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ABSTRACT: Unconcatenated ring polymers in concentrated solutions and melt
are remarkably well described as double-folded conformations on randomly
branched primitive trees. This picture though contrasts recent evidence for
extensive intermingling between close-by rings in the form of long-lived
topological constraints or threadings. Here, we employ the concept of ring
minimal surface to quantify the extent of threadings in polymer solutions of the
double-folded rings vs rings in equilibrated molecular dynamics computer
simulations. Our results show that the double-folded ring polymers are
significantly less threaded compared to their counterparts at equilibrium. Second,
threadings form through a slow process whose characteristic time-scale is of the
same order of magnitude as that of the diffusion of the rings in solution. These
findings are robust, being based on universal (model-independent) observables as the average fraction of threaded length or the
total penetrations between close-by rings and the corresponding distribution functions.

Concentrated solutions and melts of unconcatenated and
unknotted ring polymers have stimulated intensive

theoretical1−20 and experimental21−27 work in the past years.
Under high concentrations rings challenge most of the

peculiarities characterizing the more familiar case of solutions
of linear chains. First, spatial constraints arising from global
topological invariance and the consequential departure4 from
the Flory-like mechanism28−30 for compensation of excluded
volume effects imply that the average ring size or gyration
radius, Rg, scales in the limit of large polymer mass or contour
length, Lc, like

11,12 Rg ∼ Lc
1/3, while for linear chains28−30 Rg ∼

Lc
1/2. Second, the absence of free ends implies that rings do not

relax via common reptation which is, instead, the dominating
mechanism for linear chains.28−30 Consequently, stress
relaxation in ring solutions decays as a power-law21 with no
sign of the rubber-like plateau of linear melts.29,30

Substantial theoretical progress was made back in the ‘80s,
when Khokhlov and Nechaev1 and Rubinstein31 mapped the
problem of rings in entangled solutions to the one of a single
ring in an array of fixed obstacles to which it is not
topologically linked. In the latter conditions, rings should
adopt double-folded conformations on randomly branching
primitive trees.1,31 Recently,11 explicit numerical mapping of
ring polymers in solution to randomly branched structures has
demonstrated that relevant properties such as the polymer
gyration radius or contact frequencies can be accurately
reproduced. Further theoretical and numerical investiga-
tions12,15,18,32 also support the “rings/branched polymers”
analogy.

This successful picture is challenged in recent works33

showing that mutually exposed surfaces between neighbor
rings form long-lived topological constraints, commonly
known as threadings.17,20,34,35 Absent in systems of linear
chains, threadings are responsible for the observed glassy
behavior of ring solutions under pinning perturbations.17,20,36

Conversely, being relaxed only up to the entanglement scale
(Section IA in SI), ring polymers folding into branched
structures display little interpenetration with close-by neigh-
bors.
To shed light on this apparent conflict, in this Letter we

quantify the extent of threadings between distinct pairs of
unconcatenated rings in solution and melt by employing the
concept of ring minimal surface (Figure 1(A), top), which was
recently10,33 applied to detect threadings in melts of rings.
Specifically, a ring is defined as “threaded” by another ring if its
minimal surface is crossed by the other ring (Figure 1(A),
bottom). Here we investigate only two-ring threadings;
therefore, self-threadings are ignored. Numerical construction
of minimal surfaces has been performed in turn for: (1)
double-folded ring polymers on interacting randomly branched
primitive trees11 (IBP model) (for details, see Sec. IA in
Supporting Information (SI)) and (2) rings in solutions
equilibrated through large-scale, brute-force molecular dynam-
ics (MD) computer simulations. As for the latter, two
microscopic, distinct polymer models have been chosen (Sec.
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IB in SI): (a) the classical Kremer−Grest (KG) polymer model
(hereafter, EQ MD 1) from ref 7 at melt conditions and (b)
the generalized KG polymer model (hereafter, EQ MD 2)
from refs 11 and 37 with larger stiffness at semidilute
conditions. The initial ring conformations adopted in this
second case come from the IBP model, and thus we will use
the full MD trajectories to characterize the time progression of
the threading statistics. To analyze results from the two
different polymer models on equal footing, observables will be
given as functions of the total number of entanglements Z ≡
Lc/Le,

38,39 where Lc is the ring contour length and Le is the
entanglement length.29 The largest rings which can be
equilibrated in reasonable computational time are for Z ≈
100 for both setups (see Table S1 in SI for details on the
systems and corresponding statistics used). To speed up the
equilibration of the longest rings of EQ MD 1, we used a novel
anisotropic doubling scheme (see Sec. IB in SI).
Threadings statistics: Minimal surfaces spanned on the ring

polymers are obtained by a slightly modified version of the
minimization algorithm from ref 33 (see Sec. IC in SI). The
algorithm is based on successive iterations of triangulations
evolving under surface tension by moving the free vertices.
Typically, each ring penetrates the minimal surfaces of more of
its neighbors, and this number grows with Z (see Sec. IE in SI
for details). Then, following ref 33 we introduce the separation
length
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where Lti is the (threading) length between the i-th and the (i
+ 1)-th penetrations of the surface (Figure 1(A), bottom). Lsep
characterizes how much material of the penetrating ring is on
one side of the penetrated ring (the contour length on the other
side being Lc − Lsep, of course). Accordingly, the quantity

≡ −Q
L

L L
sep

c sep
accounts for the relative extent of contour length

on one side with respect to the other, Q = 1, meaning the
penetrating ring is half split by the penetrated surface.
The mean value Q̅ = Q̅(Z), obtained by averaging Q over

(10 )3 up to (10 )4 interpenetrating rings pairs (see Table S1
in SI), is plotted in Figure 1(B). Remarkably, data for MD-
equilibrated rings collapse on the same (universal) curve
characterized by simple power-law decay Q̅ = (0.26 ± 0.09)
Z−0.31±0.09 (dashed line). As the two polymer models EQ MD 1
and 2 have different monomer densities and entanglement
lengths (Sec. IB in SI), this is a nontrivial result, which
pinpoints Q̅ as a suitable “order parameter” for characterizing
the total extent of threading between close-by rings. In fact,
double-folded rings display smaller values for Q̅ suggesting a
lesser extent of threadings between close-by rings. Figure 1(C)
shows the complete distribution functions, p(Q), for MD-
equilibrated rings at different Z’s. Mirroring corresponding
averages in Figure 1(B), p(Q)’s from the two different polymer
models agree well, and the observed power-law behavior p(Q)

Figure 1. Threading statistics in terms of relative contour length fraction Q. (A) Top: Minimal surfaces of a pair of close-by rings modeled as
double-folded polymers on interacting branched primitive trees (IBP model). Bottom: Schematic representation of one ring (black and gray)
penetrating the minimal surface of another ring (orange) of total contour length Lc. Lti is the contour length of subchain i penetrating the second

ring. In this example, four surface penetrations (np = 4) split the penetrating ring into the segment pairs (Lt1,Lt3) and (Lt2,Lt4) which are on opposite
sides of the surface: this defines the separation length, Lsep, and its complementary, Lc − Lsep. Adapted with permission from ref 33. (B) Mean
relative contour length fraction, Q̅, of one ring threading another ring as a function of ring mass, Z. The dashed line is the best fit to the data for
MD-equilibrated rings, Q̅ ≈ 0.26Z−0.31. (C) Probability distribution functions, p(Q) (log−log scale). Results for MD-equilibrated rings from
polymer models EQ MD 1 and EQ MD 2. The dashed gray line p(Q) ∼ Q−1.35 is the best fit to the distributions tail. (D) Comparison between
p(Q)’s for the IBP model and MD-equilibrated rings. In panels (C) and (D), the bin size is Qmax/20 with Qmax being the largest value of Q in the
given data set.

ACS Macro Letters Letter

DOI: 10.1021/acsmacrolett.8b00828
ACS Macro Lett. 2019, 8, 155−160

156

http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00828/suppl_file/mz8b00828_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00828/suppl_file/mz8b00828_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00828/suppl_file/mz8b00828_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00828/suppl_file/mz8b00828_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00828/suppl_file/mz8b00828_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00828/suppl_file/mz8b00828_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00828/suppl_file/mz8b00828_si_001.pdf
http://dx.doi.org/10.1021/acsmacrolett.8b00828


∼ Q−1.35 for 0.1 ≲ Q ≲ 1 agrees with the reported33 decay for
distribution functions, p(Lsep), of separation length. In turn,
expecting that the minimal size of penetrating length is L( )e ,
the average value Q̅ ≈ ∫ 1/Z

1 Q−0.35 dQ/∫ 1/Z
1 Q−1.35 dQ ≈ 0.54

Z−0.35 is consistent with the power-law behavior reported in
Figure 1(B). Small, systematic differences toward Q → 1
between p(Q)’s for rings with Z = 114 and Z = 115 should be
attributed to incomplete equilibration of the corresponding
data sets (see discussion in Sec. IB in SI). As explained in the
following, such deviations from the equilibrium distribution
emerge also for smaller Z’s whenever polymer chains are not
fully equilibrated. In sharp contrast with the results for
equilibrated rings, p(Q) distributions for rings constructed
according to the IBP model decay very differently (Figure

1(D)). This is particularly evident for very large rings, whose
p(Q)’s feature an exponential cutoff toward Q → 1. As the fine
structure of the IBP rings is, by construction, relaxed only up to
spatial scales of the order of Z ≈ 1 (Sec. IA in SI), we suspect
threadings between large rings have not yet relaxed. Consistent
with that, very short IBP rings (Z = 1.5) are instead fully
relaxed, as the corresponding p(Q) exhibits the same universal
equilibrium form from Figure 1(C).
We complete the discussion by focusing on how many times

(np) any ring penetrates the minimal surface of any other single
ring. In order to dismiss any fine scale detail related to the
employed polymer model, a given threading segment
contributes to np only if its contour length exceeds the
entanglement length Le.

38 We notice, though, that with this
constraint np is not necessarily an even number as in the

Figure 2. Threading statistics in terms of number of penetrations. (A) Probability distribution functions, p(np), of the number of penetrations, np,
for the different polymer models and ring masses Z (linear-log scale). (B) Corresponding mean number of penetrations, n̅p, as a function of the ring
mass, Z (log−log scale).

Figure 3. Time evolution of threading statistics. (A) Time-dependent distribution functions, p(Q,t), of the relative contour length fraction, Q, of
one ring threading another ring (log−log scale). Results for solutions of rings with Z = 115 prepared according to the IBP model. Similar curves are
found also for other Z’s (not shown). Black circles represent the equilibrium distribution p(Q) calculated for rings with Z = 29 (Figure 1(C)). (B)
Corresponding mean values, Q̅(t) (symbols), as functions of time (log−log scale) and power-law fits to the data (eq 2, blue lines) in the initial stage
of the equilibration. Solid horizontal lines for Z = 5, 15, and 38 denote corresponding equilibrium values Q̅(Z). For Z = 115, the solid line is for the
value measured at the end of the trajectory, and the dashed line is for the extrapolated equilibrium value. (C) Time-dependent distribution
functions, p(np,t), of the number of penetrations, np (linear-log scale). Similar curves are found also for other Z’s (not shown). (D) Corresponding
mean number of penetrations, n̅p(t) (symbols), as functions of time (log−log scale) and power-law fits to the data (eq 3, blue lines) in the initial
stage of the equilibration. Horizontal lines are for asymptotic values n̅p(Z).

ACS Macro Letters Letter

DOI: 10.1021/acsmacrolett.8b00828
ACS Macro Lett. 2019, 8, 155−160

157

http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00828/suppl_file/mz8b00828_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00828/suppl_file/mz8b00828_si_001.pdf
http://dx.doi.org/10.1021/acsmacrolett.8b00828


original work.33 Figure 2(A) shows that distribution functions
p(np)’s display exponential tails for both MD-equilibrated rings
(in agreement with ref 33) and IBP-model rings. Instead,
corresponding mean values n̅p ≡ ∫ npp(np)dnp as functions of
ring mass Z behave differently for MD-equilibrated vs IBP
rings (Figure 2(B)). As for Q̅(Z), n̅p(Z) from different MD
simulations nicely collapses on a single curve. However, at
odds with Q̅(Z) (Figure 1(B)), n̅p(Z) is laying at the threshold
of a (slow) crossover, and consequently, our attempt to fit the
data for Z ≥ 29 to a single power-law behavior gave poor
results. Obviously, the lower values for n̅p(Z) from non-
equilibrated rings reflect, as for Q̅(Z), how these chains
systematically “underthread” their spatially close neighbors.
Due to the exponential character of the p(np) distributions and
the fact that each ring threads its neighbors (see Sec. IE in SI),
the mean value n̅p is a good indicator of the typical number of
penetrations made by a single ring.
Threadings dynamics: We are now going to discuss how

almost unthreaded rings constructed according to the IBP
model progressively thread each other. These rings reproduce
several properties of equilibrated ring conformations like the
gyration radius and contact probabilities.11 On the other hand
(Figures 1 and 2), they fail in reproducing threading statistics.
Therefore, we track how threading statistics is changing as ring
conformations are relaxing over time. In the following, time is
always expressed in units of the entanglement time τe,

29

corresponding to the characteristic time scale above which
entanglements start slowing down chain dynamics.
Figure 3(A) shows the evolution of the distribution function

p(Q,t) for Z = 115 (similar plots are obtained for Z = 5, 15,
and 38, not shown) at different times. For short times, the
distribution p(Q,t) is a power-law for Q → 0 and has an
exponential cutoff at larger Q → 1, as in Figure 1(D). As time
increases, the exponential cutoff is progressively shifting to
larger Q values as longer threadings occur. Then, we consider
how the mean value, Q̅(t) ≡ ∫ Q p(Q,t)dQ, changes with time
(Figure 3(B)). Interestingly, Q̅(t) grows at early times
according to the simple power-law:

τ̅ ∼ αQ t t( ) ( / )e
Q (2)

For Z = 5, 15, and 38 this regime is followed by a plateau,
implying that equilibrium has been reached. Best fits of eq 2 to
the data before the plateau (blue lines in Figure 3(B)) give
effective exponents αQ ≈ 0.3 (for specific values, see Table S2
in SI). The heights of the different plateaus correspond (solid
horizontal lines) to the equilibrium values for Q̅(Z) (symbols
“□” in Figure 1(B)). For Z = 115 instead, due to the
incomplete equilibration, threadings are still evolving. In this
case, the height of the corresponding plateau (dashed
horizontal line) is extrapolated from the reported (Figure
1(B)) power-law behavior Q̅(Z) ≈ 0.26Z−0.31. The intercept
between the fitted power-law and the plateau defines the
threading relaxation time, τrel,Q

th (Z) (for specific values, see
Table S2 in SI). Interestingly, τrel,Q

th (Z) is of the same order of
the relaxation times, τrel

diff(Z), associated with ring thermal
diffusion (Table S2 in SI) and defined (see Sec. IB in SI) at the
intercept between the time mean-square displacement of the
ring center of mass, ⟨g3(t)⟩ ≡ ⟨(rc⃗m(t) − rc⃗m(0))

2⟩, and the
time-dependent mean-square gyration radius, ⟨Rg

2(t)⟩. On the
other hand, τrel

diff is expected8 to be significantly larger than the
time scale associated with internal ring motion,8

∫τ ≡
∞ ⟨ ⃗ · ⃗ ⟩

⟨ ⟩
tdc t c

crel
int

0
( ) (0)

(0)2 , where c(⃗t) = d⃗1(t) × d⃗2(t) and d⃗1(t)

and d⃗2(t) are any arbitrarily chosen pair of spanning ring
diameters whose tails are separated by the contour length Z/4.
Accurate numerical evaluation of τrel

int (see Sec. IB in SI)
confirms that τrel

int < τrel
diff at any given Z (Table S2 in SI).

Threadings constitute then the dominant degrees of freedom
governing ring relaxation.
We complete our analysis by considering the time evolution

of the distribution function of the number of penetrations,
p(np,t), as the rings progressively thread (Figure 3(C)) as well
as the corresponding average value, n̅p(t) ≡ ∫ npp(np,t)dnp
(Figure 3(D)). Data appear slightly noisier than the ones for
Q̅(t) (Figure 3(B)), yet n̅p(t) is also clearly exhibiting an initial
power-law regime

τ̅ ∼ αn t t( ) ( / )p e
np (3)

followed by given plateaus for Z = 5, 15, and 38 whose heights
(solid horizontal lines) correspond to the equilibrium values
n̅p(Z) (symbols “□” in Figure 2(B)). In those cases, the
effective exponents αnp are close to ≈0.06, while the crossover
times τrel,np

th (Z) match well the corresponding τrel,Q
th (Z)’s (Table

S2 in SI). As for Z = 115, arguably because of incomplete
equilibration, the initial crossover to equilibrium resembles less
a single power-law compared to the other cases with smaller Z.
Since the evaluation of the asymptotic behavior at large t is also
problematic (see discussion on threading statistics), corre-
sponding αnp and τrel,np

th cannot be reliably estimated.
Conclusions: Theoretical considerations1,3,31 corroborated

by recent numerical work11 led to the conclusion that
topologically constrained ring polymers like rings in a gel36

or rings in concentrated solutions and melt7,8,11,12 should
resemble double-folded conformations with randomly
branched structures.
In this Letter, we have shown that this picture is not

complete as it tends to underestimate the correct extent of
threadings17,20,34,35 between close-by rings at equilibrium.
Following refs 10 and 33 our analysis relies upon the concept
of ring minimal surface, and our results are independent from
model details: in particular we report that both the relative
contour length penetrating the minimal surface of a given ring
(Q and its distribution p(Q), Figure 1) and the absolute
number of penetrations (np and its distribution p(np), Figure
2) display universal features. At the same time, we have
demonstrated that threading relaxation to equilibrium
(functions Q̅(t) and n̅p(t), Figure 3) is power-law and that
the associated time scales match ring diffusion in melt while
remaining significantly larger than the time scales associated
with ring internal relaxation. Based on that, we predict that
threadings dominate ring relaxation in entangled solutions. At
the same time, two of our results also hint on the reason why
double-folded models work well:11 (1) the observed relation
Q̅(Z)−1 = (Z − Zsep)/Zsep ∼ Z0.31 implying that the separation
length Zsep ≡ Lsep/Le increases only sublinearly in the ring mass
Z and (2) the small (Figure 2(B)) mean number of threadings.
The static properties could then be well governed by the larger
unthreaded contour length Lc − Lsep, in agreement with the
tree picture. Yet, the smaller Lsep could affect the dynamics.
We speculate that the exponent αQ ≈ 0.3 governing

threading relaxation could be (related to) the exponent 1/3
of the late-stage phase-ordering kinetics with a conserved order
parameter.40−42 If the number of branches of the ring
conformation is conserved during the relaxation from the
IBP state, the curvilinear diffusion of the branches could be
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viewed as switching the branches from a nonthreading to a
threading state. To find out if the correspondence does exist,
we would need to connect our threading analysis with an
algorithm to detect branches such as the one in ref 18.
A limitation of the present analysis is that while

concentrating primarily on pairwise threadings it neglects
higher-order ones whose contribution to ring dynamics in
melts appears to be not negligible.35 In the future, a potential
noninvasive method to detect the complex threadings could
help to clarify their microscopic origin and effect.
In light of these results, the question related to how to

construct “by first-principles” equilibrated solutions of ring
polymers not based on double-folded conformations11 is still
open: whether the answer will require us to rethink double-
folded conformations or a completely different approach, in
both cases it remains a promising research line for the future.
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