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Purpose To investigate the MRI markers for the prediction of amyloid β (Aβ)-positivity in mild cogni-
tive impairment (MCI) and Alzheimer’s disease (AD), and to evaluate the differences in MRI markers 
between Aβ-positive (Aβ [+]) and -negative groups using the machine learning (ML) method.
Materials and Methods This study included 139 patients with MCI and AD who underwent amyloid 
PET-CT and brain MRI. Patients were divided into Aβ (+) (n = 84) and Aβ-negative (n = 55) groups. Visu-
al analysis was performed with the Fazekas scale of white matter hyperintensity (WMH) and cerebral 
microbleeds (CMB) scores. The WMH volume and regional brain volume were quantitatively mea-
sured. The multivariable logistic regression and ML using support vector machine, and logistic regres-
sion were used to identify the best MRI predictors of Aβ-positivity.
Results The Fazekas scale of WMH (p = 0.02) and CMB scores (p = 0.04) were higher in Aβ (+). The vol-
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umes of hippocampus, entorhinal cortex, and precuneus were smaller in Aβ (+) (p < 0.05). The third 
ventricle volume was larger in Aβ (+) (p = 0.002). The logistic regression of ML showed a good accura-
cy (81.1%) with mini-mental state examination (MMSE) and regional brain volumes. 
Conclusion The application of ML using the MMSE, third ventricle, and hippocampal volume is help-
ful in predicting Aβ-positivity with a good accuracy.

Index terms   Amyloid Beta-Peptides; Third Ventricle; Neuroimaging; Support Vector Machine

INTRODUCTION
Recently, the role of biomarkers such as amyloid β (Aβ) deposition (A), pathologic tau (T), 

and neurodegeneration (N) in the diagnosis of Alzheimer’s disease (AD) has been emphasized 
by the new 2018 National Institute on Aging and Alzheimer’s Association (NIA-AA) Research 
Framework (1, 2). Among them, amyloid PET, as a test for cerebral Aβ deposition, is widely 
used as it has high sensitivity and specificity for the discrimination between AD and healthy 
controls (3). In patients with mild cognitive impairment (MCI), Aβ-positivity is related to the 
clinical deterioration and rapid progression to dementia (4). Also, higher Aβ levels on PET-CT 
were correlated with an increased brain atrophy rate in MCI (5). However, amyloid PET has 
some limitations. In patients with AD, the prevalence of amyloid on PET decreased with age 
and in patients with most non-AD dementia, that increased with age (6). And amyloid negativ-
ity on amyloid PET was observed in 12% of clinically diagnosed AD patients (6). Moreover, 
amyloid PET also has poor accessibility due to the half-life of pharmaceuticals and its high 
cost, compared with brain MRI (7, 8).

The role of MRI in diagnosing dementia has focused on the measurement of cerebral atro-
phy. While atrophy on MR images is not specific for AD, the degree of hippocampal atrophy is 
sensitive to AD and correlates well with the Braak staging at autopsy (9). Although MRI cannot 
provide a specific and straightforward diagnosis of AD, MR has a role to rule out structural ab-
normalities or to identify surgically treatable diseases (9). Recently, many MR studies correlat-
ing Aβ pathology and neuroimaging findings have been performed and white matter hyperin-
tensities (WMH) have been studied to investigate their relationship with Aβ-positivity (10). 
Cerebral amyloid angiopathy and multiple cerebral microbleeds (CMB) have also been associ-
ated with AD pathology (11). 

Machine learning, as a branch of artificial intelligence, can perform tasks by learning from 
examples without being programmed (12). Supervised machine learning uses an algorithm 
for maximizing a particular mathematical function corresponding to a given collection of 
data (12), thus permitting high-dimensional data analysis (12). Accordingly, machine learning 
methods have been widely used for the detection and classification of AD, MCI, and predic-
tion of Aβ-positivity in elderly patients (13, 14). Also, machine learning method can be helpful 
to make the prediction model and to investigate the diagnostic performance of that model. 

This study hypothesized that the integration of WMH, CMB, and regional volume could pre-
dict Aβ-positivity using multi-MR parameters and machine learning. Our study aimed to in-
vestigate MRI markers for the prediction of Aβ-positivity in MCI and AD and to evaluate differ-
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ences in WMH, prevalence of CMB, and regional volume between Aβ-positive and -negative 
groups.

MATERIALS AND METHODS

Our Institutional Review Board approved the study, and the need for informed consent was 
waived due to the retrospective nature of this study (IRB No. HYUH 2021-07-013).

SUBJECTS 
Table 1 shows the demographic and clinical data of the study population. The process of 

study subject recruitment is shown in Fig. 1. This study used the imaging data of 196 patients 
who visited the memory clinic at the Hanyang University Hospital and who underwent both 
MRI and amyloid PET-CT between January 2017 and December 2019. A dementia specialist 
(neurologist) evaluated scales and neurocognitive function of patients with K-mini-mental 
state examination (MMSE), clinical dementia rating (CDR), CDR sum of boxes (CDR-SB), glob-
al deterioration scale, and caregiver-administered neuropsychiatric inventory (CGA-NPI). The 
neurologist confirmed the clinical diagnosis of MCI and probable AD, which based on the cri-
teria of the Diagnostic and Statistical Manual of Mental Disorders (4th edition), the National 
Institute of Neurological and Communicative Disorders and Stroke, and the Alzheimer’s Dis-
ease and Related Disorders Association (15). The exclusion criteria were as follows: 1) other de-
mentias (n = 24), such as Vascular cognitive impairment with no dementia (n = 10), Parkinson’s 
dementia (n = 10), frontotemporal dementia (n = 2), or Lewy-body dementia (n = 2), 2) subjec-
tive cognitive impairment (n = 20), 3) history of other neuropsychiatric symptoms (n = 10) in-
cluding normal pressure hydrocephalus (n = 6), mood disorder (n = 4), and 4) poor image 
quality due to MR artifacts (n = 3). Finally, 139 patients (60 male, 79 female; age range, 53–95 
years; mean age 72.4 years) were included in this study, 92 of whom had MCI and 47 had AD. 

ACQUISITION OF AMYLOID PET-CT
All subjects underwent amyloid PET-CT. The amyloid radiotracer, F-18 Florbetaben (Neura-

ceq, Piramal, Mumbai, India) 8mCi was injected intravenously into the right hand. After a 
90-minutes delay, patients were scanned for approximately 20 minutes using a dedicated 
PET/CT scanner (Biograph 6; Siemens Medical Systems, Knoxville, TN, USA). Aβ-positivity 

Table 1. Demographic and Clinical Data of the Study Population

Amyloid β (+) (n = 84) Amyloid β (-) (n = 55) p-Value
Age 73.3 ± 8.7 71.2 ± 8.7 0.20 
Sex, male:female 37:47 23:32 0.80
Education 10.0 ± 5.8 10.6 ± 5.4 0.50
MMSE  22.6 ± 5.0 25.8 ± 3.2 < 0.001*
CDR 0.8 (0.5–3.0) 0.6 (0.5–2.0) < 0.001*
CDR-SB    3.7 (0.5–17.0)    1.0 (0.5–11.0) < 0.001*
Numbers are presented mean ± standard deviation or median (range).
*Statistically significant.
CDR = clinical dementia rating, CDR-SB = CDR sum of boxes, MMSE = mini-mental state examination
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was considered when gray-white matter differentiation was not observed. Two nuclear medi-
cine physicians determined the images to be amyloid-positive or-negative using the visual as-
sessment method. The brain β-amyloid plaque load (BAPL) scoring system was used for group 
classification (16). Patients with a BAPL score of 1 were classified into the Aβ-negative group, 
whereas those with scores of 2 or 3 were classified into the Aβ-positive group.

ACQUISITION OF BRAIN MRI
All patients underwent an MRI using a 3T scanner (Ingenia, Philips Healthcare, Best, the 

Netherlands). The MRI protocol included 3D T1 weighted images, T2 weighted images, fluid 
attenuated inversion recovery (FLAIR) images, and susceptibility weighted images (SWI) with 
a coverage of the whole 3D T1WI were acquired. A 3D T1-weighted turbo field echo (TFE) 
acquisition technique was used for 3D T1WI. The parameters for each sequence were as fol-
lows: 3D T1 TFE (repitition time [TR], 8.0 ms; echo time [TE], 3.7 ms; flip angle 8°; field-of-
view [FOV], 220 × 220; section thickness 1 mm; matrix 248 × 250; spatial resolution 0.9 mm 
× 0.9 mm × 1.0 mm), T2WI with turbo spin-echo (TR, 3000 ms; TE, 100 ms; flip angle, 90°; 
FOV, 220 × 220; section thickness, 5 mm; matrix 420 × 332), FLAIR with fat saturation (TR, 
9000 ms; TE, 120 ms; TI, 2500 ms; flip angle, 90°; FOV, 220 × 220; section thickness, 5 mm; 
matrix 304 × 249), SWI with 3D multi-echo gradient-echo sequence (TR, 31 ms; TE, 17 ms; 
ΔTE, 6.2 ms; number of echo times, 4; flip angle, 17°; section thickness, 2 mm; matrix, 368 × 
368; in-plane resolution, 600 μm). The time interval between the MRI scan and amyloid PET-
CT was less than 3 months. 

IMAGE ANALYSIS OF WMH, CMB AND REGIONAL VOLUME
All images were interpreted by a neuroradiologist (J.Y.L.) and a trainee radiologist (H.J.P.), 

both of whom were blinded to the subjects’ clinical information. The radiologists evaluated 
the WMH on FLAIR images. The degree of WMH was scored using the Fazekas scale, which 
shows the sum of periventricular and deep WMH (10, 17). The presence, number, and location 

Fig. 1. Study population flow chart. 

196 subjects 
Underwent both brain MRI and amyloid PET-CT 

between January 2017 and December 2019

Total 139 patients

Amyloid positive group 
 (n = 84)

Amyloid negative group 
 (n = 55)

   Excluded (n = 57)
      • Other dementia (n = 24)
      • Subjective cognitive impairment (n = 20)
      • Other neuropsychiatric symptoms (n = 10)
      • Poor image quality due to MR artifact (n = 3)
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of CMBs were reviewed on SWI images. We confirmed the low signal intensity foci of CMBs on 
the corresponding phase maps in the right-handed MR coordinate system. Additionally, we in-
vestigated the presence of lacunar infarct, cortical infarct, and superficial siderosis (18-20). For 
the quantitative analysis, we used the automated segmentation software DeepBrainⓇ (VUNO 
MedⓇ, Seoul, Korea) from 1-mm slice thickness 3D T1 TFE images (21). We obtained 57 regional 
brain volumes. The WMH volume was obtained using automated brain segmentation software 
(UBO Detector, https://cheba.unsw.edu.au/group/neuroimaging-pipeline) from 5-mm slice 
thickness FLAIR images (22). 

STATISTICAL ANALYSIS
For the comparisons between Aβ-positive and Aβ-negative groups, continuous variables 

were expressed as means and standard deviations. The Kolmogorov–Smirnov test was per-
formed to determine whether the values were normally distributed. An independent t test 
was used to compare each imaging parameter between the two groups. Fisher’s exact test was 
used to compare categorical variables. Qualitative and quantitative results were compared be-
tween the two groups. Multivariable logistic regression analysis was performed to investigate 
the MR factors related to Aβ-positivity. And subgroup analysis was performed in patients with 
only MCI. The group comparisons and multivariable logistic regression analysis was also per-
formed in patients with MCI. Statistical analyses were performed using commercially avail-
able software (SPSS, version 24 for Windows; IBM Corp., Armonk, NY, USA).

MACHINE LEARNING CLASSIFICATION
We adopted a support vector machine (SVM) and logistic regression, which are frequently 

used in many classification studies, and evaluated binary classification performance between 
the Aβ-positive and the Aβ-negative groups using Python’s scikit learning library (https://
github.com/scikit-learn/scikit-learn) (23, 24). Statistically significant volume features were ini-
tially obtained from the previous step of univariate logistic regression, including the left and 
right hippocampus, entorhinal cortex, precuneus, parietal lobe, third ventricle, and inferior 
lateral ventricle volume. MMSE was additionally included as an input variable since it was 
most significantly correlated with Aβ-positivity. Feature selection was then performed using 
the recursive feature elimination (RFE) method on five-fold cross-validation with a random 
forest classifier as an estimator to find optimal features for machine learning model training 
(25, 26). Finally, nine features were selected as inputs for SVM and logistic regression classifi-
ers including MMSE scores, the volume of left and right hippocampus, left entorhinal cortex, 
left precuneus cortex, parietal lobe, third ventricle, and left inferior lateral ventricle. All obser-
vations were randomly divided into five equal-size partitions and trained on four partitions, 
while the classification performance was tested on the holdout partition. Classification per-
formance was calculated by comparing the accuracy, sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and the area under the receiver operating char-
acteristic (ROC) curve (AUC). The model parameters were optimized for each classifier based 
on five-fold cross-validation. This procedure was repeated five times to avoid the overfitting of 
the test set and to improve the generalization. 
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RESULTS

The participants were divided into an Aβ-positive (n = 84) and an Aβ-negative (n = 55) group. 
Aβ-positivity was observed in 60.4% of patients. In the Aβ-positive group, 45 patients had MCI 
(53.6%) and 39 had AD (46.4%). In the Aβ-negative group, 47 patients had MCI (85.5%) and 

Fig. 2. Representative case of amyloid β-positive group. A representative case of an 81-year-old male with 
Alzheimer’s disease. 
A. According to the RCTB scoring system, all eight brain regions were graded with pronounced binding 
(score 3). Therefore, Amyloid PET-CT finding is considered a significant β-amyloid load and has a BAPL score 
of 3.
B. The fluid attenuated inversion recovery image shows periventricular white matter hyperintensities. 
C. On susceptibility weighted image, multiple microbleeds are shown in the lobar location. 
D. On 3D T1 turbo field echo image axial scan, the third ventricle shows dilatation.

A

C

B

D
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eight had AD (14.5%). Among the patients with MCI, the Aβ-positivity and Aβ-negativity rates 
were 48.9% and 51.1%, respectively. Among the patients with AD, Aβ-positivity and Aβ-nega-
tivity rates were 83% and 17%, respectively. There was no significant difference in age or sex 
between the two groups (Table 1). Regarding clinical assessment, there was a significant dif-

Fig. 3. Representative case of amyloid β-negative group. A representative case of a 68-year-old male with 
MCI.
A. According to the RCTB scoring system, all eight brain regions were graded with no binding (score 1). 
Therefore, amyloid PET-CT finding is considered as having no amyloid-β load (BAPL score of 1) and a nega-
tive PET-scan.
B. On fluid attenuated inversion recovery images, there is no hyperintensity in the periventricular or deep 
white matter. 
C. On susceptibility weighted image, there is no cerebral microbleed. 
D. On the 3D T1 turbo field echo image axial scan, the third ventricle was not dilated. 

A

C

B

D
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ference between the groups in terms of MMSE, CDR, and CDR-SB scores. 
For the qualitative analysis, the Aβ-positive group showed significantly higher Fazekas 

scale of WMH and CMB scores (p = 0.02 and p = 0.038, respectively) (Figs. 2, 3). There were no 
significant differences in lacunar infarct, cortical infarct, and superficial siderosis between 
the two groups (Table 2).

For the quantitative analysis, although there was no significant difference in WMH volume, 
the Aβ-positive group showed a larger volume of WMH (Table 3). For the regional volume 
analysis, there were significant differences in both hippocampus, entorhinal cortex, left para-
hippocampus, left fusiform gyrus, left parietal lobe, right occipital lobe, and both precuneus 
between the two groups (p < 0.05) (Table 3). The third ventricle and inferior lateral ventricle 
were significantly larger in the Aβ-positive group than in the Aβ-negative group (p = 0.002 in 
the third ventricle, p = 0.003 in the left inferior lateral ventricle, and p = 0.001 in the right infe-
rior lateral ventricle, Figs. 2, 3).

 Multivariable logistic regression was performed to find the best MR imaging factor related 
to amyloid positivity. Univariable logistic regression analysis was performed, and multivari-
able logistic regression was performed using the significant MRI markers. The MMSE and 
third ventricle volume were the most significant factors for predicting Aβ-positivity (Table 4). 

This study performed the subgroup analysis in patients with only MCI (Supplementary Ta-
bles 1-3 in the online-only Data Supplement). There was no significant difference of MMSE 
between two groups in patients with MCI. The Aβ-positive MCI group showed significantly 
higher CMB numbering and less frequent lacunar infarct than Aβ-negative MCI group (p = 
0.04, and p < 0.001, respectively). For the regional volumes, Aβ-positive MCI group demonstrat-
ed significantly smaller volume of entorhinal cortex, and significantly larger volume of right 
inferior lateral ventricle and fourth ventricle volume (p = 0.02, and p < 0.001 in left and right 
entorhinal cortex, 0.01 in the right inferior lateral ventricle and 0.007 in fourth ventricle). The 
multivariable logistic regression showed the lacunar infarct is the most significant factor with 
Aβ- positivity (p = 0.047, odds ratio = 0.36).

Table 2. The Comparison of Qualitative Analysis between Two Groups

Amyloid β (+) (n = 84) Amyloid β (-) (n = 55) p-Value
Fazekas scale, WMH 3.0 ± 1.4 2.4 ± 1.3 0.02*
CMB numbering 3.9 1.0 0.04*
Lacunar infarct 0.20

Yes 18 16
No 66 35

Cortical infarct 0.50
Yes   3   3
No 81 48

Superficial siderosis 0.07
Yes   0   2
No 84 49

*Statistically significant. 
CMB = cerebral microbleed, WMH = white matter hyperintensities
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CLASSIFICATION PERFORMANCE OF MACHINE LEARNING METHODS
We compared the performance results of the two classifiers with the RFE feature selection in 

Table 5. With an accuracy of 81.1%, the logistic regression classifier had a higher performance 
than the SVM, which had an accuracy of 78.4%. The sensitivity, specificity, PPV, NPV, and AUC 
for the logistic regression classifier were 91.6%, 65.5%, 80.4%, 85.3%, and 79.0% respectively. 
The ROC curve is shown in Fig. 4. In contrast, the SVM classifier had a sensitivity, specificity, 
PPV, NPV, and AUC of 78.2%, 78.6%, 84.6%, 72.1%, and 78%, respectively.

Table 3. The Results of Quantitative Regional Brain Volume Analysis between Two Groups

 Amyloid β (+) (n = 84) Amyloid β (-) (n = 55) p-Value
WMH, cc

Volume, WMH 17250.0 ± 14697.4 13442.89 ± 12449.26 0.13
Volume, periventricular WMH 12428.12 ± 9734.72 9791.47 ± 8559.16 0.11
Volume, deep WMH 4653.52 ± 5829.83 3489.69 ± 4203.78 0.22

Brain regional volume
Hippocampus, Lt 3.15 ± 0.59 3.57 ± 0.60 < 0.001*
Hippocampus, Rt 3.53 ± 0.67 4.30 ± 0.68 < 0.001*
Amygdala, Lt 1.11 ± 0.24 1.11 ± 0.24 0.97
Amygdala, Rt 1.35 ± 0.26 1.44 ± 0.27 0.06
Entorhinal cortex, Lt 1.69 ± 0.65 2.52 ± 0.47 < 0.001*
Entorhinal cortex, Rt 1.88 ±1.15 3.18 ± 0.43 < 0.001*
Parahippocampus, Lt 1.51 ± 0.34 1.63 ± 0.32 0.03*
Parahippocampus, Rt 1.34 ± 0.27 1.39 ± 0.21 0.24
Fusiform gyrus, Lt 7.22 ± 1.42 7.790 ± 1.08 0.01*
Fusiform gyrus, Rt 6.82 ± 1.29 7.21 ± 1.02 0.06
Temporal lobe, Lt 43.87 ± 6.41 44.26 ± 5.17 0.71
Temporal lobe, Rt 42.20 ± 5.96 41.25 ± 5.07 0.34
Frontal lobe, Lt 60.76 ± 7.19 62.19 ± 5.83 0.22
Frontal lobe, Rt 61.0 ± 6.84 61.92 ± 5.87 0.41
Parietal lobe, Lt 41.11 ± 5.98 43.19 ± 4.63 0.03*
Pariteal lobe, Rt 41.60 ± 4.80 43.85 ± 4.49 0.01*
Occipital lobe, Lt 16.87 ± 2.6 17.58 ± 2.05 0.09
Occipital lobe, Rt 16.98 ± 2.48 17.77 ± 1.95 0.04*
Gray matter cortex, Lt 176.73 ± 21.14 183.89 ± 17.94 0.04*
Gray matter cortex, Rt 170.65 ± 19.37 168.25 ± 17.10 0.45
Third Ventricle 2.12 ± 0.73 1.78 ± 0.65 0.01*
Fourth Ventricle 2.19 ± 0.63 2.22 ± 0.40 0.77
Lateral ventricle, Lt 21.87 ± 8.95 20.05 ± 9.25 0.25
Lateral ventricle, Rt 20.88 ± 8.84 18.01 ± 8.73 0.06 
Inferior lateral ventricle, Lt 1.54 ± 0.9 1.15 ± 0.6 0.01*
Inferior lateral ventricle, Rt 1.43 ± 0.92 1.00 ± 0.59 0.01*
Precuneus cortex, Lt 7.08 ± 1.04 7.62 ± 1.15 0.01*
Precuneus cortex, Rt 7.43 ± 0.93 7.95 ± 1.21 0.01*

*Statistically significant.
WMH = white matter hyperintensities
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With regard to the performance of the feature selection approach in the logistic regression 
classifier (Table 5), the RFE feature selection results revealed higher performances in all val-
ues than those of the univariate feature selection (the accuracy; 81.1% in RFE vs. 78.4% in uni-
variate selection). The SVM classifier also showed slightly higher performance with the RFE 
feature selection (accuracy; 78.4% in RFE vs. 75.2% in univariate selection) than it did with 
the univariate feature selection, with the exception of specificity. 

DISCUSSION

This study found the best predictor Aβ-positivity to be the MMSE score and regional vol-
ume, including the third ventricle, hippocampus, entorhinal cortex, and precuneus in the 
multivariable logistic regression. The machine learning method had a good accuracy of 
81.1%, for predicting Aβ-positivity using the MMSE score and regional brain volumes. This 
study results showed the differences between the Aβ-positive and -negative groups using 
multi-MRI parameters, WMH, CMB, and regional volumes. The Aβ-positive group showed 
lower MMSE scores, higher CDR and CDR-SB scores, and high WMH and CMB scores. The re-
gional volumes of the hippocampus, entorhinal cortex, parietal lobe, and precuneus were 
lower in the Aβ-positive group. The third ventricle and inferior lateral ventricle were signifi-
cantly larger in the Aβ-positive group. In subgroup analysis, the Aβ-positive MCI group 
showed higher CMB numbering and less frequent lacunar infarction than the Aβ-negative 
MCI group.

Previous studies have found that various imaging markers are associated with Aβ-positivity. 
A study compared the regional volumes between Aβ-positive and negative groups in patients 
with MCI and showed that the normative percentiles of hippocampal volume were the best 
predictors, with an AUC of 0.723 (27). Another study showed that Aβ-positive subjects had sig-
nificantly higher WMH volumes than Aβ-negative subjects in patients with AD and healthy 

Table 4. Logistic Regression Analysis to Identify the Variables for Predicting Amyloid Positivity

Odds Ratio p-Value
Mini-mental state examination 0.87 0.017*
Third ventricle volume 1.98 0.034*
*Statistically significant.

Table 5. Machine Learning Methods Results with Comparison of the Classification Performance

Classifier AUC ACC (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)
RFE feature selection (n = 9)

SVM 0.78 78.4 78.2 78.6 84.6 72.1
LR 0.79 81.1 91.6 65.5 80.4 85.3

Univariate feature selection (n = 13)
SVM 0.74 75.2 81.3 66.8 77.7 72.4
LR 0.76 78.4 88.8 63.3 78.0 80.8

ACC = accuracy, AUC = area under the curve, LR = logistic regression, NPV = negative predictive value, PPV = 
positive predictive value, RFE = recursive feature elimination, SVM = support vector machine
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controls (10). A study demonstrated that CMB is related to the global and frontal Aβ load (11). 
Our study results are consistent with those of previous studies on regional volume, WMH, and 
CMB scores. The difference is that this study investigated multi-MRI parameters, and among 
them, the third ventricle volume was the most significant predictor of Aβ-positivity. 

This study used the machine learning technique, SVM, and logistic regression to evaluate the 
Aβ predictability of MRI markers. A previous group reported that machine learning models 
can predict Aβ-positivity using clinical feature models and brain MRI feature models in pa-
tients with amyloid angiopathy or MCI (13, 14). They showed an AUC of 0.80–0.83 with MRI fea-
tures using a tree-based machine learning method to predict amyloid positivity in patients with 
amyloid angiopathy (13). Another study using radiomics showed an AUC of 0.79 to predict amy-
loid positivity in patients with MCI (28). Our study showed a similar good performance of logis-
tic regression machine learning with the RFE feature selection method, demonstrating an AUC 
of 0.79 with 81% accuracy. Because Aβ-positivity is important to diagnose AD as well as to pre-
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Fig. 4. Machine learning ROCs curves.
A-D. Curves from logistic regression machine learning (A, B) and support vector machine (C, D) with recursive feature elimination feature 
selection (A, C), and univariate feature selection (B, D) are demonstrated.
AUC = area under the curve, ROC = receiver operating characteristic, SD = standard deviation
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dict the prognosis of patients, Aβ-positivity prediction using MMSE and several regional vol-
umes could be very useful in clinical practice (28, 29).

The results of this study showed that the volume change of the third ventricle could be the 
most significant MR factor in predicting Aβ-positivity. A study reported that ventricle enlarge-
ment could be observed in patients with AD due to altered CSF dynamics, and ventricle en-
largement can be associated with decreased levels of Aβ (30). Accordingly, decreased amyloid 
in CSF could be attributable to the amyloid deposits in the brain, which could be visually de-
tectable on amyloid PET-CT. In our experiences, third ventricle enlargement is easy to detect 
and useful to compare with other patients, although it can be subjective, and we did not pro-
vide the cutoff values of the third ventricle volume to discriminate Aβ-positive from Aβ-nega-
tive groups. Therefore, we assume that the assessment of third ventricle enlargement could 
be a helpful imaging marker to predict Aβ in clinical practice.

The Aβ-positive group showed a tendency towards a larger WMH volume, although the dif-
ference was not statistically significant. Additionally, more CMBs were observed in the Aβ-posi-
tive group. The pathophysiology of Aβ-related WMH could be explained by several hypotheses: 
oligodendrocyte dysfunction and demyelination with axonal degeneration, cerebrovascular 
pathology, endothelial dysfunction, or BBB dysfunction (31). CMB could be a factor associated 
with vessel integrity and is also known as an imaging marker of amyloid angiopathy (28). Thus, 
we hypothesized that CMB could be an important factor in predicting Aβ-positivity. CMBs were 
frequently observed in this study; however, it was not a critical factor in predicting Aβ-positivi-
ty. A previous study showed that CMB could be related to ventricular enlargement in patients 
with MCI (32). It is possible that the different results maybe be due to different study popula-
tions and study designs. Thus, further studies are needed to demonstrate the relationship be-
tween WMH, CMB, and ventricular dilatation in patients with MCI or AD.

In subgroup analysis with only MCI patients, Aβ-negative group showed significantly more 
frequent lacunar infarct than Aβ-positive group. In the multivariable logistic regression, la-
cunar infarction is the only significant factor with an odds ratio 0.36. This can be difficult to 
explain, because it is not well studied about the association between the amyloid pathology 
and lacunar infarct. However, this result could be supported by a study which shows that silent 
lacunar infarct, as a component of small vessel disease, is associated with cognitive decline 
(33). Also recent memory impairment was the most often impaired cognitive domain after la-
cunar infarct (34). In MCI patients without amyloid positivity, the lacunar infarct was proba-
ble main cause of cognitive impairment in this study group. 

This study had several limitations. First, this was a retrospective study with a selection bias. 
Second, we conducted correlation studies between amyloid PET-CT imaging and MRI only, but 
excluded tau imaging. The pathology of AD includes tau pathology as well as amyloid deposi-
tion; therefore, the MRI factor associated with tau could also be important. Further studies 
investigating the MRI factors related to tau are needed in the future. We performed a cross-
sectional study; and therefore, we did not consider the longitudinal atrophy rate, which might 
be a more specific indicator of Aβ-positivity. Third, the subgroup analysis was performed for 
only MCI patients, but the results did not show the same results to those obtained from pa-
tients with MCI and AD. For MCI patients, the lacunar infarct was a significant factor to pre-
dict the Aβ-positivity. The MMSE and third ventricle volume cannot be applied to predict the 
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amyloid positivity in the patients with MCI. Finally, the performance of machine learning in 
predicting amyloid positivity was not better than previous studies. Thus, it is possible that the 
unknown key for predicting amyloid positivity might be related to clinical or serologic factors 
rather than imaging features. Further, we did not consider the status of the apolipoprotein E ε4 
genotype, which might have enhanced the performance of the machine learning method. 

In conclusion, the Aβ-positive group showed lower MMSE scores, higher volumes of WMH, 
more frequent CMBs, and regional brain volume changes. The machine learning method ex-
hibited good accuracy in predicting Aβ-positivity with the MMSE score and regional volume, 
including the third ventricle, hippocampus, entorhinal cortex, and precuneus. 
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뇌 MRI와 인지기능평가를 이용한 아밀로이드 베타 양성 
예측 연구

박혜진1 · 이지영2* · 양진주3 · 김희진4 · 김영서4 · 김지영5 · 최윤영6

목적 경도인지장애와 알츠하이머 치매 환자에서 아밀로이드베타 양성을 예측할 수 있는 

MRI 특징을 알아보고 머신러닝으로 아밀로이드베타 양성 예측 모형의 성능을 알아보고자 

하였다.

대상과 방법 후향적 및 단면조사연구로 경도인지장애와 알츠하이머 치매 총 139명의 환자를 

대상으로 하였다. 이들은 모두 뇌 MRI와 아밀로이드 PET-CT를 시행하였다. 대상자는 아밀

로이드 베타 양성군(n = 84)과 아밀로이드 베타 음성군(n = 55)으로 분류하였다. 시각적 분석

으로는 뇌백질 고신호 병변의 Fazekas 척도와 뇌미세출혈 개수를 시행하였다. 정량분석으로 

뇌백질 고신호 병변의 부피와 국소뇌부피를 측정하였다. 다중 로지스틱 회귀분석과 머신러

닝 기법으로 아밀로이드베타 양성을 가장 잘 예측할 수 있는 MRI 특징을 확인하였다.

결과 시각적분석에서 아밀로이드베타 양성군은 뇌백질 고신호 병변의 Fazekas 척도(p = 

0.02)와 뇌미세출혈 개수(p = 0.04)가 유의미하게 높았다. 해마, 내후각피질, 설전부의 국소뇌

부피들은 아밀로이드베타 양성군에서 유의미하게 작았다(p < 0.05). 제3뇌실(p = 0.002)의 부

피는 아밀로이드베타 양성군에서 유의미하게 컸다. 간이 정신 상태 검사와 국소뇌부피를 이

용하여 머신러닝기법을 이용했을 때 좋은 정확도를 보였다(81.1%).

결론 간이 정신 상태 검사, 제3뇌실과 해마 부피를 이용한 머신러닝의 적용은 아밀로이드베

타 양성을 예측하는데 활용될 수 있다. 

한양대학교 의과대학 한양대학교병원 1영상의학과, 4신경과, 6핵의학과, 
2가톨릭대학교 의과대학 서울성모병원 영상의학과, 
3한양대학교 공과대학 바이오메디컬공학과, 
5한양대학교 의과대학 구리한양대학교병원 핵의학과




