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Abstract: In the past two decades, conjugated polymers (CPs) have drawn great attention due to their
excellent conductivity and charge mobility, rendering them broad applications in organic electronics.
Controlling over the morphologies and nanostructures of CPs is very important to improve the
performance of CP-based devices, which is still a tremendously difficult task. Conjugated block
copolymers (cBCPs), composed of different CP blocks or CP coupled with coiled polymeric blocks,
not only maintain the advantages of high conductivity and mobility but also demonstrate features of
morphological versatility and tunability. Due to the strong π–π interaction and crystallinity of the
conjugated backbones, the self-assembly behaviors of cBCPs are very complicated and largely remain
to be explored. In this tutorial review, we first summarize the general synthetic methods for different
types of cBCPs. Then, recent studies on the self-assembly behaviors of cBCPs are discussed, with an
emphasis on the structural factors that affect the morphologies of cBCPs both in bulk and thin film
states. Finally, we briefly provide our outlook on the future research of the self-assembly of cBCPs.

Keywords: conjugated block copolymers; block copolymers; self-assembly; microphase separation

1. Introduction

Conjugated polymers (CPs) have alternating single and double bonds in the polymer
backbone, making the polymer chain rigid and conductive. In 2000, the Noble Prize
in Chemistry was awarded to MacDiarmid, Heeger, and Shirakawa in recognition of
their discovery of highly conductive polyacetylene [1]. Despite relatively low charge
mobility and conductivity compared to inorganic materials, conjugated polymers have
extraordinary advantages of solution processability, low cost, light weight, structural
versatility, and easy functionality. CP-based organic electronic materials experienced rapid
development during the past twenty years and have found broad applications in the field of
organic light-emitting diodes (OLEDs) [2–5], organic field-effect transistors (OFETs) [6–8],
organic photovoltaics (OPVs) [9,10], and organic thermoelectrics (OTEs) [11,12], etc.

It has been widely accepted that the performance of CP-based devices is greatly influ-
enced by the micro/nano morphologies in bulk or in thin films. For example, many CPs,
e.g., poly(3-hexylthiophene) (P3HT) [13], show better charge mobility when polymer chains
pack in the “edge-on” orientation (Figure 1a). For OPV devices, the ideal morphology is
the interpenetrated lamellar structure, which is beneficial to the charge separation and
transportation of electrons and holes to different electrodes (Figure 1b) [14]. As a result,
great efforts have been devoted to investigate the controlled formation of desired morpholo-
gies. Many factors, such as annealing condition, polymer solution concentration, selection
of solvent, mole ratio of binary system, molecular weight, etc., can affect the morphologies
of CPs in devices. Therefore, optimizing the morphologies of the active CP-containing
layer is critical and one of the most time-consuming steps in device fabrication. In this
context, conjugated block copolymers (cBCPs) have been proposed as an ideal solution to
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address this issue, since cBCPs might combine the advantages of high conductivity and
mobility of CPs and morphological versatility and tunability of block copolymers (BCPs).
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BCPs are comprised of two or more polymeric blocks with different chemical compo-
sitions connected by covalent bonds. One of the most remarkable and fascinating features
of BCPs is that they can self-assemble into different ordered micro/nano structures both
in bulk and in solutions, which makes them good candidates for practical or potential
applications at various areas, such as biomaterials, biomedicine, porous materials, nano-
lithography, organic electronics, etc. [15–24]. The self-assembly of BCPs in bulk has been
extensively studied since 1960s, and the experimental and theoretical knowledge is well
established [25–33].

In the simplest case of diblock polymers, as shown in Figure 2a, due to the immisci-
bility of two different blocks, they can self-assemble into different ordered morphologies
including spheres (S), cylinders (C), bicontinuous gyroids (G), lamellae (L), etc. The phase
separation behaviors of BCPs depend on three parameters: (1) f, the volume fractions
of the A and B blocks (f A and f B, with f A + f B = 1); (2) N, total degree of polymeriza-
tion (NA + NB = N); (3) χ, the Flory–Huggins interaction parameter between two polymer
blocks. The driving force of the phase separation is the Gibbs energy change in the self-
assembly process, which can divide into mixing enthalpy and mixing entropy. Unlike
binary mixture of small molecules or polymer solutions, the mixing entropy of BCPs is
usually very small. Thus, the product of N and the χ parameter, which describes the degree
of thermodynamic incompatibility between the two chemically different polymeric blocks,
governs the phase separation behaviors in BCP self-assembly. Several theories have been
developed to predict the phase separation behaviors of BCP in bulk [25,34]. Nowadays,
the self-consistent mean-field (SCMF) theory can predict the phase diagram of BCPs in
good agreement with experimental data, as shown in Figure 2b,c. For example, symmet-
ric diblock copolymers (f A = f B = 0.5) self-assemble into lamellar morphology when the
product χN value is larger than the order–disorder transition values ((χN)ODT = 10.5) [26].
In addition, many nonclassical spherical packing phases, e.g., Frank–Kasper phases, have
also been predicted by SCMF [35] and later experimentally discovered in recent years [36].

Compared to traditional BCPs, the study on cBCPs is still in the seminal stage, de-
spite many recent progresses. A flexible polymer chain is usually considered as a Gaussian
chain with a coil configuration, while the polymer chain of CPs is rigid and has a rod-like
configuration. Distinguished from the conventional “coil–coil” type BCPs, cBCPs can be
divided into two categories, namely, the “rod–coil” and “rod–rod” types (Figure 3). The
rigid rod-like backbone of CPs leads to very different self-assembly behavior of cBCPs that
are distinct from conventional “coil–coil” BCPs. For example, the (χN)ODT for symmet-
ric “rod–coil” and “rod–rod” BCPs is 8.5 and 8.2, respectively, as predicted by R. Borsali
et al. [37]. This result indicates that cBCPs containing a rigid block have stronger trend
to phase separate than the “coil–coil” BCPs. In addition, conjugated polymer backbones
have a strong tendency to form crystalline structures, and the melting temperature (Tm) of
crystalline blocks may also affect the morphology and size of the phase separation. When
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the block segregation strength is very high ((χN)/(χN)ODT > 3), crystallization is restricted
in the region of phase separation; when the block segregation strength is lower than the crit-
ical inter-block segregation strength ((χN)/(χN)ODT < 1.5), break-through crystallization
occurs to induce the phase separation; when the segregation strength is in an intermediate
range ((χN)/(χN)ODT = 1.5~3), the crystallization is not completely restricted to the area of
phase separation [38]. However, the self-assembly of cBCPs is very complicated in a real
situation due to the strong π–π interaction between conjugated polymer backbones.
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C and C’ = hexagonally packed cylinders, G and G’ = bicontinuous gyroids, and L = lamellae. (b) Theoretical phase
diagram of AB diblocks predicted by the self-consistent mean-field theory, depending on volume fraction (f ) of the
blocks and the segregation parameter, χN; CPS and CPS’ = closely packed spheres. (c) Experimental phase diagram of
polystyrene-b-polyisoprene copolymers, in which f A represents the volume fraction of polyisoprene, PL = perforated
lamellae. (Reproduced with permission from [28], Copyright Royal Society of Chemistry).
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In this review, we focus on synthesis of cBCPs, their self-assembly behaviors, and in-
fluencing factors for their micro/nano morphology. In the first part, we summarize the
synthetic methods for cBCPs including “rod–coil” and “rod–rod”. Second, we discuss how
cBCPs self-assemble into different morphologies in bulk, solution and thin film. Thirdly,
some influencing factors at the molecular level for cBCP self-assembly will be discussed,
including side chain engineering, regioregularity of the backbone, amphiphilic, etc. We also
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discuss the relationship between the device performance and polymer morphologies in
third part. Finally, we will give a summary and perspective for cBCPs.

2. Synthesis of Conjugated Block Copolymers

As mentioned above, cBCPs are divided into two categories, “rod–coil” (Figure 3b)
and “rod–rod” (Figure 3c), based on the type of polymer blocks. “Rod–coil” cBCPs are
composed of a rigid CP segment and a flexible polymer chain. Benefitting from the fast
development of living polymerization techniques, the synthesis of “rod–coil” cBCPs are
extensively studied, and people are able to synthesize various “rod–coil” cBCPs with
different chemical components. Figure 4 shows representative chemical structures for rod
and coil polymers. However, CPs are synthesized by metal catalyzed coupling reactions,
which usually do not have the “living” feature. In this context, it is still very challenging to
synthesize “rod–rod” cBCPs with well-controlled molecular weight and distribution. In
this part, we will mainly focus on the synthesis of “rod–coil” and “rod–rod” cBCPs, and a
few examples with different topological architecture will be also discussed.
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2.1. Synthesis of “Rod–Coil” Conjugated Block Copolymers

Usually, two strategies are employed to synthesize “rod–coil” cBCPs: (i) polymeriza-
tion from macroinitiator (the grafting-from approach) (Figure 5a), and (ii) the coupling of a
pre-synthesized rod and coil block (the grafting-onto approach) (Figure 6a). The rod CP
blocks are generally prepared by a transition-metal catalyzed coupling reaction, such as
Kumada, Suzuki, and Stille reaction. In order to endow sufficient solubility to CPs, soluble
side chains are usually introduced to the backbone, which is critical to subsequent synthesis
and processing steps. The coil blocks are normally synthesized from vinyl-based monomers
via living/controlled polymerization, such as ionic polymerization, atom transfer radical
polymerization (ATRP) [39], reversible addition−fragmentation chain-transfer (RAFT)
polymerization [40], and nitroxide-mediated free radical polymerization (NMP) [41].
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2.1.1. Grafting-From Approach

Living/controlled polymerization has been used to prepare rod–coil cBCPs from con-
jugated macroinitiator via the grafting-from approach. Among them, the ATRP technique
is widely used due to its simplicity and applicability of various monomers. Generally,
rod blocks are synthesized by transition-metal catalyzed coupling reaction and then func-
tionalized with an ATRP initiator in the chain end for the next living/controlled polymer-
ization step. For example, poly[2,7-(9,9-dihexylfluorene)]-b-poly(tert-butyl acrylate) (PF-b-
PtBA) was synthesized from polyfluorene macroinitiator (PF-Br) by ATRP. Amphiphilic
rod-coil cBCPs poly[2,7-(9,9-dihexylfluorene)]-b-poly(acrylic acid) (PF-b-PtAA) were ob-
tained after excess trifluoroacetic acid (TFA) to hydrolyze PF-b-PtBA [42]. Liu et al. reported
that hydroxy-terminated poly(3-hexylthiophene) (P3HT) was modified by reaction with
2-bromopropionyl bromide to generate macroinitiators, and subsequently, di- or triblock
copolymers were synthesized by ATRP [43]. In addition, donor-acceptor type rod-coil cBCP,
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a diblock copolymer (P3HT-b-C60) based on P3HT and fullerene, was also obtained by per-
forming ATPR on monomers that attach fullerenes to hydroxyethyl methacrylate through
esterification reactions [44]. Different rod–coil cBCPs have been prepared by the ATRP
method, including poly(paraphenylene vinylene)-b-poly(styrene) (PPV-b-PS) [45], poly(1,4-
(2,5-dioctyloxy)phenylene vinylene)-b-poly(methyl methacrylate) (PPV-b-PMMA) [46],
and poly[2,7-(9,9-dihexylfluorene)]-b-poly[2-(dimethylamino)ethyl methacrylate] (PF-b-
PDMAEMA) [47].

Other living/controlled polymerizations, such as living ionic polymerization, RAFT
polymerization, ring-opening polymerization, and NMP, can be also employed to syn-
thesize “rod–coil” cBCPs after installing their corresponding initiators at the end of the
rod block. For example, a series of P3HT-based cBCPs were synthesized by using a
trithiocarbonate-terminated P3HT macromolecular RAFT agent [48]. Stalmach et al. re-
ported that poly(2,5-dioctyloxy-1,4-phenylene vinylene)-b-poly(n-butylacrylate) (PPV-b-
PnBA) was prepared from an acyclic nitroxide PPV macroinitiator [49]. Dai and coworkers
used vinyl end-functionalized P3HT combined with sec-butyllithium to perform the anionic
polymerization of 2-vinyl pyridine monomer and finally obtained poly(3-hexylthiophene)-
b-poly(2-vinyl pyridine) (P3HT-b-P2VP) [50]. In addition, Park et al. synthesized poly(3-
octylthiophene)-b-poly (ethylene oxide) (POT-b-PEO), which uses hydroxyl-terminated
POT and then initiates anionic ring-opening polymerization of ethylene oxide under the
catalysis of potassium naphthalide [51].

Ring-opening polymerization (ROP) and ring-opening metathesis polymerization
(ROMP) have been also used to prepare “rod–coil” cBCPs. For example, hydroxyl end-
functionalized poly(3-alkylthiophene)s (P3ATs) were used as macroinitiators for the con-
trolled ROP of D,L-lactide to afford poly(3-alkylthiophene)-b-polylactide (P3AT-b-PLA) [52].
Radano et al. reported that block copolymers poly(3-hexylthiophene)-b-polyethylene
(P3HT-b-PE) were synthesized through the chain transfer of olefin-terminated P3HT in the
presence of cyclooctene via ring-opening metathesis polymerization (ROMP) [53].

Similarly, “coil” block-based macroinitiators are prepared by chain-end functionaliza-
tion and subsequently used for synthesizing “coil–rod” cBCPs. For example, Cuendias
et al. also report a synthetic route of using a coil block as an initiator to polymerize the rod
part. They synthesized a bromine-containing thiophene derivative to perform ATRP on the
end of the bromine and then conducted oxidative polymerization on the thiophene part
to afford poly(3-hexylthiophene)-b-poly(n-butyl acrylate) (P3HT-b-PnBA) [54]. However,
this strategy is not widely applied due to non-trivial synthesis.

2.1.2. Grafting-Onto Approach

For the grafting-onto approach, a “coil” block and “rod” block are synthesized in-
dividually by different types of polymerization. Then, the as-prepared two blocks are
functionalized with a specific group in the chain end, which can be coupled with each
other (Figure 6a). A highly efficient “click” reaction is usually used for the grafting-onto
approach. Polymers synthesized by ATRP are easily introduced to the azide group in the
chain end by nucleophilic substitution reaction and then react with alkyne functionalized
CPs by the copper (I) catalyzed “click” reaction to afford “rod–coil” cBCPs. For example,
Li et al. synthesized poly(3-hexylthiophene)-b-poly(tert-butyl acrylate) (P3HT-b-PtBA)
by ethynyl end functionalized P3HT and azide functionalized PtBA, in which PtBA was
prepared by ATRP [55]. Lohwasser et al. modified the alkynyl group at the end of P3HT,
which was followed by a click reaction with poly(4-vinylpyridine)(P4VP) polymerized
by NMRP to obtain P3HT-b-P4VP [56]. Saejin et al. also used P3HT modified with an
alkynyl group to react with azide functionalized PEG to obtain P3HT-b-PEG through a
click reaction [57]. Other reactions are also employed for the grafting-onto approach,
such as esterification, nucleophilic addition, condensation reaction, etc. For example,
oligo(phenylene vinylene)-b-poly(ethylene glycol)(OPV-b-PEO) could be prepared through
the esterification reaction between OPV with a carboxyl end and poly(ethylene glycol)
monomethyl ether [58]. Olsen et al. reported the synthesis of poly(2,5-di(2′-ethylhexyloxy)-
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1,4-phenylene vinylene)-b-poly(1,4-isoprene) (PPV-b-PI). Benzene solution of aldehyde-
terminated PPV was injected to quench an anionic polymerization of isoprene to afford the
desired PPV-b-PI [59].

2.2. Synthesis of “Rod–Rod” Conjugated Block Copolymers

Compared to “rod–coil” cBCPs, the synthesis of “rod–rod” cBCPs is still very challeng-
ing, and many reported studies in the literature mainly focus on the poly(3-alkylthiophene)
(P3AT) system prepared by Grignard metathesis (GRIM) polymerization (Figure 7a) [60–66].
GRIM polymerization, also known as Kumada catalyst transfer polymerization (KCTP),
was developed by McCullough’s group in 1999 [67]. Due to its living nature, GRIM polymer-
ization provides a versatile tool to synthesize regioregular poly(3-alkylthiophene) (P3AT)
with well-controlled molecular weight, narrow distribution, and good chain-end function-
ality [68]. For example, Lee and coworkers used sequential GIRM polymerization to ob-
tain poly(3-dodecylthiophene)-b-poly(3-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)methyl thio-
phene) copolymer (P3DDT-b-P3TEGT) [65]. GRIM polymerization can also be used to syn-
thesize donor–acceptor type “rod–rod” cBCPs. Block copolymers poly(3-hexylthiophene)-b-
poly(benzotriazole) (P3HT-b-PBTz) were prepared by the sequential monomer addition of
benzotriazole and thiophene [66].

Polymers 2021, 13, x  8 of 20 
 

 

 
Figure 7. (a) The grafting-onto approach; (b) representative functionalized chain ends and reaction 
types. 

2.3. Other Types of cBCPs 
cBCPs with complex architectures have been reported, such as conjugated multi-

block copolymers [76–78], miktoarm star copolymers [79–83], polymer brushes [84,85], 
dendrimers [86], cyclic polymers [87], etc. Similar to binary cBCPs, polymers of other ar-
chitectures can also be synthesized by using the grafting-from approach and grafting-onto 
approach. For the grafting-from approach, Lee et al. reported PDMSB-b-PS-b-PMMA syn-
thesized by sequential anionic polymerization [78]. There are also some miktoarm star 
copolymers prepared by combining grafting-from and grafting-onto, such as (P3HT)2 
PMMA[82], (P3DDT)2PMMA[80], PMMA2P3HT[81], etc. For polymer brushes, it is usu-
ally used to modify the polymer on norbornene to form a macromonomer and then syn-
thesize conjugated polymer brushes through ROMP, such as P3HT-b-PLA brush copoly-
mers [85]. With the current development of synthesis methods, there are relatively few 
studies on the synthesis and phase separation of complex architectures, and this field still 
needs to be expanded. 

3. Self-Assembly of cBCPs 
3.1. In Bulk 

A lot of research has been published on the topic of “rod–coil” BCP self-assembly. 
“Rod–coil” BCPs show remarkably rich structural morphologies in bulk, such as lamellar 
phases, spherical, cylindrical, smectic, C-type smectic, O-type structure (HPL), hexagonal 
puck phases, hexagonally perforated layer structures, etc. [50,88–91]. Theoretical calcula-
tions also predict that A15 and gyroid phases could also exist in “rod–coil” BCPs. In the 
study of PPV-b-P4VP, Sary et al. found that they can form spherical, hexagonal columnar, 
lamellar, and smectic phases, based on volume fraction of PPV [92]. These results are con-
sistent with theoretical predictions (Figure 8) [93]. However, for the conjugated “rod” 
blocks, they have a strong π–π interaction and are easy to crystallize and thus form fiber 
structures. The self-assembly of cBCPs is more complicated and different from “rod-coil” 
BCPs. The interaction between the anisotropic conjugated rods should be considered. 

Figure 7. (a) The grafting-onto approach; (b) representative functionalized chain ends and reac-
tion types.

Other types of transition metal catalyzed coupling reactions have also been used to pre-
pared “rod–rod” cBCPs (Figure 7b) [69–74]. Lin et al. employed GRIM and Suzuki–Miyaura
polycondensation to prepared a seriels of “donor–acceptor” cBCPs including P3HT-b-
poly(9′,9′-dioctyl fluorene) (P3HT-b-PF), P3HT-b-poly(9′,9′-dioctyl fluorene -alt- benzoth-
iadiazole) (P3HT-b-PFBT), and P3HT-b-poly(2,7-(9′,9′-dioctyl-fluorene)-alt-5,5-(4′,7′-di-2-
thienyl-2′,1′,3′-benzothiadiazole) (P3HT-b-PFTBT) [71]. Ku et al. also used bromine-
terminated P3HT and AA + BB monomer to conduct Stille polymerization to prepare
poly(3-hexylthiophene)-b-poly(diketopyrrolopyrrole-terthiophene) (P3HT-b-DPP) [72].

In recent years, a new type of “rod–rod” cBCPs was reported. Unlike fully conjugated
“rod–rod” block copolymers, two conjugated blocks are connected by a flexible short alky
chain to afford donor–σ–acceptor type “rod–rod” cBCPs. For example, Lee et al. prepared
two types of cBCPs, PTQI-b-PNDIS and PTQI-b-PNDISL, containing quinoxaline-thiophene
(PTQI) and naphthalene dicarboximide-selenophene (PNDIS) blocks, in which PTQI-b-
PNDIS is fully conjugated and PTQI-b-PNDISL is composed of a donor and acceptor block
connected by non-conjugated alkylene spacer [75].

2.3. Other Types of cBCPs

cBCPs with complex architectures have been reported, such as conjugated multi-
block copolymers [76–78], miktoarm star copolymers [79–83], polymer brushes [84,85],
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dendrimers [86], cyclic polymers [87], etc. Similar to binary cBCPs, polymers of other
architectures can also be synthesized by using the grafting-from approach and grafting-
onto approach. For the grafting-from approach, Lee et al. reported PDMSB-b-PS-b-PMMA
synthesized by sequential anionic polymerization [78]. There are also some miktoarm
star copolymers prepared by combining grafting-from and grafting-onto, such as (P3HT)2
PMMA [82], (P3DDT)2PMMA [80], PMMA2P3HT [81], etc. For polymer brushes, it is
usually used to modify the polymer on norbornene to form a macromonomer and then
synthesize conjugated polymer brushes through ROMP, such as P3HT-b-PLA brush copoly-
mers [85]. With the current development of synthesis methods, there are relatively few
studies on the synthesis and phase separation of complex architectures, and this field still
needs to be expanded.

3. Self-Assembly of cBCPs
3.1. In Bulk

A lot of research has been published on the topic of “rod–coil” BCP self-assembly.
“Rod–coil” BCPs show remarkably rich structural morphologies in bulk, such as lamellar
phases, spherical, cylindrical, smectic, C-type smectic, O-type structure (HPL), hexag-
onal puck phases, hexagonally perforated layer structures, etc. [50,88–91]. Theoretical
calculations also predict that A15 and gyroid phases could also exist in “rod–coil” BCPs. In
the study of PPV-b-P4VP, Sary et al. found that they can form spherical, hexagonal colum-
nar, lamellar, and smectic phases, based on volume fraction of PPV [92]. These results are
consistent with theoretical predictions (Figure 8) [93]. However, for the conjugated “rod”
blocks, they have a strong π–π interaction and are easy to crystallize and thus form fiber
structures. The self-assembly of cBCPs is more complicated and different from “rod-coil”
BCPs. The interaction between the anisotropic conjugated rods should be considered.
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For “rod–rod” cBCPs, only a few examples were reported. Due to the strong inter-
action “rod–rod” between blocks, i.e., π–π interaction and crystallization, it is difficult to
prepare ordered nanostructures. The morphologies of “rod–rod” cBCPs are affected by the
competition between rod–rod interaction and phase separation. The theory of “rod–rod”
cBCP self-assembly is not yet clear, and their phase separation is generally independent
of its specific chemical structure and composition. Noting that due to the high rigidity
and poor curl ability of rod blocks, aggregates with curvature, e.g., spherical, are seldom
formed in “rod–rod” cBCPs [94].
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3.2. In Solution

One key research area of cBCPs is their self-assembly behaviors in solution. Am-
phiphilic “rod–coil” cBCPs will self-assemble into various nanostructures depending on
the molecular structures. Usually, amphiphiles with a hydrophobic chain and a hydrophilic
head could self-assemble into spherical micelle, cylindrical micelle, vesicle, and lamel-
lae (Figure 9), which can be predicted by the packing parameter, P = v/(a0lc), in which
v is the volume of the hydrophobic chain, a0 is the polar head surface at the critical
micelle concentration (cmc), and lc is the hydrophobic chain length [95]. Based on this
theory, the aggregates of amphiphilic “rod–coil” cBCPs in solution could be tuned by
changing the ratio of rod/coil. Kim et al. reported that a series of carbohydrate conju-
gate rod−coil amphiphiles with different rod/coil ratios are able to self-assemble into
spheres, vesicles, and cylinders [96,97]. Selective solvent concentration is another pa-
rameter that affects the morphologies of amphiphilic “rod–coil” cBCPs in solution. For
example, poly(phenylquinoline)-b-polystyrene(PPQ-b-PS) formed lamellar structures in
dichloromethane/trifluoroacetic acid(DCM/TFA) (v/v = 1) mixed solvent and cylinders in
DCM/TFA (v/v = 1/9) at room temperature. TFA is a good solvent for the conjugated PPQ
block and protonates its imine nitrogen, while the coil PS block is insoluble in TFA [98].
Tung et al. reported that PF-b-PAA formed a tape-like structure when the coil part is
short. When PAA block increased, various morphologies were observed with methanol
concentration [42]. In addition to rod/coil ratios and selective solvent concentration, there
are also other parameters that drive the self-assembly of “rod–coil” cBCPs in solution
including pH values, temperature, the presence of additives and block compositions, etc.
Several comprehensive reviews related to “rod–coil” cBCPs have been published [99–104].

Polymers 2021, 13, x  10 of 20 
 

 

 
Figure 9. Dependence of nanostructure morphologies on the relative volume fraction of hydro-
phobic and hydrophilic blocks. (Reprinted with permission from Ref [95]. Copyright Royal Society 
of Chemistry). 

3.3. In Thin Film 
Semiconducting CPs can be processed in organic solvents, and their electronic prop-

erties are largely determined by the nanostructure of the film. The orientation of polymer 
backbone is very important and has a remarkable effect on the charge mobility. Sirring-
haus et al. found that mobility of edge-on orientated P3HT was two orders of magnitude 
of face-on orientated P3HT in 1999 [105]. Due to the anisotropy of transport properties, 
when semiconducting CPs self-assemble into edge-on lamellar morphology, charge trans-
portation is more favorable compared to face-on orientation. Serials of “rod–coil” cBPCs 
were synthesized and their morphologies were investigated, including P3HT-b-PS, P3HT-
b-PI, P3HT-b-PMMA, P3HT-b-PEG, etc. For example, Oh et al. designed a P3HT-b-PEG 
polymer in which PEG was amphiphilic and could cause self-assembly at a gas–liquid 
interface. P3HT-b-PEG thin films prepared on an inclined water surface have a long-range 
order and direction-controlled P3HT nanowire arrays, which have better hole mobility 
than P3HT-b-PEG thin films prepared on a flat water surface [57]. Han et al. found that 
P3DDT-b-PLA could self-assemble into lamellar morphology in thin film after solvo-mi-
crowave annealing, in which a P3DDT block has an edge-on orientation [106]. 

In “rod–coil” cBCPs, the coil block are generally insulating polymers and therefore 
will lower the carrier concentration, limiting their device performance. In this context, all 
conjugated “rod–rod” cBCPs have become a focus of interest. Several conjugated “rod–
rod” cBCPs have been synthesized with excellent charge-transporting mobility, and their 
thin film morphologies were also investigated [61–63,107–110]. Zhang et al. synthesized a 
series of highly regioregular poly(3-hexylthiophene-b-3-(2-ethylhexyl)thiophene)s (P3HT-
b-P3EHT) and found that the P3EHT block could induce the self-assembly of P3HT in thin 
film (Figure 10a) [62]. For poly(p-phenylene)-b-(3-hexylthiophene) (PPP-b-P3HT), Yang et 
al. discovered that edge-on and face-on orientation could be tuned by different annealing 
processes (Figure 10c) [111]. End-on orientation is also achieved by “rod–rod” cBCPs. Lee 
et al. prepared poly(3-dodecylthiophene)-b-poly(3-(2-(2-(2-methoxyethoxy)ethoxy)eth-
oxy)methyl thiophene) copolymer (P3DDT-b-P3TEGT). A P3DDT-b-P3TEGT thin film 
showed parallel oriented lamellar microdomains to the substrate in which the polymer 
backbones are perpendicular to the substrate and thus show improved hole mobility 
along the vertical direction compared with P3DDT (Figure 10b) [65]. 

Figure 9. Dependence of nanostructure morphologies on the relative volume fraction of hydropho-
bic and hydrophilic blocks. (Reprinted with permission from Ref [95]. Copyright Royal Society
of Chemistry).

3.3. In Thin Film

Semiconducting CPs can be processed in organic solvents, and their electronic proper-
ties are largely determined by the nanostructure of the film. The orientation of polymer
backbone is very important and has a remarkable effect on the charge mobility. Sirring-
haus et al. found that mobility of edge-on orientated P3HT was two orders of magnitude
of face-on orientated P3HT in 1999 [105]. Due to the anisotropy of transport properties,
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when semiconducting CPs self-assemble into edge-on lamellar morphology, charge trans-
portation is more favorable compared to face-on orientation. Serials of “rod–coil” cBPCs
were synthesized and their morphologies were investigated, including P3HT-b-PS, P3HT-
b-PI, P3HT-b-PMMA, P3HT-b-PEG, etc. For example, Oh et al. designed a P3HT-b-PEG
polymer in which PEG was amphiphilic and could cause self-assembly at a gas–liquid
interface. P3HT-b-PEG thin films prepared on an inclined water surface have a long-range
order and direction-controlled P3HT nanowire arrays, which have better hole mobility than
P3HT-b-PEG thin films prepared on a flat water surface [57]. Han et al. found that P3DDT-
b-PLA could self-assemble into lamellar morphology in thin film after solvo-microwave
annealing, in which a P3DDT block has an edge-on orientation [106].

In “rod–coil” cBCPs, the coil block are generally insulating polymers and therefore
will lower the carrier concentration, limiting their device performance. In this context, all
conjugated “rod–rod” cBCPs have become a focus of interest. Several conjugated “rod–
rod” cBCPs have been synthesized with excellent charge-transporting mobility, and their
thin film morphologies were also investigated [61–63,107–110]. Zhang et al. synthe-
sized a series of highly regioregular poly(3-hexylthiophene-b-3-(2-ethylhexyl)thiophene)s
(P3HT-b-P3EHT) and found that the P3EHT block could induce the self-assembly of
P3HT in thin film (Figure 10a) [62]. For poly(p-phenylene)-b-(3-hexylthiophene) (PPP-
b-P3HT), Yang et al. discovered that edge-on and face-on orientation could be tuned
by different annealing processes (Figure 10c) [111]. End-on orientation is also achieved
by “rod–rod” cBCPs. Lee et al. prepared poly(3-dodecylthiophene)-b-poly(3-(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)methyl thiophene) copolymer (P3DDT-b-P3TEGT). A P3DDT-
b-P3TEGT thin film showed parallel oriented lamellar microdomains to the substrate in
which the polymer backbones are perpendicular to the substrate and thus show improved
hole mobility along the vertical direction compared with P3DDT (Figure 10b) [65].
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For binary donor–acceptor mixed bulk heterojunction (BHJ) solar cells, it is very
challenging to fully control the nano-phase separation in order to achieve better exciton
dissociation at the donor–acceptor interface. Using cBCP is considered to be an ideal
solution to resolve this problem, even though great efforts have been made to tune the mor-
phology of the active layer, including the choice of casting solvent, solvent evaporation rate,
and thermal or solvent annealing. In 2000, Stalmach et al. reported a diblock copolymer
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composed of PPV and polystyrene functionalized with fullerenes(PSFu), in which PS blocks
are partially functionalized with fullerene. In a spin-cast film of PPV-b-PSFu, a micrometer-
scale, honeycomb-like nanostructure is obtained, and luminescence from PPV is quenched
indicating efficient electron transfer to C60 [112]. Zhang et al. report that “rod–coil” donor–
acceptor copolymer poly(thiophene-b-perylene diimide) copolymer P3HT-b-PDI formed
fibrillar morphology in thin film after solvent vapor annealing and gave a power conver-
sion efficiency of 0.49% in a solar cell device. A donor–acceptor type “rod–rod” block can
self-assemble into a donor–acceptor alternating lamellar nanostructure, which is beneficial
for exciton dissociation in organic solar cells. Guo et al. designed and prepared a novel
donor–acceptor type poly(3-hexylthiophene)-b-poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-
bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2′,2”-diyl) (P3HT-b-PFTBT) block copolymer.
By using P3HT-b-PFTBT as an acting layer, 3% efficiency was achieved for OPV devices.
X-ray scattering results demonstrated that the high device performance of P3HT-b-PFTBT
was due to self-assembly into lamellar structures with primarily face-on crystallite orienta-
tions [14].

4. Factors that Affect the Self-Assembly of cBCPs

Many factors will affect the self-assembly of cBCP. Similar to conventional “coil–
coil” BPCs, f, N, and χ could be adjusted to tune the morphology of cBCPs. In addition,
other parameters, such as side chains, regioregularity of the conjugated backbone, block–
block connecting linkers, etc., will also affect cBCP self-assembly.

4.1. Volume Fraction (f)

Similar to “coil–coil” BCPs, the morphologies of cBCPs can be tuned by adjusting the
volume fraction of each block [50,113]. For example, Dai et al. reported that a series of well-
defined P3HT-b-P2VP, synthesized by GRIM and anionic polymerization, showed sphere,
cylinder, lamellae with an increase of P3HT content and finally, a nanofiber structure
appeared when the mass fraction of P3HT was greater than 50% [50]. Sary et al. found
that the morphologies of PPV-b-P4VP changed from a lamellar structure to spherical
structure as the f P4VP increased (Figure 11) [92]. Lee et al. also reported that P3HT-b-P2VP
formed a lamellar structure when f P2VP = 0.30–0.60 and the copolymer exhibited cylindrical
and spherical phases when f P2VP = 0.60–0.80. The phase diagram of P3HT-b-P2VP was
constructed based on the experimental results, noting that the gyroid phase of cBCP was
first found in P3HT-b-P2VP (f P2VP = 0.68) [113].
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4.2. Block–Block Interactions (χ and µ)

For cBCPs, the morphology is not only governed by enthalpic interaction, which
is defined as a Flory–Huggins interaction parameter (χ), but it is also affected by the
Maier–Saupe parameter (µ), which characterizes the rod–rod interactions. For exam-
ple, Lee et al. prepared a series of P3HT-b-P2VP block copolymers [113]. When χNtotal
> µNP3HT, the polymer tends to microphase separation to produce various microphase
structures including lamellae, cylinder, sphere, and gyroid; otherwise, the polymer forms
a nanofiber morphology. Especially, for donor–acceptor cBCPs, the donor and acceptor
block have a strong interaction, which makes χ very small or even negative, leading to a
difficulty of self-assembly.

4.3. Degree of Polymerization (N)

The microphase separation from the traditional coil–coil copolymer suggests that in-
creasing N promotes phase separation. Kynaston et al. synthesized Poly(3-dodecylthiophene)-
b-poly(3-dodecylselenophene) (P3DDT-b-P3DDS) with a block ratio of approximately 1:1
(Figure 12). When the degree of polymerization is relatively low (N < 35), lamellar struc-
tures are formed due to the crystallization of each block. However, when N is increased,
thiophene and selenophene blocks co-crystallize into fibers (N = 50–60) and patchy fiber
(N > 80). Field-effect transistors testing showed that co-crystalline fibers have the best
device performance [114].
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4.4. Side Chain Engineering

In the synthesis of CPs, soluble side chains are usually introduced to the rigid polymer
backbone not only because they can endow polymers with sufficient solubility but also
they can tune the packing and morphologies of polymer chains [115–117]. P3HT has a
strong π–π interaction and tends to crystallize at room temperature. Replacing hexyl with a
longer or branched side chain will largely decrease π–π interaction, leading to micro phase
separation. Lin et al. synthesized three different poly(3-alkylthiophene)-b-poly(methyl
methacrylate)(P3AT-b-PMMA)s by changing the length of the side chain of thiophen. At
approximately f P3AT = 0.5, P3AT-b-PMMA showed versatile morphology depend on the
side chain length of thiophene, and the χ value was also calculated (Figure 13a) [118].



Polymers 2021, 13, 110 13 of 20

Guo et al. found that all conjugated block copolymers, P3HT-b-PFTBT, self-assemble into a
small domain size (<10 nm) after introducing a side chain into the PFTBT unit, leading to
poor OPV performance. This probably is because the miscibility of P3HT and PFTBT has
become better, resulting in weaker phase separation [14].
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All conjugated donor–acceptor BCPs always suffer from poor ability to phase sep-
arate due to the strong interaction between the donor and acceptor blocks. Introducing
immiscible side chains into different blocks, which can increase the χ between the donor
and acceptor blocks, can resolve this problem. For example, Mitchell et al. designed an am-
phiphilic block copolymer P3HT-b-PFTBT with a hydrophilic tetraethylene glycol side chain
attached to the acceptor [35]. This structure can better control the microphase separation
and can form well-defined structures in thin film. However, the performance of devices pre-
pared from this material was unexpectedly low, which was probably due to poor electron
transport through steric-induced twisting of the acceptor backbone. Adding fluorine-
containing side chains can also increase the incompatibility between blocks. Lombeck et al.
prepared SF-PCDTBT-b-P3HT in which the side chain on the donor unit was fluorinated
(Figure 13b). This material has a strong tendency of phase separation due to the introduc-
tion of semi-fluorinated side chains. A bi-continuous structure, which is beneficial for
charge separation and charge transfer, is formed, leading a power conversion efficiency of
1% when using this block polymer as an active layer in a solar cell device [119].
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4.5. Regioregularity

For P3AT-based “rod–coil” cBCPs, the morphologies in bulk or thin film can be modu-
lated by controlling over the regioregularity (RR) of the P3AT block. Kim et al. designed
a series of P3HT-b-P2VP with different RR. High RR P3HT-b-P2VP has a very strong in-
terchain interaction and is preferential to crystalline, which makes it difficult to form an
ordered nanostructure. In contrast, crystallization is inhibited in low RR P3HT-b-P2VP and
well-ordered nanostructures are achieved, i.e., lamellar and cylindrical phases [120]. They
also found that the domain space of poly(3-dodecylthiophene)-b-poly(2-vinylpyridine)
(P3DDT-b-P2VP) can be tuned by regulating the RR of the P3DDT block (Figure 14) [121].
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In addition, RR also affects the crystalline temperature of PAHT and subsequently
has an influence on the self-assembly behaviors. For example, the crystal growth of low
RR (70–80%) P3DDT-b-P2VP, which has a low crystallization temperature below the glass
transition of P2VP, is confined by the cylindrical or lamellar BCP structure. The phase
separation is dominated by rod–coil segregation. Thus, high RR (94%) P3DDT-b-P2VP
crystalline at a temperature higher than the glass transition of P2VP and only a lamellar
structure is formed, which is attributed to the geometric compatibility between crystal
growth and self-assembled symmetry [122].

4.6. The Influence of Middle Bridge

For “rod–rod” cBCPs, the block–block connecting linker can be tuned to control the
interface between the donor and acceptor domain in bulk or thin film [100]. Lee et al.
synthesized two types of cBCPs (Figure 15a), which were PTQI-b-PNDIS with two blocks
connected by a π conjugated unit and PTQI-b-PNDISL with two blocks connected by a non-
conjugated spacer. They found that PTQI-b-PNDISL shows a more prominent nanophase
behavior compared to PTQI-b-PNDIS. In addition, because of the flexible spacer buffer
between the two blocks, each block appears as an independent crystallization behavior
leading to the power conversion efficiency of PTQI-b-PNDISL as high as 1.54%, while PTQI-
b-PNDIS is only 0.36% (Figure 15b) [75].
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4.7. Active Nanoparticles

Adding active nanoparticles is another strategy to adjust the π–π interaction between
rod blocks. Loudy et al. reported that the thin film morphologies of poly(3-hexylthiophene)-
b-poly(ethylene glycol methyl ether methacrylate) (P3HT-b-PEGMA) are changed from
fibrils structure into out-of-plane cylinders after incorporating gold nanoparticles with
PEG ligands. This is because the crystallization of the rod block was destroyed, and the
self-assembly is driven by nanophase segregation [123]. Ye et al. found that titanium
dioxide (TiO2) nanoparticles (NPs) are preferentially confined in the P2VP domains when
P3HT-b-P2VP mixed with nicotinic acid-modified TiO2 NPs. At the addition of TiO2 NPs
to 40 wt % or higher, the morphologies of lamellar and cylindrical structures are disturbed.
P3HT-b-P2VP/TiO2 hybrid materials exhibit a > 30 fold improvement in power conversion
efficiency compared to the corresponding P3HT/P2VP/TiO2 polymer blend hybrid in a
solar cell device [124].

5. Summary and Outlook

cBCPs have been considered as a novel type of materials with unique chemical struc-
tures, excellent electronic properties, and, more importantly, diverse self-assembly behav-
iors. In this review, we have summarized the recent progresses on the synthesis methods
of different types of cBCPs and their self-assembly in solution, solid films, and thin films.
We have also discussed the influences of several parameters on the morphology of cBCPs
and the resulting electronic properties and device performance. Despite all the recent
studies on cBCPs, this field still remains largely unexplored with many problems to be
solved. From our perspective, first, a new synthetic methodology needs to be developed,
especially for the synthesis of fully conjugated block copolymers. Second, compared to the
“rod–coil” cBCPs, the “rod–rod” cBCPs have fully conjugated backbones and therefore are
expected to have better conductivity and better electronic properties. However, feasible
control over the morphology of such “rod–rod” cBCPs is still a grand challenge due to the
strong inter-chain interactions and the stiffness of the conjugated backbone. Side-chain
engineering is recognized as an effective solution to this problem. Thirdly, it is expected
that the collaboration of theoretical studies with experimental investigation could provide
more insights to guide rational designs to further improve the morphological control and
performance of cBCP materials.
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