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Abstract

The SARS-CoV-2 pandemic of 2020 has mobilised scientists around the globe to research

all aspects of the coronavirus virus and its infection. For fruitful and rapid investigation of

viral pathomechanisms, a collaborative and interdisciplinary approach is required. There-

fore, we have developed ViralLink: a systems biology workflow which reconstructs and

analyses networks representing the effect of viruses on intracellular signalling. These net-

works trace the flow of signal from intracellular viral proteins through their human binding

proteins and downstream signalling pathways, ending with transcription factors regulating

genes differentially expressed upon viral exposure. In this way, the workflow provides a

mechanistic insight from previously identified knowledge of virally infected cells. By default,

the workflow is set up to analyse the intracellular effects of SARS-CoV-2, requiring only

transcriptomics counts data as input from the user: thus, encouraging and enabling rapid

multidisciplinary research. However, the wide-ranging applicability and modularity of the

workflow facilitates customisation of viral context, a priori interactions and analysis meth-

ods. Through a case study of SARS-CoV-2 infected bronchial/tracheal epithelial cells, we

evidence the functionality of the workflow and its ability to identify key pathways and pro-

teins in the cellular response to infection. The application of ViralLink to different viral infec-

tions in a context specific manner using different available transcriptomics datasets will

uncover key mechanisms in viral pathogenesis.

This is a PLOS Computational Biology Software paper.
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Introduction

By the end of June 2020 roughly 23,500 scientific publications were released relating to Severe

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the disease it causes (COVID-

19) [1]. This fast uptake in research efforts is vital to decrease the health and economic impacts

of this new pandemic. However, many questions remain unanswered regarding the molecular

processes driving host responses to this coronavirus. One key challenge to utilisation of new

findings is that published datasets are mostly unlinked to each other (due to parallel efforts by

multiple research groups) and not always connected to community standard resources. An

integrated and reusable method to interactively capture new data and connect it to existing

data sources is needed. Such a comprehensive approach that can be run regularly when rele-

vant new data is available, will increase and update our understanding of the mechanistic

details of the SARS-CoV-2 infection. Further, it will aid drug target discovery by enabling

identification of high confidence mediators through which the virus is affecting host cells [2].

Studying the effect of the virus at molecular level may explain the variety of clinical manifesta-

tions of the infection and the differences in susceptibility between different populations, and

together with soon available human genomics data, could be used for identifying risk factors.

Upon entry of a virus into a human cell via surface receptors, viral RNA is released and

translated into proteins [3]. In addition to their role in direct viral replication, these proteins

are able to bind to human proteins creating a host-virus interface [4]. This interaction can lead

to downstream signalling changes in the host cell, either as a result of viral hijacking or

through a defined viral immune response by the host cell [5]. Ultimately, this signal flow

results in intracellular gene transcription changes, cell-cell signalling and systemic host

responses which drive the tug-of-war between the host and the virus [6]. In order to under-

stand and control this conflict, it is necessary to study each of these levels of host response in

detail, including the intracellular response of the primarily infected cell.

Currently available data relating to intracellular SARS-CoV-2 infection includes human

binding partners of viral proteins [4,7,8] and transcriptomics datasets from infected cell lines

[9–11], infected patients [12,13] and other infected animals [11,14]. Interdisciplinary and col-

laborative science can maximise the value of each of these datasets through data integration

and comparison combined with application of different computational analysis approaches.

One such computational analysis method is the utilisation of network approaches to model

molecular interactions between the virus and human proteins as well as within and between

human cells [15]. Network approaches have already been applied to study SARS-CoV-2 patho-

genesis and to predict drug repurposing candidates and master regulators based on proteins in

proximity to human binding proteins (which physically associate with SARS-CoV-2 proteins)

[16–20].

Here we present a systems biology workflow built on our previously published resource

MicrobioLink, which studies the effect of viral infections on host cells [21]. ViralLink recon-

structs and analyses a causal molecular interaction network whose signal starts with the bind-

ing of an intracellular viral protein to a human protein, travels via multiple signalling

pathways, and ends at the transcriptional regulation of altered genes. Subsequently, the work-

flow investigates the causal network using betweenness centrality measures, cluster analysis,

functional overrepresentation analysis and network visualisation. Using currently available

datasets from SARS-CoV-2 infected bronchial epithelial cells we demonstrate that this work-

flow can identify biologically relevant signalling pathways and predict key proteins for poten-

tial drug interventions. The workflow is built in a modular, standardised and updateable

fashion and requires only limited programming ability to run. ViralLink can be applied easily

to new SARS-CoV-2 related datasets or datasets from other viruses, to study the effect of the
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virus on host signalling and regulation in diverse contexts—including different cell types,

patients and viral strains.

Design and implementation

ViralLink workflow overview

The ViralLink workflow investigates the effect of viral infection within cells by generating and

analysing context-specific networks of intracellular signalling and regulatory molecular inter-

actions. These networks link the intracellular binding of viral and human proteins to the tran-

scriptional response of the infected cell (Fig 1). The context-specificity of the analysis is

obtained through the choice of input transcriptomics datasets—it could refer to strain of virus,

type of infected cell, severity of infection, age of host or any other context of interest. By

default, the workflow is set up to analyse the intracellular effects of SARS-CoV-2, requiring

only transcriptomics counts data as input and thus encouraging and enabling rapid multidisci-

plinary research. However, the wide-ranging applicability and modularity of the workflow

facilitates customisation of viral context, a priori interactions and analysis methods. ViralLink

contains three primary stages: 1) collection and input of data; 2) reconstruction of the network;

Fig 1. ViralLink workflow overview.

https://doi.org/10.1371/journal.pcbi.1008685.g001
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and 3) investigation of results using functional analysis, clustering, centrality measures and

visualisation.

ViralLink workflow methods

Collection and input of data. Reconstruction of causal networks using ViralLink requires

four separate input datasets (Fig 1): viral protein-human binding protein interactions, a priori
human protein-protein interactions (PPIs), a priori human transcription factor (TF)—target

gene (TG) interactions and an unnormalised counts matrix from a gene expression experi-

ment. By default, all data except the transcriptomics counts are provided automatically. How-

ever alternative input files can be provided if desired.

The default workflow uses SARS-CoV-2 protein-human binding protein interactions

obtained from IntAct [22,23]. This data was reformatted to contain one row per molecular

interaction with 2 columns of UniProt IDs: SARS-CoV-2 proteins and human binding pro-

teins. Alternative viral-human PPIs can be provided using the same data format. The workflow

assumes all viral-human interactions have an inhibiting action on the human protein, unless a

third column named “sign” is present in the input file containing “+” for activatory and “-” for

inhibitory interactions. In addition, data is provided with the workflow containing the gene

names corresponding to each of the SARS-CoV-2 proteins, to enable easy interpretation of the

reconstructed networks.

For a priori human interactions, the workflow obtains and uses integrated collections of

PPI and TF-TG interactions from OmniPath and DoRothEA, respectively [24,25]. These inter-

actions are obtained using the ‘OmniPathR’ R package [24,26] to download and filter signed

and directed interactions. For DoRothEA, only high and medium confidence level interactions

are used (confidence scores A-C). In contrast to importing static input files, this script enables

the use of up-to-date interaction data. Alternative interaction data can be used with the work-

flow provided it has the same format: specifically, it must contain source and target UniProt

IDs in the columns ‘to’ and ‘from’ and if the transcriptomics data uses gene symbols, the inter-

action data must additionally contain gene symbols in the columns ‘source_genesymbol’ and

‘target_genesymbol’. Furthermore, the interactions must be directed and signed with the sign

of the interaction given in the column ‘consensus_stimulation’ where the value ‘1’ represents a

stimulation and anything else represents an inhibition.

The aforementioned a priori interactions are contextualised using transcriptomics data

from any study of interest which compares viral infected to uninfected human cells or tissues.

Correspondingly, the workflow requires unnormalised counts data from a transcriptomics

experiment (containing UniProt or gene symbols as IDs) and a corresponding mapping table

which lists the sample IDs (from the headers of the counts table) in the ‘sample_name’ column

and the ‘test’ or ‘control’ status of the sample in the ‘condition’ column. This mapping table is

used to carry out differential expression of a test condition (e.g. infected) compared to a con-

trol condition (e.g. uninfected). An example expression dataset and mapping table are pro-

vided with the workflow.

To process the transcriptomics data, the workflow uses ‘DESeq2’ in R to normalise the

counts and to carry out differential expression analysis [27]. Any genes passing the log2 fold

change and adjusted p value cut-offs, based on the provided parameters (default 1 and 0.05,

respectively), are classed as differentially expressed genes (DEGs). Following removal of all

genes with count = 0, normalised log2 counts across all samples are fitted to a gaussian kernel

[28]. All genes with expression values above mean minus three standard deviations are consid-

ered as expressed genes. Subsequently, context-specific human PPI and TF-TG interactions

are generated by filtering only interactions where both interacting molecules are expressed.
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File paths to all input datasets and associated parameters (such as desired log2 fold change

cut off) are specified in the parameters text file which is read in by the workflow.

Network reconstruction. The reconstructed causal network contains three layers of inter-

actions, which are obtained, by default, from the three a priori interaction resources:

• Viral proteins interacting with human binding partners: from the SARS-CoV-2 collection in

the IntAct database [22,23]

• Intermediary signalling protein interactions: from protein-protein interactions (PPIs) of the

OmniPath collection [24]

• Transcription factors (TFs) regulating differentially expressed genes: from a transcriptomics

dataset of interest and the DoRothEA collection [25]

A list of all TFs targeting the differentially expressed genes are obtained from the context-

specific TF-TG interactions. The human binding proteins of viral proteins are connected to

the listed TFs through the context-specific human PPIs using a network diffusion approach

called Tied Diffusion Through Interacting Events (TieDIE) [29]. As inputs for the TieDIE tool,

the following information is used: 1) The signed, directed and expression based filtered PPIs is

used as the input network. 2) Human proteins which are interacting partners of the viral pro-

teins are used as the start nodes. The number of viral proteins bound to each of the human

proteins are assigned as the weights of the start nodes. 3) The TFs of the DEGs in the dataset

are used as the stop nodes. The weights for each of the TFs in the set of stop nodes were calcu-

lated using the following formula (Eq 1) which considers both the log2 fold change of the

DEGs as well as the sign (i.e. stimulatory or inhibitory) of the relationship between the TF and

the DEG.

WeightTF ¼
1

NTFTG

X

n2TG

LFCn � sign TFTGnð Þ

signðxÞ ¼
x ¼ þ1 if x ¼ activatory;

x ¼ � 1 if x ¼ inhibitory:

( ð1Þ

After running TieDIE, a custom R script is used to collate all the data into a final viral-initi-

ated intracellular signalling network (causal network), outputting an edge table representation

of the network, with a node table containing additional node annotations. Starting with the

interactions output from TieDIE, viral protein-human binding protein interactions are added

for each of the present human binding proteins. Similarly, TF-TG interactions (where the TG

is a DEG) are added for each of the present TFs, creating a full network with three interaction

types: SARS-CoV-2 protein-human binding protein, PPI and TF-DEG. All nodes of the net-

work are added to a node table with annotations including heat values (output from TieDIE),

Entrez IDs (obtained in R using the ‘org.Hs.eg.db’ package), gene symbols (obtained from

UniProt [30]) and log2 fold change values from the differential expression analysis.

Network investigation. Following reconstruction of the causal network, ViralLink pro-

vides functionality to investigate the results using functional analysis, clustering, centrality

measures and visualisation.

Centrality measures. To identify key molecules in the reconstructed network ViralLink uses

a betweenness centrality measure—calculating the global importance of a node (in this case a

protein) based on the number of shortest paths which pass through them when connecting all

node pairs in the network [31]. Nodes with high betweenness centrality play a key role in

transduction of signals through the network, and here represent proteins with biological

importance in the cellular response to viral infection. Betweenness centrality is calculated for
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each node in the causal network using the R package ‘igraph’ and output as an annotation in

the node table [32]. Alternative centrality measures are available using the ‘igraph’ package

and can be integrated into the workflow by the user if required.

Functional analysis. To further investigate important cellular functions and signalling path-

ways directly affected by the virus of interest, ViralLink carries out functional overrepresenta-

tion analysis on different parts of the causal network:

1. The DEGs of the network

2. The upstream human proteins (including human binding proteins, intermediary signalling

proteins and TFs)

3. Identified clusters (only those with� 15 nodes are investigated)

Functional overrepresentation analysis is carried out in R using packages ‘ClusterProfiler’

(for Gene Ontology annotations [33]) and ‘ReactomePA’ (for Reactome annotations [34–36].

For analysis of the upstream human signalling proteins and analysis of clusters, all proteins

in the context-specific human PPI interactions are used as the background. For analysis of

the DEGs, all target genes in the context-specific human TF-TG interactions are used as

the background. For Gene Ontology (Biological Process) analysis (except when running

the ‘compareCluster’ command), the ‘simplify’ command is used (select_fun = min) to

remove redundant functions. All functions with q value� 0.05 are considered significantly

overrepresented.

Furthermore, ViralLink also implements a network-based pathway enrichment analysis on

the upstream human proteins of the network using the ANUBIX (Adaptive NUll distriButIon

of X-talk) algorithm [37]. Here, limitations of overrepresentation analysis, such as the assump-

tion of gene independency, are overcome by integrating knowledge of gene/protein associa-

tions using networks. Specifically, upstream human proteins of the reconstructed causal

network are tested for enrichment of ANUBIX-provided Reactome and KEGG pathways

using the context-specific human PPI interactions as the input network. All functions with q

value� 0.05 are considered significantly overrepresented.

An additional R script is provided alongside the workflow which creates subnetworks of the

causal network based on functions of interest. These function-specific subnetworks highlight

how specific signalling pathways in the infected cell reach (and subsequently affect) specific

functions of the DEGs. For example, the subnetwork could be created to show how viral pro-

teins can affect different host toll-like receptor pathways, and how these pathways can ulti-

mately affect DEGs associated with interleukins. In this network the DEG nodes would be

replaced with nodes representing the interleukin functions (which must be overrepresented

based on the functional analysis). This script requires the output files from the functional over-

representation analysis, the node and edge tables of the causal network and a file of all UniProt

IDs associated with all Reactome functions (which is provided with ViralLink, following

download from the Reactome website in April 2020). In addition, the script requires a list of

overrepresented DEG functions (Reactome) and a list of upstream signalling functions (Reac-

tome) to visualise. The script outputs an edge table, a node table and a Cytoscape file.

Visualisation. Data visualisation is often an important part of biological network interpreta-

tion, providing new insights into the data and visually conveying analysis results [38]. As such,

ViralLink has the capability to import reconstructed networks into the open-source Cytoscape

network visualisation software [39,40]. Specifically, the workflow employs the ‘RCy3’ R pack-

age to interact with Cytoscape programmatically, importing the node and edge tables to create

network visualisations and saving the data as a ‘.cys’ file. The causal network, the network clus-

ters (where containing� 15 nodes) and the function-specific networks are visualised in this
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way. If calculated previously, the causal network nodes are coloured based on their between-

ness centrality, however further style and layout customisation must be carried out by the user

directly based on the data.

Cluster analysis. Clustering algorithms are commonly used in network biology to investi-

gate the complex structure of molecular interaction networks by extracting groups of densely

connected molecules [41,42]. Depending on the number of molecules included, a cluster can

represent a molecular complex or a group of molecules which function closely with each other.

Cluster analysis can identify subsets of a large network with specific functions and indicate

molecules that may have functional redundancy with each other—potentially having implica-

tions for drug targeting. ViralLink employs the MCODE clustering method to identify groups

of densely connected nodes in PPI networks [41]. To carry out this analysis, ViralLink requires

the Cytoscape software [39,40], which is controlled programmatically using the R package

‘RCy3’ with the Cytoscape ‘MCODE’ app (v1.6.1) [43]. MCODE is run using default parame-

ters: degree cut off = 2, haircut = TRUE, node score cut off = 0.2, k-core = 2, max depth = 100.

This analysis outputs the data as node annotations in the node table, which are used for the

functional analysis and visualisation steps of the workflow.

Implementation

The workflow consists of modular R and Python scripts which can be run in three separate

ways: through a Docker container, through the provided Python wrapper script or as separate

scripts for each step of the workflow. The Docker implementation is recommended to users as

it does not require installation of R or Python or any of the necessary packages. The Python

wrapper script and separate scripts are provided for more advanced users to enable bespoke

analyses. If running ViralLink for the study of SARS-CoV-2, the only required input files are

related to the transcriptomics data of interest: a raw counts table (using gene symbols or Uni-

Prot protein IDs) and a two-column metadata table specifying test and control sample IDs.

One further script is provided to generate function-specific networks. This script is not

included in the Docker container or Python wrapper because it requires the user to specify

functions of interest from the output of the functional analysis. The only file the user needs to

edit is the parameters text file where input file paths and parameters are specified.

Use case data

To demonstrate the application of this workflow for the study of SARS-CoV-2, we applied it to

a published transcriptomics dataset. We downloaded raw counts tables from a transcriptomics

study of SARS-CoV-2 infected (MOI 2, 24 hour incubation) NHBE cells (Normal Human

Bronchial/tracheal Epithelial cell line) with uninfected controls [11] viaGene Expression

Omnibus (accession GSE147507) [44,45]. SARS-CoV-2 protein–human protein interactions

were obtained from Gordon et al. [4] via IntAct [22,23]. OmniPath and DoRothEA (v2, levels

A-C) were downloaded on 15/04/2020. Any genes with log2 fold change� |0.5| and adjusted p

value� 0.05 were classed as differentially expressed. All networks were visualised in Cytoscape

(v3.7.2).

Results

Use case: SARS-CoV-2 infection of lung cells

Collection and input of data. To demonstrate the application of this workflow for the

study of SARS-CoV-2, we created intracellular signalling networks of NHBE cells (from Nor-

mal Human Bronchial/tracheal Epithelial cell lines) upon infection with SARS-CoV-2 based
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on data published by Blanco Melo et al. [11] and viral-human binding protein interactions

published by Gordon et al. [4].

Network reconstruction. The resulting causal network contains 804 nodes (molecules)

and 5423 interactions (Fig 2A and S1 and S2 Tables and S1 Data).

Network investigation. Centrality measures. The 10 most central proteins of the recon-

structed causal network (based on betweenness centrality) are involved in a wide range of

cellular functions (Fig 2B). Taken together these proteins highlight the propensity for SARS-

CoV-2 to affect cell proliferation, apoptosis, cell adhesion, exocytosis and proinflammatory

immune responses. These functions are influenced through multiple cellular pathways, most

notably MAPK/ERK and PI3K/AKT signalling pathways.

Functional analysis. Functional overrepresentation analysis identified an enrichment of

interleukin and interferon related functions among the network DEGs, in line with previously

published findings (S1 Fig and S2 Data) [12,46,47]. However, the primary value of the Viral-

Link output, in comparison to a basic evaluation of SARS-CoV-2 induced DEGs, lies within

the upstream signalling proteins of the reconstructed causal network. Overrepresented func-

tions and pathways of the upstream signalling proteins (human binding proteins, intermediary

signalling proteins and TFs) included innate immunity-related functions, platelet signaling,

PI3K/AKT signalling, MAPK activation, estrogen receptor-mediated signalling, senescence

and a number of growth factor receptor-associated functions (such as VEGF signalling, recep-

tor tyrosine kinases, stem cell growth factor signalling (SCF-KIT) and neurotrophin receptor

signaling) (S2 Data and S3 Data). Of these functions, only innate immunity-related functions

and MAPK regulation were also identified in overrepresentation analyses within the original

publication of the infected NHBE cells [11]–thus highlighting the added benefit of applying

ViralLink to DEG lists.

Further, network-aware KEGG pathway analysis identified a number of viral-associated

pathways (such as viral carcinogenesis and Epstein-Barr virus infection), indicating a similarity

Fig 2. Causal network of SARS-CoV-2-infected NHBE cells. A) Signalling flows from left to right: SARS-CoV-2 proteins/protein fragments (red

triangles), human binding proteins (yellow parallelograms), intermediary signalling proteins (blue circles), transcription factors (green rectangles) and

differentially expressed genes (grey rhombuses). Where a human protein/gene is acting in multiple layers of the network, it is only visualised once based

on the following priority: DEGs, binding proteins, TFs, signalling proteins. B) Results of betweenness centrality analysis, which measures the global

importance of nodes (molecules) in the network. Nodes coloured based on their betweenness centrality parameter, with the gene names of the 10

highest scoring (most central) nodes overlaid. DEGs have log2 fold change� |0.5| and adjusted p value� 0.05.

https://doi.org/10.1371/journal.pcbi.1008685.g002

PLOS COMPUTATIONAL BIOLOGY ViralLink: A workflow to study intracellular signalling response to viral infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008685 February 3, 2021 8 / 17

https://doi.org/10.1371/journal.pcbi.1008685.g002
https://doi.org/10.1371/journal.pcbi.1008685


between cellular responses to SARS-CoV-2 and other viruses and validating the context-speci-

ficity of the reconstructed causal network (S3 Data). Moreover, network-aware analysis identi-

fied overrepresentation of the Reactome function ‘negative regulators of DDX58/IFIH1

signalling’. Importantly, DDX58/IFIH1 signalling results from cellular sensing of cytoplasmic

viral nucleic acids and leads to anti-viral innate immune responses such as the production of

type I interferon. Many different viruses have been shown to repress this system through vary-

ing molecular mechanisms, including hepatitis C and influenza A and B [48]. Of the 11 pro-

teins in the causal network associated with this function, two are theoretically capable of

binding to SARS-CoV-2 proteins based on interactions published by [4] (TANK Binding

Kinase 1, TBK1 and NLR family member X1, NLRX1). Although further investigation is

required, this finding indicates a possible mechanistic explanation for the poor induction of

type I interferon response seen in SARS-CoV-2 infections [11,49,50]. Taken together, we show

that ViralLink can highlight additional pathways through which SARS-CoV-2 could be affect-

ing the lung epithelial cells, which cannot be identified by looking at the transcriptomic results

in isolation.

Visualisation. Based on functional overrepresentation analysis, we created a function-

specific network by subsetting the causal network. This visualisation was used to further

explore the mechanisms of how specific signalling pathways are affecting the DEGs (S2A Fig

and S4 Data). Specifically, we generated an innate-immunity associated subnetwork contain-

ing all upstream human signalling proteins associated with Reactome functions cytokine sig-

nalling in immune system, signaling by interleukins and MyD88-independent TLR4 cascade

and all overrepresented functions of the DEGs (in place of the DEG nodes). These pathways

contain 9/10 of the top betweenness centrality nodes (all except RHOA), evidencing the cen-

trality and importance of the innate immune response to viral infection. Inspecting the TF

layer of this immune subnetwork, we find a number of key TFs including STAT proteins (3

and 4), IRF proteins (1 and 5) and NFKB-related proteins (NFKB1, NFKBIA).

Cluster analysis. Finally, we evidenced the application of MCODE clustering analysis using

the reconstructed SARS-CoV-2-infected NHBE cell causal network. We identified four clus-

ters containing 15 or more nodes, making up 19% of the network (154/804) (S2B Fig and S2

Table and S1 Data). Assuringly, 9/10 of the top betweenness centrality nodes were included in

these four clusters, further confirming the high connectivity and importance of these nodes in

the causal network. Functional overrepresentation analysis of the cluster nodes highlighted a

functional similarity between all four of the clusters (S2C and S2D Fig and S2 Data). Likely

this is due to the high number of inter-cluster molecular interactions and because of the func-

tional similarities between the top central nodes.

Collectively, we show that our systems biology workflow, ViralLink, reconstructs a func-

tionally relevant intracellular signalling network affected by SARS-CoV-2 infection. Investiga-

tion of the networks through functional analysis, centrality measures and cluster analysis,

combined with network visualisations, enables detailed study of the key proteins and pathways

involved in signal transduction.

Availability and future directions

Infection by SARS-CoV-2 can cause a complex and systemic response by the human body. As

such, a better mechanistic understanding of the effects of SARS-CoV-2 will aid identification

of effective drug treatments and help to explain the differences in susceptibilities across differ-

ent populations [51]. This understanding can be gained using cross-disciplinary approaches

which combine ‘omics data generation, computational systems biology and validatory web lab

experiments [52]. Here we present a computational workflow that can be used to model the
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cellular response to infection by integrating knowledge of human binding proteins of viral

proteins with the transcriptional response of a cell/cell type. Whilst set up primarily to run

analyses based on SARS-CoV-2, ViralLink can be applied to any viral infection, provided data

is available describing possible interactions between the viral proteins and human proteins.

ViralLink builds on our previously published resource MicrobioLink, which reconstructs

networks representing the effect of extracellular and intracellular microbial proteins on cellular

processes [21]. Differing from MicrobioLink, ViralLink inputs a predetermined list of viral-

host PPIs and focuses only on pathways ending in transcriptional regulation: thereby reducing

the complexity of the workflow (for accessibility and speed purposes) and increasing its predic-

tive confidence. Furthermore, ViralLink extends the functionality of MicrobioLink with more

advanced network analysis (functional enrichment, clustering and centrality measures) and

visualisation options.

By exploiting previously collated and comprehensive collections of molecular interactions

[24,25], ViralLink predicts how signal flows from the initial interaction with a viral protein or

protein fragment to the ultimate transcriptional changes induced by the virus. Through map-

ping the direct intracellular effect of viral infection (using a network approach), this workflow

enables further investigation into specific signalling pathways and transcription factors which

play a key role in signal transduction. Signalling pathways are primarily regulated through

post-translational modifications and thus cannot be directly measured using transcriptomics

datasets [53]. ViralLink overcomes this problem by predicting signalling using a priorimolecu-

lar interactions, a diffusion algorithm and transcriptomics data. However, this approach is lim-

ited by a lack of proteomics or phosphoproteomics data to validate predicted signalling

pathways and by possible bias of the a priorimolecular interactions [54]. Moreover, some of

the input genes to ViralLink are often excluded from the output intracellular networks due to

a lack of identified upstream pathways. On the other hand, this approach permits identifica-

tion of differentially regulated genes that are likely affected as a direct result of viral recognition

by protein-protein signalling pathways, rather than by secondary signals such as elevated cyto-

kine levels. This permits a more focused analysis of possible drug targets and adds to the

understanding of viral pathomechanisms. Finally, the ViralLink workflow employs functional

analysis and visualisation methods to aid interpretation of the generated intracellular net-

works, enabling detailed investigation of key proteins and signalling pathways. Regarding

functional analysis, both overrepresentation analysis and a network-aware pathway algorithm

called ANUBIX are employed, considering Reactome, Gene Ontology and KEGG annotations

[37,55–57]. This varied approach is taken to avoid biases due to variability in results output

using different functional analysis tools and functional databases [58].

Due to the modularity of the workflow, it can be easily adjusted or extended. For example,

different diffusion and propagation algorithms, such as HotNet2 [59,60], could be imple-

mented as required. The implemented diffusion tool, TieDIE, adds mechanistic value by

including only logically coherent paths calculated based on the signs of interactions and activ-

ity of source and target nodes. On the other hand, due to requiring signed interactions, this

feature results in a reduced possible set of input a priori interactions for TieDIE. If desired, a

diffusion tool which does not need signed a priori interactions can be implemented to increase

the input dataset size. Alternatively, a different method, such as an integer linear programming

approach which identifies paths based on an optimisation problem (as implemented in CAR-

NIVAL), could be used for network reconstruction [61]. In addition, integration of CARNI-

VAL could extend the workflow to permit network reconstruction without supplying

upstream perturbations (in this case the viral-host protein interactions). Whilst not currently

integrated due to data availability issues, the addition of phosphoproteomics data to the path-

way propagation methods could improve the prediction of active pathways [62] Alternatively,
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methods to predict protein activity based on transcriptional signatures, such as VIPER and

PROGENy [63,64] could be added to the workflow in addition to network diffusion methods

to increase the confidence of pathway predictions. Finally, extension of the network to include

additional regulatory molecule types (e.g. miRNAs) or to study non-human hosts, could

uncover further mechanisms by which SARS-CoV-2 can affect host cells.

Accessible through GitHub, the workflow requires only the installation of Docker (www.

docker.com) enabling user to run ViralLink with only a limited programming ability. At a

minimum, only two user specified input files are required: a raw counts table from a transcrip-

tomics study (using gene symbols or UniProt protein IDs) and a two-column metadata table

specifying test and control sample IDs. All other files are provided or acquired directly within

the workflow—but can be changed by the user if required. However, one limitation of the cur-

rent workflow is that only basic visualisation is possible programmatically, due to challenges

applying one visualisation strategy to all possible output networks, especially with regard to

the function-based networks.

In addition to accessibility through a default emphasis on SARS-CoV-2, a key strength of

this workflow is the ability to use different input datasets: including different a priorimolecular

interactions, viral-human binding protein interactions and expressed/differentially expressed

gene lists. This allows extensive customisation and permits rapid implementation to the most

cutting-edge data soon after publication. Running the workflow across different transcrip-

tomics datasets will allow comparison of intracellular viral responses between different cell

types, different species and across different conditions (such as severe vs asymptomatic infec-

tion). For example, application of the workflow to transcriptomics data from specific immune

cell-types, such as macrophages, will likely uncover different host affected signalling pathways

and key TFs based on the infected cell-type. This, in turn, could increase our understanding of

the role of different immune populations in fighting the infection. In addition, the workflow

can be run on data from other SARS-CoV-2 strains when and if they emerge, thereby aiding

comparisons of mechanisms of action between the strains.

To evidence the use of this workflow, we applied it to study the effect of SARS-CoV-2 infec-

tion in lung epithelial (NHBE) cells using transcriptomics data published by Blanco-Melo et al.
[11]. In the resulting causal network, DEGs directly affected by SARS-CoV-2 initiated signal-

ling are associated with functions that are known responses to SARS-CoV-2 and other viral

infections [65–68]. Upstream of these affected genes we identified a number of potentially

important signalling pathways relating to classical viral-immune responses, cell survival and

cytoskeletal rearrangements and cell adhesion. On the whole, such pathways and functions

were not identified when investigating the DEG lists alone, highlighting the added value of

ViralLink [11]. Previous investigation of the first SARS coronavirus (SARS-CoV) identified an

inhibition of cell proliferation and an increase in apoptosis regulated to PI3K/AKT signalling

[69,70]. Our network of SARS-CoV-2-initiated intracellular signalling suggests that the PI3K/

AKT signalling and the AKT1 protein itself are key mediators of SARS-CoV-2 initiated signal

transduction and that apoptosis and cell proliferation pathways are affected by SARS-CoV-2,

thus highlighting similarities between the two viruses. However, further experimentation and/

or data curation is required to confirm the direction of change of specific pathways (up- or

downregulated) based on the results of the presented workflow. Together our results indicate

that SARS-CoV-2 can affect NHBE cells through a variety of signalling pathways which have

been previously associated with similar viruses, including growth factor signalling, MAPK/

ERK signalling and PI3K/AKT signalling [67,69–71]. Furthermore, centrality measures and

cluster analysis identified proteins which likely play a key role in transduction of these signals

and could be good targets for drug treatments.
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Several other network reconstruction methods exist which could be and have been applied

to study SARS-CoV-2 infections. For example, Messina et al. and Gysi et al. use diffusion algo-

rithms and other similar methods to investigate proteins in close proximity to human binding

proteins based on PPI interactions and gene co-expression networks [16,19,20]. Our workflow

builds on these approaches by linking viral proteins to DEGs. Through this method we can

observe which signalling pathways mediate the effect of the virus on cellular transcription lev-

els, creating a systems level view of cellular changes as a result of the virus. Using the functional

analysis methods and network visualisation capabilities of the workflow, it is possible to pre-

dict which viral proteins and host signalling pathways can affect specific cellular functions,

enabling more focused identification of drug targets. In addition to protein mediators, this

method describes TFs which are involved in the cellular response and identifies which DEGs

can be affected as a direct result of viral proteins hijacking host signalling and which are

affected through a different mechanism. In addition to the presented workflow, at least one

other method has been used to reconstruct SARS-CoV-2-initiated intracellular signalling net-

works corroborating the benefits of such analysis methods [72]. Differing from the here pre-

sented approach, this work uses an extended version of the Signaling Dynamic Regulatory

Events Miner method to reconstruct the networks, resulting in a more mathematically com-

plex but computationally heavy analysis [73]. Furthermore, the workflow by Ding et al. is a less

reusable and accessible workflow because it was designed for a specific analysis.

In conclusion, ViralLink is an easily accessible, reproducible and scalable systems biology

workflow to reconstruct and analyse molecular interaction networks representing the effect of

the viruses on intracellular signalling. We believe it is the first available integrative workflow

for analysing the downstream effects of viral proteins using viral host interactions and host

response data. Application of this workflow to study COVID-19 based on a wide variety of

conditions and datasets will uncover mechanistic details about SARS-CoV-2 infection of dif-

ferent cell types, providing valuable predictions for wet-lab and clinical validation.

Supporting information

S1 Fig. Overrepresented Reactome functions (A, B) and Gene Ontology Biological Pro-

cesses (C, D) of the causal network of SARS-CoV-2 infected NHBE cells. A) Top 10 overrep-

resented Reactome functions of upstream signalling proteins (including human binding

proteins, intermediary signalling proteins and TFs) B) Top 10 overrepresented Reactome func-

tions of network DEGs C) Top 10 overrepresented GO-BP functions of upstream signalling

proteins (including human binding proteins, intermediary signalling proteins and TFs) D) All

overrepresented GO-BP functions of network DEGs (q value� 0.05). DEGs have log2 fold

change� |0.5| and adjusted p value� 0.05.

(TIF)

S2 Fig. Function-specific network of SARS-CoV-2- infected NHBE cells and cluster analy-

sis on SARS-CoV-2-infected NHBE causal network. A) Function-specific subnetwork con-

taining upstream signalling proteins related to the top overrepresented (q value� 0.05) innate

immunity-related Reactome functions (cytokine signalling in immune system, signaling by

interleukins and MyD88-independent TLR4 cascade) and all overrepresented functions of the

DEGs (in place of the DEG nodes). Layers of the network and node shapes same as in Fig 2.

DEGs = differentially expressed genes. DEGs have log2 fold change� |0.5| and adjusted p

value� 0.05. See S3 Data. B) Cluster analysis results where clusters have� 15 nodes. Position

of clustered proteins shown within the causal network and to the right as isolated clusters.

Nodes coloured by their cluster membership (black = unclustered, green = cluster 1,

yellow = cluster 2, pink = cluster 3, blue = cluster 4). Presence of top 10 betweenness centrality
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nodes in the clusters is indicated to the right of the clusters. C) Reactome overrepresentation

analysis of the clusters. Top five Reactome terms (by adjusted p value) displayed for each clus-

ter. D) Gene Ontology (GO) overrepresentation analysis of the clusters. Top five GO terms (by

adjusted p value) displayed for each cluster. See S2 Table and S2 Data.

(TIF)

S1 Table. Causal network of SARS-CoV-2-infected NHBE cell.

(TXT)

S2 Table. Node annotations for causal network of SARS-CoV-2-infected NHBE cell.

Includes betweenness centrality measures and clusters identified by MCODE. MCODE clus-

ters 1,3,4 and 5 correspond to the clusters in the manuscript labelled 1,2,3 and 4 respectively.

Clusters 2 and 6 were excluded due to size.

(TXT)

S1 Data. Causal network of SARS-CoV-2-infected NHBE cell, Cytoscape file.

(CYS)

S2 Data. Functional overrepresentation results. Reactome and Gene Ontology Biological

Processes (q value� 0.05) for differentially expressed genes (DEGs), protein-protein (PPI)

interaction nodes (human binding proteins, signalling proteins and transcription factors) and

the clusters of the causal network of SARS-CoV-2-infected NHBE cell.

(XLSX)

S3 Data. Network-aware functional overrepresentation results. Reactome and KEGG pro-

cesses (q value� 0.05) for protein-protein (PPI) interaction nodes (human binding proteins,

signalling proteins and transcription factors) of the causal network of SARS-CoV-2-infected

NHBE cell. Generated using ANUBIX algorithm.

(XLSX)

S4 Data. Function-specific network of SARS-CoV-2- infected NHBE cells, Cytoscape file.

(CYS)
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