cross-validated analysis on 80% of the observations failed to construct a model performant
enough to predict leptin levels in new samples originating from the same population and
according to the profile of eCBome mediators selected (Figure S1A,B).

Nevertheless, the construction of a linear model on all observations in a descriptive
approach allows for the isolation of some relevant eCBome mediators for our specific
cohort: EPA, DPA, EPEA, and DHEA were important drivers of leptin response (Figure 3D).
Subsequent whole cross-validated modeling with a reduced number of predictors, selected
on the basis of the rCCA-output, showed that the coefficient of regression for both DHEA
and EPEA was significantly different from 0, following jack test (Figure S1C), suggesting
their relevance in predicting leptin response in our cohort.

3.3.3. LBP Response Modeling

The best performance was obtained with PLSR, for which the first three components
explained 88% of the variance in the eCBome mediators while explaining 59% of LBP
variance. When we built up a cross-validated model with PLSR using 1 component to
predict the LBP response according to the eCBome mediators selected from the exploratory
analysis, the R2 of the model was 0.25, the adjusted R2 0.03, which is equivalent to 0, and
the error was 0.85 which is high (Figure S2). This regression model was not performant
enough to allow prediction of LBP from new observations, and therefore, was unable to
generalize the variable response for the other cohort. Although we could not construct
a predictive model, we seek to isolate the eCBs that influence the most the LBP response
within our cohort. For this, the 32 observations were used to extract as much as information.
The regression model built in a descriptive approach without performing cross-validation
had a prediction error of 0.63, a R2 of 0.59 and an adjusted R2 of 0.47 (Figure 3E), meaning
that we could estimate the value of LBP from our specific cohort according to the value
of the selected eCBs. In this non cross-validated model, the most relevant eCBs variables
according to the filter methods used for variable selection were DPEA, AEA, and EPEA in
our cohort (Figure 3F).

3.4. Univariate Analysis on Quartiles

In three independent analyses, our entire data set was split into four groups according
to the quartiles of the distribution of the metabolic variable of interest, thus converting
the continuous variables into categorical variables using quartiles. We then measured the
distribution of the relevant eCBome mediators, revealed upon multivariate analyses, in
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each of those new groups, and assessed whether the groups were statistically different from
each other using univariate statistical tests. When observations were split according to
NEFA quartiles, ANOVA analysis showed that the fourth quartile group had significantly
higher DHEA levels compared to quartile one (Figure 4C). Kruskal–Wallis analysis showed
that the fourth quartile group had significantly higher AEA and OEA levels compared to
quartiles 1 and 2 (Figure 4A,B). No significant results were found for DPEA and SEA (data
not shown). When observations were split according to leptin quartiles, individuals in the
upper quartiles had significantly higher levels of DHEA and EPEA, when compared to
those in the lower quartiles (Figure 4E,F). Comparison of the groups for EPA following
Kruskal–Wallis test showed that the third quartile group had significantly higher EPA levels
compared to quartile 1 (Figure 4D). No significant difference in levels were found for DPEA
(data not shown). When observations were split according to BP quartiles, individuals in
the upper quartiles had significantly higher levels of EPEA, AEA, and DPEA (Figure 4G–I).
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Figure 4. Univariate tests on quartiles. The number 1 corresponds to the lower quartile, while the
number 4 corresponds to the upper quartile. (A,B) Boxplots of the concentration of (A) OEA, (B) AEA,
(C) DHEA, according to NEFA quartiles. (D–F) Boxplots of the concentration of (D) EPA, (E) EPEA,
(F) DHEA, according to leptin quartiles. (G–I) Boxplots of the concentration of (G) AEA, (H) EPEA,
(I) DPEA, according to LBP quartiles. Data with different superscript letters are significantly different
at p < 0.05, according to the post-hoc ANOVA statistical analysis (C,F), or Kruskal-Wallis multiple
comparisons test (A,B,D,E,G–I). Abbreviations: see Table 1.
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4. Discussion

Obesity and ensuing metabolic disorders are becoming epidemic. In the healthy state,
as well as in any pathological condition, viewing all biological entities as part of an entire
biological system is crucial to better understanding the complexity of organisms and the
etiology of a disease. In this context, the eCBome is a relevant system to study. The eCBome
is a complex lipid-signaling system composed of tens of bioactive lipid mediators related
to eCBs, their membranes and nuclear receptors, as well as anabolic and catabolic enzymes,
and includes the eCB system [8].

Increasing evidence suggests that physiological functions such as energy balance, appetite,
and glucose/lipid metabolism are partially under the regulation of the eCBome [7,12,31,32].
Accordingly, the contribution of a dysregulation in the eCBome was highlighted in a number of
pathological conditions and related complications, such as type 2 diabetes, fatty liver disease,
obesity, and certain neurological disorders [4,8,33,34]. The study of this system is, therefore,
necessary to better understand the mechanisms underlying such metabolic disorders.

The amount of biological data produced by high-throughput technologies across the
whole spectrum of biology is substantial. In parallel, dimension reduction methods are
promising approaches for data integration [19]. While offering both novel opportunities and
challenges to unravel multifactorial diseases such as obesity, and identify new therapeutic
perspectives, these techniques also raise questions regarding how to use them to draw
meaningful biological conclusions.

Initially, we had a large volume of data, both in terms of the eCBome, and in terms
of metabolic parameters of heterogeneous nature. Most of the lipids associated with the
eCBome have been characterized, but only a limited number of studies have documented
or explored this system in a comprehensive picture at a system biology level in the context
of obesity. Accordingly, our study aimed at identifying new specific dialogue features in
the cross-talk between eCB congeners and metabolic parameters in obese or overweight
individuals with prediabetes and metabolic syndrome. Seeking for such relationships
naturally led us to consider the correlation matrix in our analytical approach. However,
being a bivariate method, the matrix only analyzes one pair of variables at a time, ignoring
the others. Moreover, reading the matrices becomes complicated when a large number of
variables is involved. Unlike univariate analysis, multivariate analysis brings together a set
of statistical methods that take into account several data variables at the same time. Thus,
these statistical methods can examine more complex interplays and find new data patterns
more accurately representative of biological systems [35].

In order to reconcile, at the same time, the need to isolate relevant variables, and to
take into account all the data as part of a whole, and thus, examine the interactions existing
between them, we performed a preliminary rCCA. As a reminder, CCA is an integrative
analysis is an unsupervised method seeking for the largest correlation existing between a
linear combination of the variables in the first set and a linear combination of the variables
in the second set [27]. In this way, rCCA is an interesting extension to the correlation
matrix and can provide additional insights that would not be obtained by performing
univariate analysis, or by analyzing each data set alone [27]. The graphical examination of
the relationships through both rCCA-derived circle plot and network showed that specific
subsets of the eCBome were associated with several metabolic parameters, including leptin,
NEFA, LBP, and FM. Importantly, these four variables, although of heterogeneous nature,
are known to be altered upwards in obesity. It is worth noting that results for FM are
consistent with previous studies showing that fat distribution is an important determinant
of peripheral eCBome mediator levels [11,36–38].

Importantly, following selection of the relevant variables, the subsequent Spearman’s
correlation matrix further corroborated the existence of a general correlation between leptin,
NEFA, and LBP and several eCB congeners. Thus, our analyses not only highlighted the
importance of using a preliminary exploratory analysis to reduce the dataset, but also
illustrated the added value of combining both multivariate and univariate approaches.
Finally, both univariate and multivariate approaches demonstrate collinearity between



Cells 2021, 10, 71 14 of 19

NAE and between MAGs, consistent with the fact that within each eCB related-family,
mediators share biosynthetic and catabolic pathways and enzymes [5].

By definition, the rCCA is explorative, meaning that the above analyses opened doors
for more in-depth investigations but did not statistically assess whether the correlations
between the biological variables and eCB congeners are significant. Thus, to confirm
our assumptions we performed a PCA on plasma eCBome-related mediators. In this
way, we extracted the first two linear relationships that best explained the variance across
the quantified eCBome. Using the PCR principle, we correlated those components with
the metabolic variables highlighted by rCCA. Our analyses showed positive associations
between the first components and the variables leptin, NEFA, LBP, and FM.

Next, we modeled and validated variable responses through multiple linear regression.
For this, either PCR or PLSR were performed and predictors selected on the basis of the
network generated in the rCCA. We performed cross-validation when we wanted to go
beyond descriptive analyses. From a methodological point of view, our results aligned
with the literature, showing that PLSR often outperformed PCR in terms of predictive
power, notably due to its supervised nature [39,40]. Finally, our analyses also highlighted
the importance of cross-validating the model to avoid overfitting in a predictive approach.

Regarding NEFA, the prediction model built on 80% of the observations by PLSR
was performant enough to predict with approximate accuracy the NEFA levels from the
remaining samples according to the selected eCBome profile. Although very interesting,
our validation is limited by its internal characteristic. Thus, we should ideally confirm
these results upon external validation. By analyzing the importance of each predictor for
the explanation of NEFA-responses, we isolated SEA, OEA, AEA, DPEA, and DHEA as
important predictors. Among them, AEA had the largest positive influence, while DPEA
had the largest negative influence on NEFA levels.

From a biological point of view, NEFA, are circulating protein-bound lipids and repre-
sent an important energy fuel, some of them also having cellular signaling function [41].
They either originate from intestinal absorption of dietary fats or from the adipose tissue
through lipolysis. Importantly, lipolysis is accentuated upon insulin resistance which
results in higher levels of circulating NEFAs, which can subsequently reach target organs
such as the liver or skeletal muscle, increasing NEFA fluxes to these organs [42]. High NEFA
levels are a marker of altered lipid metabolism and represent a common feature of obesity-
related conditions [43]. PCA analysis showed that individuals with higher NEFA levels
had higher eCBome tone. In a more targeted approach, analysis of quartiles showed that
these individuals had significantly higher levels of OEA, AEA, and DHEA. Interestingly,
OEA was previously shown to exert pro-lipolytic effects both in vivo and in vitro, notably
via the activation of PPAR α [44–46]. In view of our results and given that no data in the
literature yet exist to invalidate our assumption, we postulate that DHEA might exert
pro-lipolytic effects such as OEA. Finally, our data regarding the CB1-ligand AEA, might
appear as unexpected as the literature shows that it has pro-lipogenic properties in the
adipose tissue and in the liver, promoting fat accumulation, notably through the activation
of CB1 and PPARG [47–49]. However, a previous study demonstrated a clear correlation
between plasma free fatty acids and AEA levels regardless of the fasting state in healthy
women [50]. Further studies are needed to find out whether or not this relationship, specific
of the blood compartment, is a direct reflection of AEA concentrations within metabolic
tissues. Furthermore, we cannot exclude that the direction of the relationships might vary
alongside disease progression.

Regarding leptin, at completion of PCR and PLSR analyses, we concluded that our
prediction model had a limited performance to predict leptin using a reduced eCBome
profile. In more details, after several adjustments, it appeared essential to reduce the
number of predictors, and the final model only included the eCBome members AEA, OEA,
DHEA, and EPEA, which were notably revealed by the rCCA. The unsupervised PCR
approaches showed that these four variables alone explained 37% of the variations in leptin
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values in our cohort. Nevertheless, under cross-validation, the performance of the model
decreased to 20%, and 10% when R2 was adjusted for the number of predictors.

However, the PCA carried out on the quantified eCBome showed a positive and
significant correlation between leptin and the first principal components (i.e., the one
summarizing as much as possible the variance in our eCBome). Furthermore, if a color
code, corresponding to the levels of leptin, was applied to each observation, the variable
plot showed a gradation of leptin following that of dimension one. As the coefficient of
the first component was positive, we can conclude that a stronger eCBome tone would be
associated with higher leptin levels. Finally, the PCR analyses, the rCCA, and the correlation
matrix all converged to indicate a strong correlation between leptin and both DHEA and
EPEA. These eCB congeners were further investigated by quartiles analyses. Our data
confirmed that individuals in the upper quartiles had significantly higher levels of DHEA
and EPEA, when compared to those in the lower quartiles. This result was unprecedented,
and yet not completely surprising in view of the fact that high leptin levels are a biomarker
of obesity, and hence systemic inflammation, which can also be exacerbated by excessive
leptin (reviewed in [51]). By contrast, EPEA and, particularly, DHEA are known to be
anti-inflammatory mediators, and their levels may be increased as an adaptive response to
this condition [52–54]. Under more physiological conditions, leptin is a satiety hormone,
controlling food intake centrally [55]. Previous studies have demonstrated in mice that this
hormone negatively regulates the hypothalamic biosynthesis of orexigenic eCBs (i.e., AEA
and 2-AG), thus further contributing to appetite inhibition [56,57]. Accordingly, reduced
leptin sensitivity might subsequently lead to higher levels of AEA, which one recent report
showed to be positively correlated to other NAEs, including EPEA and DHEA, using PCA
in a heterogeneous population [11]. However, we did not have a healthy control group
to confirm the occurrence of leptin resistance in our obese patients. In summary, further
studies are needed to confirm our assumptions on the cross-talk between eCB congeners
and leptin.

Regarding our analysis of the LBP response, the cross-validated analysis performed on
all observations produced a predictive model with an R2 close to 0. Accordingly, we were
unable to explore the relationship in a predictive approach. As such, we failed to construct
a model performant enough to predict LBP levels in new samples originating from the
same population according to the eCBome profile selected. Nevertheless, the construction
of a linear model including all observations in the framework of a descriptive approach
allowed us to isolate some relevant eCBome mediators for our specific cohort—i.e., DPEA,
EPEA, and AEA—as important drivers of LBP levels in our specific cohort.

From a biological point of view, LBP is a surrogate marker of endotoxin translocation
and, thus, is viewed as a marker of chronic systemic inflammation. Accordingly, its
serum concentration have been shown to be strongly correlated with obesity-associated
metabolic disorders [58–61]. Interestingly, the mediators found to be significantly higher in
individuals from the upper LBP quartiles (i.e., DPEA, EPEA, and to some extent, AEA),
have been reported to exert anti-inflammatory effects [52,62–64]. Therefore, this finding
corroborates our above hypothesis that such mediators are elevated in the blood as an
adaptive response aiming at counteracting inflammation. However, CB1 activation by
eCBs such as AEA can also exacerbate inflammation [65,66].

In terms of perspective, it would be interesting to apply similar methodological
approaches in other cohorts to explore the cross-talks between eCB-related bioactive lipids
and metabolic parameters in other metabolic diseases such as type 2 diabetes or non-
alcoholic fatty liver disease. Above all, it would be important to compare our results with
those in a healthy population to verify if the relationships highlighted in this study are
specific for the characteristics of our cohort. Finally, a recent report confirmed that some
gut bacteria are associated with variation in eCB congeners, independently from adiposity
measures [11]. Thus, it would be interesting to see if probiotic treatments of individuals
with the metabolic syndrome strengthens the correlations observed here. Finally, given
the relatively small number of subjects within the analyzed cohort, we acknowledge that
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replicating our findings on larger cohorts will be helpful to further extend and validate the
novel methods proposed in this study.

In conclusion, the unsupervised methods used in this study (rCCA, PCA) high-
lighted/revealed the existence of an association between the eCBome and specific metabolic
biological parameters (i.e., Leptin, NEFA, and LBP), while multiple linear regression us-
ing PCR and ¨PLSR extended our findings to identify relevant eCBome mediators that
might greatly influence metabolic variable response. Interestingly, the selected metabolic
parameters are part of biological pathways that are markedly altered in the context of the
metabolic syndrome. Beyond its primary objective of describing a dataset and finding
new potential links, this paper experimented a methodological approach based on the
conjunction of several multivariate approaches. Our manuscript thus highlights the value
of combining these different approaches to univariate methods in order to unravel specific
cross-talks between two large datasets. Our methodological study finds its main limitation
in the number of subjects, which may have limited the construction of a predictive model.
Nevertheless, our data ultimately support the importance of cross-validation to avoid
overfitting and, thus, generalizing models, whose validation is specific to a given cohort.
Pending confirmation from larger studies, our results find their interest in opening new
avenues to further exploring how the eCBome affects the organism in the context of obesity.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
409/10/1/71/s1. Figure S1: Attempt to construct a variable-response predictive model for leptin
according to ECBs subset, Figure S2: Attempt to construct a variable-response cross-validated model
for LBP according to ECBs subset.
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