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Abstract 
 

The majority of cellular proteins interact with at least one partner or assemble into molecular-
complexes to exert their function. This network of protein-protein interactions (PPIs) and the composition 
of macromolecular machines differ between cell types and physiological conditions. Therefore, 
characterizing PPI networks and their dynamic changes is vital for discovering novel biological functions 
and underlying mechanisms of cellular processes. However, producing an in-depth, global snapshot of PPIs 
from a given specimen requires measuring tens to thousands of LC-MS/MS runs. Consequently, while 
recent works made seminal contributions by mapping PPIs at great depth, almost all focused on just 1-2 
conditions, generating comprehensive but mostly static PPI networks. 

In this study we report the development of SEC-TMT, a method that enables identifying and 
measuring PPIs in a quantitative manner from only 4-8 LC-MS/MS runs per biological sample. This was 
accomplished by incorporating tandem mass tag (TMT) multiplexing with a size exclusion chromatography 
mass spectrometry (SEC-MS) work-flow. SEC-TMT reduces measurement time by an order of magnitude 
while maintaining resolution and coverage of thousands of cellular interactions, equivalent to the gold 
standard in the field. We show that SEC-TMT provides benefits for conducting differential analyses to 
measure changes in the PPI network between conditions. This development makes it feasible to study 
dynamic systems at scale and holds the potential to drive more rapid discoveries of PPI impact on cellular 
processes.  
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Introduction 
 
The majority of cellular proteins interact with at least one partner or assemble into molecular-complexes to 
exert their function. Thus, a growing interest within the molecular and systems biology community is to 
globally map protein-protein interactions (PPIs) and their rewiring upon perturbation in an effort to better 
understand protein functions, molecular processes and cellular architecture. In line with this, multiple 
methods have been applied to the identification and quantification of PPI networks in living cells and 
tissues. Recently, seminal studies have used affinity purifications (AP) or proximity biotinylation (PB) on 
up to thousands of bait proteins to map the human cellular PPI networks in great depth – identifying nearly 
150,000 interactions between ~15,000 proteins (spanning ~75% of the human genome)1–5. However, these 
approaches rely on targeting proteins-of-interest with antibodies or by genetically fusing affinity-tags or 
enzymes – limiting the resulting networks to the chosen bait proteins. Additionally, generating extensive 
PPI networks using bait-reliant methods requires measurement of thousands of samples from a given 
biological condition – a feat only feasible for specialized labs with abundant resources, such as dedicated 
mass spectrometer (MS) instrument(s). 
 Alternatively, discovery of PPIs is possible through protein correlation profiling (PCP) in co-
fractionation (CF) experiments, where samples are fractionated based on protein biochemical properties 
(e.g., pH, isoelectric points, or size exclusion chromatography (SEC)) under physiological conditions that 
favor PPIs. Subsequent analysis of the correlation between the elution profiles of different proteins predicts 
their physical interaction6–12. Such CF methods are untargeted and are not dependent on antibody 
availability or the ability to transfect/ transduce the sample, enabling global analysis of PPIs from virtually 
any sample. However, CF methods are sensitive to missing datapoints, and traditional data-dependent 
acquisition (DDA) liquid chromatography tandem mass spectrometry (LC-MS/MS) methods are prone to 
data incompleteness due to their bias toward abundant proteins. To compensate, recent CF studies used data 
independent acquisition (DIA) LC-MS/MS methods and significantly improved coverage and 
completeness10. With the increased usage of SEC-DIA (also termed “SEC-SWATH”) and other CF 
methods, multiple analysis tools have been developed - such as SECAT13, CCprofiler10, and PCprophet14 - 
which focus on quantitative, error-rate controlled analyses of known protein interactions and molecular 
complexes, as well as other methods like EPIC15 and PrInCE16, which are more geared toward discovery of 
novel interactions. 

Co-fractionation methods result in tens to hundreds of fractions per sample and thus, even the most 
comprehensive studies to date have been limited to profiling PPIs from just 1-2 conditions, thereby 
producing mostly static PPI networks. On the contrary, recent studies show that PPI networks are dynamic 
and highly dependent on the cell state3,7,17–21. In addition, PPIs are context dependent, varying between 
tissues and cell types12. Thus, to reveal how PPI dynamics shape biological function, more efficient methods 
that will enable larger studies like extensive time-courses or differentiating numerous biological conditions 
are still required. 

To develop an efficient method to measure PPIs at scale with only a handful of LC-MS/MS runs 
we combined size exclusion chromatography (SEC) – a CF method that requires no more than 40 fractions 
to reliably quantify thousands of PPIs22 – with multiplexing using Tandem Mass Tags (TMT). TMT is 
compatible with biochemical CF7, and it allowed us to increase throughput and significantly reduce 
measurement time without compromising quantitation. The resulting “SEC-TMT” method enables global, 
differential quantitative analysis of PPIs from only 4-8 LC-MS/MS runs per biological sample, reducing 
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measurement time by an order of magnitude compared to the field’s gold standard, while maintaining the 
same levels of coverage and resolution. 
 
Results 
 
Development of SEC-TMT – labeling and multiplexing design 

We set out to test the feasibility of SEC-TMT by conducting SEC on HEK293 cells in two 
biological replicates and multiplexing the resulting 72 fractions per replicate with TMT18 reagents. To 
offset the low coverage of data dependent acquisition (DDA), SEC-adjacent fractions were multiplexed 
within the same TMT mix. This mixing scheme minimized the occurrence of missing data points per SEC 
elution peak since once a peptide was triggered for MS2 acquisition TMT reporter intensity values were, 
in most cases, assigned to all channels. In addition, we designed a “full-overlap” scheme in which we split 
every fraction in two and measured it twice, in different mixes (Figure 1, S1A). Such a design addresses 
the need for a shared reference channel between any two mixes for mix batch correction while maintaining 
low mix complexity. Indeed, we found that this approach improves signal and protein coverage compared 
to using a spike-in made of 
subsampling all fractions 
(data not shown) or having 
no-overlap between mixes 
(Figure 1B, S2A-B). We 
then used the false-
discovery-rate (FDR) 
controlled analysis tool 
SECAT13 to identify high-
confidence PPIs and showed 
that the full-overlap scheme 
significantly increased the 
number of PPIs by nearly 3 
fold compared to the non-
overlap schemes (Figure 
S2C). While the 10% 
increase in protein IDs was 
expected from doubling the 
number of measurements, 
we were positively surprised 
by the large increase in PPIs 
recovered by the full-
overlap scheme. Therefore, 
we concluded it justified 
doubling the number of LC-
MS/MS runs and all 
subsequent experiments 
were conducted with the 
full-overlap scheme.  

Figure 1: Overview of SEC-TMT experimental workflow 
(A) Cells are lysed under physiological conditions, followed by fractionation on a 
size exclusion chromatography (SEC) column into ~90 fractions. After BCA 
quantification of the resulting fractions, protein-containing fractions are selected 
(54-72 fractions total) for further processing. Samples are then denatured, 
reduced, alkylated and digested using trypsin. The resulting peptides are directly 
labeled by TMT and multiplexed. TMTplexes are then desalted prior to being 
injected on the LC-MS/MS. (B) A “full overlap” mixing scheme was developed for 
SEC-TMT, in which each fraction is divided in two and each half is measured in 
two different mixes, keeping adjacent fractions together in a mix.  
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An additional hurdle in SEC-MS experiments is the high number of samples to process for LC-
MS/MS. To overcome this, we modified the TMT labeling method (Figure 1A, and detailed in the 
“Materials and Methods” section) in a manner that obviates the need for peptide desalting in individual 
fractions prior to TMT labeling. Following digestion, peptides were immediately labeled in the adjusted 
digestion/labeling buffer and desalted only after multiplexing. This protocol resulted in a mean labeling 
efficiency of 98.3%, comparable to the classic protocol (mean 98.7%). Therefore, multiplexing did not only 
reduce measurement time, but also decreased sample processing. 
 
SEC-TMT shows comparable performance to SEC-DIA in coverage and resolution, using considerably less 
measurement time 

To evaluate the performance of SEC-TMT compared to the field’s current gold standard, SEC-
DIA, we performed two additional replicates of SEC from HEK cells, and measured each single fraction 
by label-free DIA. This comparison showed that SEC-TMT had strikingly similar elution patterns as SEC-
DIA, evident by the positions of the elution peaks per protein (Figure 2A). As expected, the DIA dataset 

Figure 2: SEC-TMT shows comparable performance to SEC-DIA in coverage and resolution 
(A) Heatmap representation comparing signals in SEC-DIA and SEC-TMT, for proteins measured in both. Columns 
represent fractions, rows represent different proteins, which are scaled from 0 to 1 so that the max elution peak per 
protein is represented in red. Rows in both heatmaps are arranged in the same order. (B-C) The number of (B) 
peptides and (C) proteins identified over two biological replicates of SEC-DIA and SEC-TMT. (D) The number of 
interactions identified by SECAT analysis (q-value < 0.05). Mean +/- std deviation, n = 5 SECAT runs. (E) The 
overlap of interactions between SEC-DIA and SEC-TMT, q-value < 0.05 in at least one condition and < 0.1 in the 
other, (see main text for details), in at least 3 SECAT runs. (F) Network statistics of the PPI networks from SEC-
DIA and SEC-TMT (calculated with Cytoscape). 
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had overall more identifications (~20% at the peptide level and ~10% at the protein level, Figure 2B-C). 
Nevertheless, we found that the 10% coverage difference was worth the 90% decrease in LC-MS/MS runs. 

We then ran SECAT on each dataset independently to identify interactions and compare the 
resulting networks. In both datasets, SECAT was able to build a classifier that successfully distinguished 
between decoy and targets based on their discriminant score (Figure S2D). In order to identify high-
confidence interactions we ran SECAT five times on each dataset and set a strict cutoff of 5% FDR 
(interaction q-value < 0.05) required in at least three out of five runs. We initially observed that 34% of the 
interactions were mutual to both datasets, but found a large number of interactions unique at a q-value < 
0.05 cutoff were very close to the cutoff in the other experimental setup (Figure S1F). Therefore, we 
adjusted the cutoff to include any interaction with a q-value between 0.05 and 0.1 (in at least 3 out of 5 
SECAT runs), if its q-value was lower than 0.05 in the other dataset. With this adjusted cutoff we observed 
that 54% of interactions were identified in both datasets (2,725/5,071), while 29% (1,483/5,071) were 
unique to DIA and 17% (863/5,071) unique to TMT (Figure 2E). Analysis of the resulting PPI networks 
and their quantitative parameters showed that the DIA and TMT based networks are similar in their 
architecture (Figure 2F, S2E). Further inspection of the networks and the signals of specific complexes and 
their subunits revealed a few potential explanations for differences in the networks. In some cases, not all 
interactors were measured. In other cases, despite full coverage of the interactors, missing interactions may 
have stemmed from small interfering signals of individual proteins (e.g., CCT7, Figure 3A-C) or from not 
passing the SECAT cutoff (e.g., VBP1, Figure 3D-F). 

Additionally, since a major interest of PPI studies lies in identifying novel interactions, we used a 
different analysis tool, EPIC15, to identify reference-free interactions in SEC-TMT and SEC-DIA. This 
analysis resulted in 12,620 and 14,406 PPIs in SEC-TMT and SEC-DIA, respectively. 

 

Figure 3: Signal 
reproducibility between 
SEC-DIA and SEC-TMT for 
exemplary complexes 
(A,D) SEC chromatograms 
for subunits of selected 
complexes (fractions on the 
x-axis, normalized signal 
intensity on the y-axis), 
color-coded as denoted in B 
and E. (B,E) Heatmaps 
representing the scaled 
elution profiles of all 
complex subunits presented 
in A and D. (C,F) network 
representation of complex-
subunit interactions as 
identified by SECAT. Edge 
color represents whether it 
was identified in SEC-TMT 
only (orange), SEC-DIA 
only (blue), or both (black). 
A-C show the TRiC-CCT 
complex, D-F show the 
prefoldin complex.  
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In order to further evaluate SEC-TMT as an interactome building method, we compared the 
coverage and the numbers of PPIs per LC-MS/MS run in SEC-TMT interactomes generated by SECAT 
and EPIC to their matching SEC-DIA interactomes and to published interactomes produced by a variety of 
methods1–7,11–13,23 (Figure 4). SEC-TMT generated the largest number of PPIs per MS run, validating it as 
a useful method for generating large-scale interactomes in shorter time. In conclusion, SEC-TMT 
performed comparably to SEC-DIA and other published (non-SEC) methods in building the human PPI 
network while requiring an order of magnitude less measurement time. 

 

SEC-TMT enables quantitative differential comparison between multiple samples 
The order-of-magnitude reduction in measurement time of SEC-TMT facilitates experimental 

designs with multiple conditions, and renders SEC-TMT a viable approach for studying context-dependent 
interactions and dynamic changes in PPI networks. Therefore, we evaluated the use of SEC-TMT for 
differential quantitative analysis using SECAT. To this end, we decided to compare the PPI network of 
HEK293 versus HCT116 cells, two commonly used cell lines.  

Figure 4: SEC-TMT performs on par with published methods, at an order-of-magnitude reduction in 
measurement time 
Evaluating the performance of MS-based methods for PPI identification through overall number of high-confidence 
interactions identified (x-axis, log2 scaled), number of interactions identified per MS run (y-axis, log10 scaled) and 
total number of protein identifications (symbol area). Symbol shape represents mode of analysis; allowing 
identification of novel interactions (circles), or a more conservative analysis based on query of known PPI databases 
(diamonds). Symbols are color coded based on the method used (CF = co-fractionation, including SEC, AP = affinity 
purifications, PB = proximity biotinylation, XL = crosslinking). 
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In order to maximize our ability to perform quantitative differential analysis between two samples 
that differ in their global protein expression profiles, we minimized variability in protein coverage between 
the two cell-lines by multiplexing them together in the same mixes (Figure 5A, S1B). We hypothesized this 
multiplexing scheme would reduce the likelihood of identifying an interaction in one cell but not the other 
due to one of the interactors having missing values (if it was not triggered for MS2 in that sample).  

Fifty-four SEC fractions were collected from each cell line, in two biological replicates. Every 9 
consecutive fractions from both cells were multiplexed together into one mix while still maintaining a “full 
overlap” between every two mixes, yielding 12 mixes of 18 channels per biological replicate (Figure S1B). 
Overall, we measured 53,816 peptides covering 5,357 proteins in both cell types. We then analyzed the data 
using SECAT to identify high confidence PPIs (at 5% FDR in at least one condition and 10% in the other, 
as described above, Figure S3C) and quantified their abundance in order to investigate the differences in 
PPIs between the two cell-types. The resulting network had 1,117 nodes and 4,599 edges of which 85% 
and 87.5% were shared, respectively (Figure 5B-C). While the high overlap in node identification is 
expected from the multiplexing scheme (the same proteins in HEK and HCT were measured and 
quantified), we were surprised to see such agreement in PPIs between two different cell types. Therefore, 
we wanted to find which overlapping interactions showed quantitative changes between the two samples. 

To evaluate the reliability of our SEC-TMT differential quantification, we measured the global 
protein expression of each unfractionated original sample using DIA and plotted the resulting ratio changes 
in protein expression (HCT/HEK) against the ratio of the “total abundance” (HCT/HEK) calculated by 
SECAT directly from our fractionated SEC-TMT sample (Figure S3A) and observed a high-degree positive 
correlation between the values (R2 = 0.58), indicating that SEC-TMT enabled accurate quantification.  

Figure 5: designing a TMT 
multiplexing scheme to 
maximize coverage of 
shared proteins and 
interactions between two 
different conditions  
(A) HEK and HCT cells were 
lysed, fractionated and 
labeled separately, in two 
biological replicates each. 
HEK fractions were labeled 
with the C-channels of the 
TMT reagent and HCT 
fractions with the N-channels 
of the TMT-channels to 
reduce signal bleed through 
between samples. HEK and 
HCT labeled fractions were 
then multiplexed together, 
maintaining a “full-overlap” 
scheme between adjacent 
mixes. (B-C) The overlap of 
nodes (proteins, B) or edges 
(interactions, C) in the PPI 
networks resulting from 
SECAT analysis.  
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Next, we turned to quantitative comparison between the HEK and HCT PPI networks. To estimate 
the extent of proteins participating in differential interactions between the two cell lines, we used the 
differential ratio of SECAT’s interactor abundances (HCT/HEK), defined as the abundance ratio 
(HCT/HEK) within the interaction region for any protein participating in an interaction (such that a given 
protein with multiple interaction partners will have several interactor abundance values assigned to it - one 
for each of its interactions). We defined an interactor as “significantly differential” using a cutoff of 50% 
up- or down-regulation (absolute log2 ratio > 0.58) and identified 249 unique proteins in interactions 
upregulated in HCT cells and 208 in HEK cells (Figure 6A). As expected, we observed a strong correlation 
between the fold changes in interactor-abundances (HCT/HEK) and the fold changes in global expression 
as measured by DIA (R2 = 0.63, Figure 6B), suggesting that the majority of interaction differences are 
driven by differential expression of the interacting proteins. Subsequent GO term enrichment analysis24 of 
the resulting enriched protein lists showed that these proteins represent distinct molecular functions in each 
cell type (Figure 6C-D), such as the ribosome, cell adhesion, and actin binding in HCT cells and DNA 
catalytic activity, helicases, ligases and deacetylases in HEK cells. 

Lastly, we quantified the network differences on the edge-level using the “complex abundance” 
parameter, which quantifies the ratio (HCT/HEK) of the summed abundances of both interactors in the 
interaction region. Based on the distribution of these ratios we set a cutoff of 50% change (absolute log 
ratio > 0.58, Figure S3B) to call an edge quantitatively “differential” between the two conditions. We then 
mapped these differences to scale the edge color in our network (see figure S4 for the full network 
representation). A handful of complexes were found to have many differential edges between HEK cells 
and HCT cells (Figure 6E-F), representing potentially altered molecular functions in line with the above 
node-level GO analysis. For example, ribosomal proteins were driving the enrichment in GO terms 
“Structural constituent of ribosome” and “rRNA binding” in HCT cells and the GINS complex subunits are 
part of the GO term “catalytic activity acting on DNA” enriched in HEK cells. Others, however, were 
mostly quantified as un-changed, as seen in the example of the COP9 signalosome3 (Figure 6G). Taken 
together, our data show SEC-TMT is compatible with downstream quantitative analyses geared towards 
identifying potential protein- and interaction-state differences in the PPI network.  
 
Discussion 
 

In this study we developed SEC-TMT, a multiplexed SEC-MS method for PPI identification and 
differential quantification, and showed that it performs as well as state-of-the-art label free SEC-MS 
methods, in a fraction of the time. Additionally, we displayed how careful multiplexing design can 
overcome coverage issues associated with TMT-based acquisition and position SEC-TMT as especially 
well-suited for quantifying differences in PPIs between samples. The strong reduction in measurement time 
combined with the quantitative advantages shown here are expected to bolster comparative studies of PPIs.  

One of the most straight forward advantages of SEC-TMT is the vastly reduced instrument time, 
an improvement that can makes global protein interaction experiments accessible in non-specialized labs. 
In addition, SEC-TMT opens the possibility for larger study designs, comparing multiple conditions and 
exploring how PPI networks changes over a time-course or under multiple experimental and physiological 
conditions, to better understand the ramifications of PPI dynamics.  
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Figure 6. SEC-TMT enables quantitative differential comparison between multiple samples  
(A) Distribution of Log2 ratios of interactor abundance values between HCT and HEK cells for all nodes in the 
mutual network. Colors represent changes greater than 50% toward either HCT (purple) or HEK (green), or 
unchanged (gray). (B) Scatterplot of interactor abundance ratios against ratios of total expression as measured by 
DIA (log2, HCT/HEK) (C-D) GO terms (molecular function, non-redundant) found to be enriched in the list of nodes 
with differential interactor abundances (color codes as shown in B) at FDR < 0.1 (as analyzed by WebGestalt). (E-
G) Examples of protein interaction networks for the small ribosomal subunit (E), the GINS complex (F), and the 
COP9 signalosome complex (G). Edge line type represents interactions that were only identified in a single 
condition (dotted, purple for HCT, green for HEK) or in both (solid). For the solid edges, edge color is scaled by 
ratio (HCT/HEK) of complex abundance values as shown in the scale bar (purple - stronger in HCT, green - stronger 
in HEK, gray - unchanged). Solid black edges represent interactions that were identified as significant in both cell-
lines but were not assigned a complex abundance value by SECAT. Nodes are colored on the same scale, based 
on HCT/HEK ratios of global expression as measured by DIA quantification of the non-fractionated original sample. 
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In addition, SEC-TMT opens potential avenues for previously unexplored types of protein 
interactions studies. By multiplexing 18 fractions together, the effective initial input amount required per 
fraction is theoretically reduced by a factor of 18 (or 9 in the full-overlap scheme), potentially making it 
possible to investigate rare samples. Alternatively, the reduced input may allow enrichment of chemical 
modifications (e.g, phosphorylation, acetylation, and others) downstream from SEC and enable post 
translational modification (PTM) mapping on top of the SEC data layer – opening the possibility of 
distinguishing between the interactions of different protein isoforms to analyze how PTMs affect PPIs.  

However, there are some caveats and disadvantages to consider when choosing between label-free 
or TMT based SEC analyses. First, the cost of the TMT labeling reagent is high and it increases the price 
of these experiments significantly compared to label free SEC-MS (however, this is to a large part off-set 
by the reduced instrument time needed). Second, even with the full overlap multiplexing scheme developed 
here, SEC-TMT still does not reach the same coverage as SEC-DIA and is biased towards analysis of the 
more abundant proteins in the sample. However, the provided “full-overlap” mixing schemes largely 
mitigate issues with coverage. Third, SEC-TMT also requires more sample processing steps, including 
labeling, generation and measurement of labeling controls, and additional signal processing and data 
handling steps before using PPI analysis algorithms like SECAT, EPIC, PRINCE, or CCprofiler. All of 
these additional steps require time and are potentially prone to the introduction of errors and should be 
performed with consideration. However, using the direct TMT labeling protocol described here, sample 
processing is considerably reduced and our scripts for the additional data processing steps are available.  

In conclusion, this study laid the ground for multiplexing CF samples to significantly reduce the 
required measurement time and offer advantages for differential PPI quantification. We hope that this 
advancement will pave the way for more labs to explore PPI networks in a dynamic manner in order to 
enhance our understanding of the molecular architecture of the cell and provide new insights into molecular 
functions and regulatory mechanisms involved in protein regulation. 
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Materials and Methods 
 
Cell culture 
HEK293XT cells (Takara Bio Lenti-X 293T, #632180) were a provided by the Yeo lab at UC San Diego 
(SEC-DIA versus SEC-TMT experiments), or purchased from ATCC (ATCC, CRL-3216, in HEK vsersus 
HCT experiments), HCT116 cells were provided by the Prives lab at Columbia University. HEK cells were 
cultured in DMEM (containing L-glutamine and Sodium pyruvate) and HCT in McCoy’s 5A media. Both 
media were supplemented with 10% Fetal Bovine Serum and Penicillin (100 U/mL) Streptomycin (100 
μg/mL). Cells were grown to 80-90% confluency and were harvested at passages 6-20. 
 
Sample preparation for SEC 
SEC sample preparation was as previously described in Bludau et al. 202025. Cells (25-40 million per 
sample) were harvested by scraping in ice cold PBS, washed and pelleted. Pellets were flash frozen in liquid 
nitrogen and stored in -80 °C. Upon thawing, cell pellets were lysed in cold lysis buffer (for TMT versus 
DIA comparisons: 150mM NaCl, 50mM Tris pH 7.5, 1% IGPAL-CA-630, 5% Glycerol; for HEK-HCT 
experiments: 50 mM HEPES pH 7.5, 150 mM NaCl, 0.5% NP40) supplemented with 50mM NaF, 2mM 
Na3VO4, 1mM PMSF, and 1X protease inhibitor cocktail (Sigma), followed by 10-30 minutes incubation 
on ice with intermittent vortexing. Cell lysates was then pre-cleared by 10 minutes centrifugation at 10,000g 
(4 °C) followed by 20 minutes of ultracentrifugation at 100,000 g, 4 °C. To dilute detergents in the buffer, 
samples underwent buffer exchange on Amicon® ultra-0.5 centrifugal filter with 30 kDa molecular weight 
cutoff (Sigma) into 50 mM HEPES pH 7.5, 150 mM NaCl and 50 mM NaF in iterative steps of no larger 
than 1:3 dilutions. The final dilution ratio of the original lysis buffer to detergent free buffer was 1:50. The 
cell lysate was further cleared by 5 minutes of centrifugation at 17,000 g, 4 °C. The concentration of the 
supernatant was measured by Nanodrop spectrophotometer (Thermo Scientific) and adjusted to 20-
50mg/ml. Two mg of lysate were loaded on the SEC column per run. 
 
SEC 
Size exclusion was conducted on an Agilent 1260 Infinity II system operated with Agilent OpenLAB 
ChemStation software (version C.01.09). Two mg of cell lysate at 20-50mg/ml were loaded onto a Yarra 
SEC-4000 column (Phenomenex 00H-4514-K0, 3μm silica particles, 500A pores, column dimensions: 300 
x 7.8mm) and fractionated in SEC running buffer (50 mM HEPES pH 7.5, 150 mM NaCl) at a flow rate of 
1ml/min (first TMT experiment) or 0.5ml/min (all other experiments) and 100μL fractions were collected 
between minutes 6.5 to 16 or 11 to 30, respectively into 96 Well DeepWell Polypropylene Microplates 
(Thermo Scientific).  
 
Protein digestion and desalting  
Following SEC fractionation protein concentration was measured using the Pierce™ BCA protein assay kit 
(Thermo Scientific) based on the manufacturer’s instructions. Equal volumes (~80μL) from each of the 
fractions containing proteins (54 - 72) were subsequently processed. Proteins were denatured by incubation 
with an equal volume of urea buffer containing 8 M urea, 75 mM NaCl, 50 mM HEPES (pH 8.5) and 1 
mM EDTA at 25 °C, 600 rpm for 20 mins in 96 Well DeepWell Polypropylene Microplates (Thermo 
Scientific). Proteins were then reduced with 5 mM DTT at 25 °C, 600 rpm for 45 minutes and then alkylated 
with 10 mM iodoacetamide (IAA) at 25 °C, 600 rpm for 45 mins in the dark. Proteins were then diluted in 
a ratio of 1:3 with 50 mM HEPES (pH 8.5) to lower the urea concentration less than 2M, and digested with 
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trypsin enzyme (Promega) at 25 °C, 600 rpm overnight using 1:50 (enzyme: substrate) ratio. Digested 
peptides were acidified using formic acid and desalted on in-house packed C18 StageTips (two plugs) on 
top of 96 Well DeepWell Polypropylene Microplates as elaborated in Rappsilber et al., 200726. For DIA 
measurements, dried peptides were reconstituted to a final concentration of 0.5μg/μL with 3% acetonitrile/ 
0.2% formic acid. For TMT labeling purposes dried peptides were reconstituted in 50 mM HEPES (pH 
8.5). An aliquot of 0.2mg of each non-fractionated sample (for HEK and HCT global protein expression 
analysis using DIA) was processed in a similar manner.   

For the HEK-HCT dataset we used a direct labeling method. Following fraction selection based on 
BCA measurements, proteins were denatured by incubation at 95 °C, 600 rpm for 10 mins, followed by 
two cycles of 1 minute bath sonication. After samples cooled down to room temperature, proteins were 
reduced with 5 mM DTT at 25 °C, 600 rpm for 45 minutes and then alkylated with 10 mM iodoacetamide 
(IAA) at 25 °C, 600 rpm for 45 mins in the dark. Proteins were then diluted in a ratio of 1:3 with 50 mM 4-
(2-hydroxyethyl)-1-piperazinepropanesulfonic acid (EPPS), pH 9.0.  pH was adjusted to ~ 8.2, and samples 
were subsequently digested with trypsin enzyme (Promega) at 25 °C, rpm 600 overnight using 1:50 
(enzyme: substrate) ratio.  
 
TMT labeling 
For SEC-TMT experiments used to compare to SEC-DIA samples were digested and desalted as elaborated 
above. The resulting peptides were reconstituted with 50 mM HEPES (pH 8.5). For direct labeling peptides 
were labeled in the adjusted digestion buffer (50mM EPPS, pH adjusted to ~8.2). For all samples, peptides 
were labeled by addition of TMTpro™ 18 plex reagents (Thermo Scientific) into the sample at a ratio of 
1:3 (peptide: TMT) by mass in a final volume of 29% acetonitrile. The labeling reaction was incubated at 
25 °C, 600 rpm for 1 hour before being quenched with a final concentration of 0.3% hydroxylamine. 
Samples were then pooled as described in the pooling scheme and dried at least half of the volume to lower 
the acetonitrile concentration to less than 5%. The labeled peptides were then acidified using formic acid 
(pH <3) and desalted on C18 StageTips (two plugs)26. The desalted peptides were dried and resuspended in 
3% acetonitrile/ 0.2% formic acid for subsequent liquid chromatography-tandem mass spectrometry (LC-
MS/MS) processing. 
 
LC-MS/MS 
 
LC-MS/MS analysis was performed on a Q-Exactive HF. 5μL of total peptides were analyzed on a Waters 
M-Class UPLC using a C18 25cm Thermo EASY-Spray column (2um, 100A, 75um x 25cm) or IonOpticks 
Aurora ultimate column (1.7um, 75um x 25cm) coupled to a benchtop ThermoFisher Scientific Orbitrap Q 
Exactive HF mass spectrometer. Peptides were separated at a flow rate of 400 nL/min with the following 
gradients: 70 minutes (SEC-DIA), 160 minutes (SEC-TMT and DIA runs for non-fractionated samples), 
all including sample loading and column equilibration times. For DIA runs MS1 Spectra were measured 
with a resolution of 120,000, an AGC target of 5e6 and a mass range from 350 to 1650 m/z. 15 isolation 
windows of 87 m/z were measured at a resolution of 30,000, an AGC target of 3e6, normalized collision 
energies of 22.5, 25, 27.5, and a fixed first mass of 200 m/z. For DDA runs MS1 Spectra were measured 
with a resolution of 120,000, an AGC target of 3e6 and a mass range from 300 to 1800 m/z. Top12 MS2 
spectra were acquired at a resolution of 60,000, an AGC target of 1e5, an isolation window of 0.8m/z, 
normalized collision energies of 28, and a fixed first mass of 110 m/z. 
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Data analysis 
 
Searches 
Proteomics raw data were analyzed using the directDIA method on SpectroNaut v16.0 for DIA runs or 
SpectroMine (3.2.220222.52329) for DDA runs (Biognosys) using a human UniProt database (Homo 
sapiens, UP000005640), under BSG factory settings modified without automatic cross-run normalization 
or imputation for SEC runs. Cross run median normalization and global imputation were used for global 
expression analysis (HEK-HCT non fractionated samples). Peptide spectral matches (PSMs), peptides and 
protein group data were exported for subsequent analysis. 
 

signal processing 
The peptide intensities were spread out along 57 SEC fractions. Peptides were filtered by being 

proteotypic and non-decoy. Empty or NA measurments were converted to zeros22, and a single uniprot ID 
was assigned to each peptide. In TMT experiments, peptide reporter intensity values were normalized to 
their respective MS1 peak intensity. In experiments conducted with the full overlap TMT mixing scheme, 
TMT batch effects were corrected based on the signal in the common fractions between any two adjacent 
mixes. A normalization factor was calculated by dividing the peptide fraction intensities of mix [n+1] by 
mix [n], then taking the median of all the peptides and the mean of all the overlapping fractions in common 
between the mixes. Mix [n+1] was then normalized to mix [n] by multiplying all intensities by the 
normalization factor. Lastly, the peptide intensities of overlapping fractions were averaged.  
 
SECAT 
 SECAT was used to identify previously reported protein interactions13. Replicates were analyzed 
in the same run to leverage the predictive power of the classifier. SECAT analysis was conducted on the 
processed peptide level signal (as mentioned above) using the default (SECAT provided) positive and 
negative interaction networks for the training step, and a target database of STRING’s human interactions 
(9606.protein.links.v11.5) for the query step. The default SECAT parameters were set except for a 
‘pi0_lambda’ of 0.4 0 0 0, an ‘ss_initial_fdr’ of 0.5 and ‘ss_iteration_fdr’ of 0.2 during the ‘learn’ step. 
Additionally, the ‘export_tables’ option of the SECAT ‘learn’ step was used to export tables for extracting 
the STRING target and learning interactions along with their scores. The HEK-HCT data was also 
quantified by setting HEK as the ‘control_condition’, and using a ‘maximum_interaciton_qvalue’ of 0.1 
for the quantify and export steps.  

The networks were obtained by setting a q-value cutoff of 0.05 on the exported network tables. For 
interactions that made the q<0.05 cutoff, a second cutoff was set to allow the interaction from the other 
condition if it was at least q<0.1. The HEK-HCT differential networks were obtained by merging the 
networks with the differential edge and protein tables to obtain the interactor abundance and complex 
abundance values for the obtained interactions.  
 
EPIC 

The EPIC tool was used to identify high confidence interactions allowing the discovery of novel 
interactions15. Replicates were analyzed in the same run to leverage the predictive power of the classifier. 
Peptides were collapsed to the protein level by adding the top three peptide intensities for each protein. 
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Proteins that eluted in only one fraction were filtered out. Pairwise protein-protein similarities were then 
computed using the Pearson Correlation-Coefficent (with and without noise), Jaccard, Apex, Mutual 
Information, and Euclidean metrics respectively. A cutoff of 0.5 for the features was chosen prior to analysis 
by a Random Forest Classifier which was trained on reference complexes generated using CORUM, 
INTact, and GO human proteins. The classifier was trained using an 80/20 cross validation split to minimize 
variance across runs and maximize predictive capabilities. Finally, de-novo protein-protein interactions 
were found by querying the classifier and reporting every interaction above 50% confidence as an 
interaction. To further benchmark the classifier a precision-recall graph was generated by varying the 
confidence of the classifier and reporting the metrics, the intersection of the precision and recall occurs at 
60% confidence. However, as we are trying to minimize false positives, we picked a higher confidence of 
80% (as previously reported by Pourhaghighi et al., 202011) which has less but more precise interactions. 
 
Network analysis (cytoscape) 
 The cytoscape networks were generated by importing the interaction networks (full network and 
specific CORUM complex networks) and then importing the node tables to get gene names and log2 fold 
changes for each protein. The log2 fold changes of complex abundances were set to color the edges and a 
separate global protein expression differential was measured and calculated to get a log2 fold change for 
each protein. The linetype was set by translating the protein identification on either HEK, HCT, or both 
conditions into a column in the network import table. Network statistics were extracted from cytoscape 
using the default parameters.  
 
GO term enrichment analysis 

Gene ontology enrichment analysis was performed using the WebGetalt 
(http://www.webgestalt.org) platform using the over-representation analysis (ORA) on molecular function 
non redundant terms24. Enriched set was compared to a background list containing all the proteins identified 
in the experiment. 
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Supplementary Figures 

Supplemental Figure : Mixing schemes  
(A) TMT-18 mixing scheme for the HEK cells only experiments with the rows representing channels and columns 
representing the mixing of the TMT channels for MS runs. (B) TMT-18 mixing scheme for the HEK cells versus HCT 
cells experiment with the rows representing channels and columns representing the mixing of the TMT channels for 
MS runs.  
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Supplementary Figure 2 - related to figure 2 
(A)  Heatmap representation of signals in SEC-TMT in the “no-overlap” multiplexing scheme as explained in figure 1B, 
for proteins measured in all 4 conditions (SEC-DIA, SEC-TMT full overlap and both groups of SEC-TMT no overlap). 
Columns represent fractions, rows represent different proteins and are scaled from 0 to 1 so that the max elution peak 
per protein is represented in red. Rows are in the same order as in figure 2A. (B) The overall peptide and protein 
identifications of each SEC-DIA and SEC-TMT biological replicate. (C) The number of interactions identified in SEC-
DIA (blue), SEC-TMT full overlap (orange), SEC-TMT no overlap group 1 (black), SEC-TMT no overlap group 2 (gray). 
Mean +/- std deviation, n = 5 SECAT runs. (D) The density distribution of SECAT’s classifier determined d-scores for 
both the true positive (solid line) and decoy (dotted line) interactions for SEC-DIA (blue) and SEC-TMT full overlap 
(orange). (E) Extended list of network statistics from Cytoscape for both the SEC-DIA and SEC-TMT networks. (F) 
Interaction overlap in SEC-TMT and SEC-DIA using a strict q-value < 0.05 cutoff. For the interactions that were found 
to be significant in one dataset but not the other (“unique”) , the distribution of q-values in the non-significant dataset 
were plotted. Blue for the distribution of “TMT-unique” interactions in the DIA dataset, and orange for the “DIA-unique” 
interactions in the TMT dataset. Q-values were subsequently adjusted based on these distributions to include any 
interactions with q-value < 0.1, if its q-value was < 0.05 in the other condition (in 3 out of 5 SECAT runs). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.12.523793doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523793
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

 

 
Supplementary Figure 3 - related to figure 5 
(A) Scatterplot comparing the differential expression of proteins as determined in the DIA measurements of the non-
fractionated original sample (y-axis) compared to their “total abundance” in SEC-TMT as calculated by SECAT (x-axis). 
(B) Distribution of Log2 HCT/HEK ratios of complex abundance values for edges quantified in the mutual network. 
Colors represent change greater than 50% toward either HCT (purple) or HEK (green), unchanged in gray. (C) 
Interaction overlap in HEK and HCT using a strict q-value < 0.05 cutoff. For the interactions that were found to be 
significant in one condition but not the other (“unique”), the distribution of q-values in the non-significant dataset were 
plotted. Purple for the distribution of “HEK-unique” interactions in the HCT dataset, and green in the “HCT-unique” 
interactions in the HEK dataset.  
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Supplementary Figure 4 - related to figure 6 
HEK-HCT annotated network. Interaction network containing all clusters with at least four nodes. The nodes and edges 
are colored as green (HEK), gray (not significant), or purple (HCT) along a spectrum with absolute cutoffs of the complex 
abundance log2(HCT/HEK) fold change of at least 0.58 to be considered significant. Black = interaction not quantified 
by SECAT. The linetypes signify whether the interaction was detected in both conditions (solid) or in only HCT or HEK 
(dotted) using the q-value < 0.1 in both conditions but < 0.05 in at least one cutoff, as explained in the text. Specific 
protein clusters were manually circled and labeled by function and complex.  
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