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Smoking has been associated with increased risk of periodontitis. The aim of the present study was to compare the periodontal
disease severity among smokers and nonsmokers which may help in better understanding of predisposition to this chronic
inflammation mediated diseases. We selected deep-seated infected granulation tissue removed during periodontal flap surgery
procedures for identification and differential abundance of residential bacterial species among smokers and nonsmokers through
long-read sequencing technology targeting full-length 16S rRNA gene. A total of 8 phyla were identified among which Firmicutes
and Bacteroidetes were most dominating. Differential abundance analysis of OTUs through PICRUST showed significant (p>0.05)
abundance of Phyla-Fusobacteria (Streptobacillus moniliformis); Phyla-Firmicutes (Streptococcus equi), and Phyla Proteobacteria
(Enhydrobacter aerosaccus) in nonsmokers compared to smokers. The differential abundance of oral metagenomes in smokers
showed significant enrichment of host genesmodulating pathways involving primary immunodeficiency, citrate cycle, streptomycin
biosynthesis, vitamin B6 metabolism, butanoate metabolism, glycine, serine, and threonine metabolism pathways. While
thiaminemetabolism, amino acidmetabolism, homologous recombination, epithelial cell signaling, aminoacyl-tRNA biosynthesis,
phosphonate/phosphinate metabolism, polycyclic aromatic hydrocarbon degradation, synthesis and degradation of ketone bodies,
translation factors, Ascorbate and aldarate metabolism, and DNA replication pathways were significantly enriched in nonsmokers,
modulation of these pathways in oral cavities due to differential enrichment of metagenomes in smokers may lead to an increased
susceptibility to infections and/or higher formation of DNA adducts, which may increase the risk of carcinogenesis.

1. Introduction

Smoking continues to be the leading cause of chronic inflam-
mations leading to cancer, despite the extensive knowledge
that smoking and tobacco products are injurious to health.
Chronic Periodontitis (CP) is a type of inflammatory disease
of the supporting tissues of the teeth, which results in

loss of connective tissue attachment, alveolar bone, and,
ultimately, loss of the teeth [1].The initiation and progression
of periodontitis are modulated by genetic susceptibility of
the host and lifestyle factors [2]. Among these, smoking and
tobacco products seem to be the most important one [3].
Smokers show higher prevalence and severity of periodontal
destruction as is evident through significant tendency of
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greater probing depth and clinical attachment level means;
greater amount of plaque in all regions; greater gingival index
means and the therapy of periodontitis in smokers on average
are less effective [3–5]. As the time of smoking increases,
it further complicates the diseases by affecting the immune
response of the host [6]. Smokers with periodontitis show
lesser serumantibodies in particular immunoglobulinG class
2 (IgG2) and impaired function of leucocytes [7–9]. It has
been also hypothesized that smoking can affect the compo-
sition of the subgingival microbiome [10]. However, earlier
investigations using targeted approaches (techniques focused
on detection of specific microorganisms) have shown contra-
dictory results. On one side, studies reported that smokers
with periodontitis showhigher prevalence and quantity of the
traditional periodontitis-associated pathogens in comparison
with nonsmokers [11–13], while on the other side investiga-
tions could not confirm those results [14–16]. Discrepancies
are understandable as the subgingivalmicrobiome is complex
and based on the interaction of a large number of bacterial
taxa, whose major part remains uncultivated [17, 18]. Fur-
ther, the advent of high-end techniques to investigate the
complete microbiome has provided a better understanding
of the complex oral microbiological environment between
smokers and nonsmokers. In earlier study the microbiota
of smokers and nonsmokers was compared through termi-
nal restriction fragment length polymorphism and high-
throughput sequencing approaches and have shown changes
in higher proportion of Firmicutes and Actinobacteria and a
lower proportion of Bacteroidetes and Proteobacteria in the
intestinal microbiota [19] and fecal material in humans and
correlated these results with metabolic effects [20, 21].

Different sequencing methods have been used to explore
the microbial complexity of CP samples where most of
the techniques used a short variable region for sequencing.
Most recent publications showed that long-read sequencing
technology (V1-V9 full-length variable region of a 16S rRNA
gene) can provide finer phylogenetic profiling [22]. The aim
of this study was to compare 16S rRNA sequencing through
PacBio in a population of patients affected by CP and dif-
ferentiated on the basis of smoking habit through long-read
sequencing technology using V1-V9 primers.

2. Materials and Methods

2.1. Screening of Patients and Sample Collection. A total of
30 Chronic Periodontitis (CP) patients aged between 35-
67 years with a median age of 51 years were screened. Five
patients with average age of 53.2 years (CP B1, CP B2, CP C1,
CP C2, and CP D1) with the history of smoking and tobacco
chewing, bleeding on probing, Periodontal pockets ≥ 5 mm
andhavingClinical attachment loss (CAL)were selected as an
experimental group (CP+S). Five patients of corresponding
age group (CP 6, CP 7, CP 8, CP 15, and CP 20) with the
history of no smoking and tobacco chewing, bleeding on
probing, periodontal pockets ≥ 5 mm and having Clinical
attachment loss (CAL) were included as a control (CP)
(Supplementary Table 1). All the samples were obtained after
informed consent and the study was approved by the Insti-
tutional Ethics committee, King George’s Medical University.

All the experiments have been performed in accordance with
relevant guidelines and regulation. Both the groups were
also screened for the history of systemic disorders (diabetes,
hypertension, etc.), blood dyscrasias, which compromised
the immune system, and consumption of antibiotics for the
past three to six months. Clinically, patients were evaluated
for diagnostic parameters like oral hygiene index; plaque
index; gingival bleeding index; periodontal pockets examina-
tion, clinical attachment level (CAL), furcation level; radio-
graphic evaluation: OPG or IOPA. Based on these criteria
patients were subjected to routine scaling and root planning.
However during treatment, patients were also advised with
the cessation of these harmful habits completely, with the
instructions of strict oral hygiene for 1 week. Subsequently,
periodontal flap surgery was conducted in the categorized
patients and granulation tissue was collected during flap
surgery in sterile Eppendorf tubes on ice, transported to the
laboratory, and stored at -20∘C until further processing.

2.2. DNA Extraction. Bacterial genomic DNA was isolated
from collected granulation tissue using Qiagen mini-DNA
isolation Kit, Qiagen, and stored at -20∘C till further analysis.
The quality and quantity of isolated genomic DNA were
performed through Quawell spectrophotometer (Quawell
Technology Inc., San Jose), agarose gel electrophoresis, and
Qubit Fluorimeter (Agilent, Santa Clara, CA,USA). Genomic
DNA having absorption ratio A260/A280 in the range 1.8-2.0
was considered for 16S rRNA gene amplification.

2.3. 16S rRNA Gene Amplification, Sample Barcoding, and
PacBio Sequencing. A total of 50 ng of genomic DNA from
5 CP (control) and 5 CP+S (experimental) patient groups
was used for the 16S rRNA gene amplification. Polymerase
chain reactions (PCR) amplification was performed for
each sample with forward and reverse V1-V9 gene-specific
primers (Table 1). Briefly, PCR reactions were performed in
a reaction volume of 50 𝜇l together with 300 𝜇M dNTPs,
0.3 𝜇M barcoded forward and reverse primers, and 1 U/ 𝜇l
KAPA HiFi Hot Start DNA Polymerase. Cycling conditions
were as follows: denaturation at 95∘C for 2 minutes, followed
by 27 cycles of amplification (denaturation 95∘C for 30
seconds, annealing 57∘C for 30 seconds, and extension
72∘C for 30 seconds) and a final extension at 72∘C for 5
minutes. In the next round of amplification, the 5' ends of
the both forward and reverse primers were barcoded with
paired 16 bases symmetric barcodes (https://github.com/
PacificBiosciences/Bioinformatics-Training/wiki/Barcoding-
with-SMRT-Analysis-2.3) for multiplexing of samples within
a single sequencing run. Further, the amplicon product (1464
bp, V1-V9 region) was purified with 0.45X AMPure PB beads
(Pacific Biosciences, Menlo Park, CA, USA) and checked for
the expected size on Caliper LabChip GX (Perkin Elmer,
Hopkinton, MA, USA) and further quantified with Qubit
fluorometer Quant-iT dsDNA BR Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA).

Equimolar concentrations of purified amplicons from
each group were pooled separately and further used for
single-molecule real-time (SMRT) bell library preparations
was performed following the manufacturer’s instructions

https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Barcoding-with-SMRT-Analysis-2.3
https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Barcoding-with-SMRT-Analysis-2.3
https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Barcoding-with-SMRT-Analysis-2.3
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Table 1: Summary of the primer pair used to generate the 16S rRNA gene fragment fragments and the characteristics of each region in chronic
periodontitis control and experimental samples.

(a)

Region Forward Primers (with forward barcode) Amplicon length
(Without Barcode)

V1-V9 F AGRGTTYGATYMTGGCTCAG 1,464
F1 TGAGTGACGTGTAGCGAGRGTTYGATYMTGGCTCAG
F2 GACAGCATCTGCGCTCAGRGTTYGATYMTGGCTCAG
F3 TGCGAGCGACTCTATCAGRGTTYGATYMTGGCTCAG
F4 TGCTCTCGTGTACTGTAGRGTTYGATYMTGGCTCAG

(b)

Region Reverse Primers (with reverse barcode) Amplicon length
(Without Barcode)

V1-V9 R RGYTACCTTGTTACGACTT 1,464
R1 GCTCGACTGTGAGAGARGYTACCTTGTTACGACTT
R2 TGCTCGCAGTATCACARGYTACCTTGTTACGACTT
R3 GCAGACTCTCACACGCRGYTACCTTGTTACGACTT
R4 AGACAGCATCTGCGCTCRGYTACCTTGTTACGACTT

(PacBio). Briefly, 500 ng of PCR amplified amplicon was
used for DNA damage repair, followed by end repair and
purification through 0.45X AMPure PB beads and further
ligation of blunt-end adaptors to end repaired products. After
exonuclease treatment and purification with 0.45X AMPure
PB beads, SMRT bell libraries were prepared. A total of 4
SMRT cells (2 SMRT per group) were used for sequencing
of barcoded 16S rRNA amplicons SMRT bell libraries, using
P6C4 chemistry with 6 hrs collection protocol on PacBio
RSII.

2.4. Data Analysis. Generated raw sequences were processed
through the PacBio SMRT Analysis 2.3.0 using RS Read
of Insert (ROI) algorithm. Sequences were filtered for a
minimum of 2 passes and aminimum predicted the accuracy
of 95% to filter the reads with high sequencing error rate.The
CCS reads were demultiplexed by means of command line
interface “pbbarcode” and barcode-FASTA having mix-and-
match sets of forward and reverse barcodes, using aminimum
barcode score of 23. Sequence files and metadata for all
samples used in this study have been deposited in SRA under
Bio project; PRJNA451246 and Biosample; SAMN08966100.

High-quality CCS reads of each sample were projected for
downstream analysis through Mothur (version 1.34.4) pack-
age to species-level identification [23], whereas phyla and
genus level classifications were performed through the MG-
RAST metagenome analysis web server [24]. For the MG-
RAST analysis individual samples, “fasta” files were uploaded
and processed through the pipeline which includes multiple
steps of quality control, removal of artifacts, identification
of ribosomal feature against SILVA and RDP databases, and
identification of taxonomic origin for each feature [24], while
for Mothur package analysis selected commands were used
for data processing. Initially, the sequences were subjected
to amplicon size trimming protocol to remove sequences

outside the expected amplicon size (<1400 bp and >1600
bp) and homopolymeric-sequences. Unique sequences pro-
duced through above process were aligned against “Green-
genes reference database” release green gene gg 13 8 99.
The aligned-sequences were screened for alignment outside
the expected alignment coordinates, min score to 80 or 90
(minimum alignment score) and the minimum to 80 or
90 (minimum similarity score), which were subsequently
removed. The filtered sequences were preclustered allowing
1% mismatch. As a universal rule, we allowed 1% differ-
ence (1 bp/100 bp of the 16S rRNA gene) for the bacterial
16S rRNA gene. Sequences were screened for chimeras
using Chimera Uchime. High-quality filtered CCS reads
sequences were clustered into operational taxonomic units
(OTU) using a cutoff of 0.10. High-quality sequences and
OTUs were classified using the gg 13 8 99.gg.tax database,
while the other databases only provided taxonomic data
to the genus level [25, 26]. Representative sequences from
each OTU were picked and assigned taxonomy using the
classify.seq command. During this process, sequences with
high identity (>97%) were grouped into the same OTU
and are reported at the species level of taxonomic identi-
fication to all sequences, wherever they are reported [23].
Further, unknown and unclassified taxonomic OTU’s were
removed. Matrices of Alpha (Ace, Chao, shannon, invsimp-
son, sobs index) and beta diversity (jclass, thetayc, nmds)
were generated using Mothur package. Rarefaction curves,
principal coordinates (PCoA), and nonmetric multidimen-
sional scaling (NMDS) were generated using PASTv3.11
(http://palaeo-electronica.org/2001 1/past/issue1 01.htm).

2.5. Metagenome Function Predictions. Metagenomic func-
tions conclusions from the 16S rRNA data were made
using PICRUSt (Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States) method utilizing

https://palaeo-electronica.org/2001_1/past/issue1_01.htm
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computational based approach for predicting the functional
composition of a metagenome based on marker gene data
against a reference genomes database [27] and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways [28].
Statistics and visualization of functional data were depicted
using STAMP [29, 30]. Closed-reference OTU-picking pro-
tocols were used to identify 16S rRNA sequences belonging
to annotated genomes, as described in the section above.
Briefly, sequences were grouped into OTUs based on 97%
sequence identity using uclust and the Greengenes refer-
ence database. The taxonomy was assigned to representative
sequences from each OTU using uclust consensus taxonomy
assigner. PICRUSt was used to generate a list of functional
genes predicted to be present in the sample and to organize
these genes into gene pathways. The OTUs abundance was
normalized automatically using 16S rRNA gene copy num-
bers from known bacterial genomes in Integrated Microbial
Genomes (IMG) [31]. The predicted genes and their function
were associated with KEGG pathways. Differences between
the abundance of functional pathways and species richness
among groups (CP and CP+S) were compared through soft-
ware STAMP (http://kiwi.cs.dal.ca/Software/STAMP) [29,
30]. Heatmaps clustering, chi square, and PCA plots were
used to display differences between the groups. Two-side
Welch’s t-test and Benjamini-Hochberg FDR correction were
used in two groups analysis. All analyseswere performedwith
the significance level of p>0.05.

3. Results

3.1. Characteristics of Samples, Data Generation, and Quality
Filtering. A total of 10 samples were analyzed in this study
where all subjects were divided into control (5, CP cases;
based on criteria described in the Methods section) and
experimental (5, CP + Smoking cases) groups according to
dental examination results 1 week after surgery was per-
formed (Supplementary Table 1). Granulation tissue sample
was collected from all subjects and bacterial species richness
as well as metagenome functional prediction analysis was
performed to compare between control and experimental
groups. The raw data contained 166,968,561 read bases with
the mean read length of the insert of 1,517 bases; mean read
quality of insert of 98.53% and 12 mean numbers of passes.
After demultiplexing with respect to individual barcoded
samples and filtering out low-quality reads (>85%) and
host contamination a total of 1,63,546 posttrimmed circular
consensus sequence (CCS) readswith 16,354 reads per sample
on average were obtained (Supplementary Table 1). Further,
removal of chimeras and CCS reads made shorter than 1400
bases and longer than 1600 bases and a total of 99,166 high-
quality CCS reads were obtained (Supplementary Table 1).

3.2. Characterization of 16S rRNAGene at Phylum/Genus/Spe-
cies Level in Control and Experimental Granulation Tissue
Samples Using PacBio Sequencing. The 16S rRNA gene
sequences were assigned to individual species-level
OTUs at 3% dissimilarity against Greengenes database
(gene 13 8 99.gg.tax), while phyla and genus were deter-
mined through MG-RAST databases for species richness

Table 2: Determination of species/phyla/genus in the control
(CP) and experimental (CP+S) granulation tissue samples using
PacBio sequencing: the observed number of OTUs based on high-
quality sequences processed through Mothur package against green
gene 13 8 99.gg.tax database for species richness in pooled 5 control
(Chronic Periodontitis) and 5 experimental (chronic periodontitis +
smoking) samples.

CP CP+S
Proteobacteria 15224 11.85531 52312 13.0633
Firmicutes 74333 57.88498 211196 52.73967
Bacteroidetes 28475 22.1742 100092 24.99488
Actinobacteria 2609 2.031694 9343 2.333125
Fusobacteria 6077 4.732313 21842 5.454364
Spirochaetes 1642 1.278667 5469 1.365714
Tenericutes 2 0.001557 3 0.000749
Chloroflexi 53 0.041272 193 0.048196

128415 400450

in control and experimental samples. Phylum level
characterizations of 16S rRNA gene with MG-RAST showed
among individual experimental (smokers) samples included
10 phyla with 27 genera while 14 phyla with 24 genera were
identified among individual control (nonsmokers) samples
(Supplementary Figures 1, 2, 3, and 4). Overall, the most
abundant (more than 40% representation) phyla comprised
Bacteroides and Firmicutes between both the groups. From
the experimental group, Bacteroides were most abundant
in CP B1 (65.58%), CP B2 (57.30%), CP C2 (59.75%), and
CP D1 (59.72%), whereas in CP C1 Firmicutes (64.70%)
showed the most abundance (Supplementary Figure 1).
However in control group Bacteroides (CP 7; 77.95%, CP 20;
55.33%), Firmicutes (CP 6; 80.71%), and Actinobacteria
(CP 8; 44.38%) showed comparatively higher representation
(Supplementary Figure 3).

Genus level comparisons showed that from experimen-
tal group Capnocytophaga (CP B1; 41.96%), Porphyromonas
(CP D1; 45.27%), and Veillonella (CP C2; 73.60%) were
dominantly observed (Supplementary Figure 2). Similarly,
from the control group Veillonella (CP 6; 82.99%), Porphy-
romonas (CP 7; 75.8%), and Actinomyces (CP 8; 45.38%)
were predominantly observed (Supplementary Figure 4).

The species-level classification of 16S rRNA gene against
green gene 13 8 99.gg.tax database was carried out after
pooling individually control and experimental samples into
two groups through Mothur pipeline. The results showed
a total of 8 assigned phyla with 2 of these dominating
across all the samples: Firmicutes (57.88%; control and
52.73%; experimental) and Bacteroidetes (22.17%; control
and 24.99%; experimental) (Table 2). The occurrence was
comparable in both control and experimental groups and
similar to those observed with MG-RAST pipeline. Among
Firmicutes, Selenomonas noxia (control; 31.99% and exper-
imental; 40.80%), Selenomonas bovis (control; 19. 56% and
experimental; 24.80%), and Veillonella parvula (control;
19.46% and experimental; 23.94%) showed predominance.
In Bacteroidetes, Capnocytophaga ochracea (control; 55.03%
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and experimental; 56.49%) andMacellibacteroides fermentans
(control; 16.95% and experimental; 15.69%) were highly
represented. Apart from these two highly abundant taxa, Pro-
teobacteria were represented by 11.85% in control and 13.06%
in experimental group which comprised Neisseria oralis
(control; 46.63% and experimental; 44.94%), Campylobacter
rectus (control; 36.35% and experimental; 37.71%) and Pre-
votella nigrescens (control; 14.21% and experimental; 14.33%).
In addition, Sebaldella termitidis species from Fusobacteria
(4.73% control; 5.45% experimental) was present in both
control and experimental groups with 99.99% dominance.
Also among Actinobacteria (control; 2.03% and experimen-
tal; 2.33%), Actinomyces hyovaginalis (control; 35.60% and
experimental; 35.75%), Rothia terrae (control; 31.00% and
experimental; 31.09%), and Corynebacterium pilosum (con-
trol; 24.41% and experimental; 24.81%) were dominantly
classified.

3.3. Species Richness and Rarefaction Curve Analysis. Species
richness or 𝛼-diversity summarizes the diversity of organ-
isms in a sample with a single number. The 𝛼-diversity of
annotated samples can be estimated from the distribution
of the species-level classifications. In experimental or CP+S
group the 𝛼-diversity was characterized by the observation of
7 (CP B1), 36 (CP B2), 12 (CP C1), 10 (CP C2), and 20 species
(CP D1). Similarly, from the control or CP group, 𝛼-diversity
observation showed the presence of 10 (CP 6), 13 (CP 7), 28
(CP 8) 39 (CP 15), and 72 species (CP 20) (Supplementary
Figure 5). Further analysis of rarefaction curve of annotated
species richness showed a saturation curve in all of the control
and experimental groups (Supplementary Figure 6). A steep
slope indicates that a large fraction of the species diversity
remains to be discovered. Sampling curves generally rise very
quickly at first and then level off toward an asymptote as fewer
new species are found per unit of individuals collected.

3.4. Differential Abundance of the Microbial Community in
CP Granulation Tissue Samples between Nonsmokers and
Smokers and Associated Functions. The 16S rRNA gene
CCS reads were assigned to species-level OTUs at 3%
dissimilarity. In total, 2,956 OTUs were detected in all
10 individuals and were compared between control and
experimental samples. OTU based correlation coefficient
analysis showed R2 =0.855 between experimental and control
samples depicting a poor relationship between microbial
abundance between the two groups (Figure 1(a)). STAMP
based generation of OTU heatmap among nonsmokers
and smokers showed that CP 6, CP 7, CP 8, CP 15, and
CP 20 were in one cluster while CP B1, CP B2, CP C1,
CP C2, and CP D1 were in a different cluster (Figure 1(b)).
PICRUST analysis of normalized OTU’s showed the dom-
inance of Phyla-Fusobacteria-Streptobacillus moniliformis;
Phyla-Firmicutes-Streptococcus equi; Phyla Proteobacteria-
Enhydrobacter aerosaccus; Phyla-Firmicutes-Staphylococcus
saprophyticus in nonsmokers (p>0.05) compared to smokers
(Figure 1(c)).

Functional predictions of the observed species abundance
showed the formation of no distinct clusters in heatmap
profiles (Figure 2(a)) with a correlation coefficient of R2 =

0.999 (Figure 2(b)). primary immunodeficiency, citrate cycle,
streptomycin biosynthesis, Vitamin B6, butanoate, glycine,
serine, and threoninemetabolism showed significant upregu-
lation in smokers compared to nonsmokers. While thiamine
metabolism, D-glutamine and D-glutamate metabolism, D-
Aarginine and D-ornithine metabolism, homologous recom-
bination, epithelial cell signaling in helicobacter pylori,
Aminoacyl-tRNA biosynthesis, phosphonate and phosphi-
nate metabolism, polycyclic aromatic hydrocarbon degrada-
tion, synthesis and degradation of ketone bodies, translation
factors, Ascorbate/aldaratemetabolism, and glycosaminogly-
can degradation DNA replication showed significant upreg-
ulation in nonsmokers (Figure 2(c)).

3.5. Metagenome Predictions between Nonsmokers and Smok-
ers-CP Granulation Tissue Samples and Associated Func-
tions. Metagenome predictions of the observed species
abundance showed the formation of no distinct clus-
ters in heatmap profiles (Figure 3(a)), with a correlation
coefficient of R2 = 0.990 (Figure 3(b)). Although two
distinct clusters could be identified, where one cluster
included observational ID’s K03671 (Thioredoxin 1), K03498
(trk system potassium uptake protein TrkH), and K03976
(putative transcription regulator) and other cluster com-
prised K02299 (cytochrome o ubiquinol oxidase subunit
III [EC:1.10.3.-]), K02391 (flagellar basal-body rod pro-
tein FlgF), K03185 (2-octaprenyl-6-methoxyphenol hydrox-
ylase [EC:1.14.13.-]), K04080 (molecular chaperone IbpA),
K07708 (two-component system, NtrC family, nitrogen reg-
ulation sensor histidine kinase GlnL (EC:2.7.13.3)), K09472
(gamma-glutamyl-gamma-aminobutyraldehyde dehydroge-
nase (EC:1.2.1.-). Extended error plot showed significant
(p>0.05) upregulation of observational IDs K03671 (Thiore-
doxin 1), K03498 (trk system potassium uptake protein
TrkH), and K03976 (putative transcription regulator) in non-
smokers and second cluster IDs showed significant (p>0.05)
upregulation in smokers (Figure 3(c)).

4. Discussion

In the present study a total of 8 assigned phyla among which
dominating were Firmicutes and Bacteroidetes comprising
more than >40% species, while less than <40% were
represented by Fusobacteria, Actinobacteria, Spirochaetes,
Tenericutes, and Chloroflexi across control and experimental
samples. In an earlier study, Kumar et al. [32] showed
the presence of Firmicutes, Proteobacteria, Actinobacteria,
Bacteroidetes, Spirochaetes, and Synergistes in samples
collected from the margin and subgingival plaques tissue.
Although the species Selenomonas noxia, Selenomonas
bovis, and Veillonella parvula in phyla-Firmicutes; Neisseria
oralis and Campylobacter rectus in Phyla Proteobacteria;
Capnocytophaga ochracea,Macellibacteroides fermentans, and
Prevotella nigrescens in phylaBacteroidetes showed equivalent
abundance as earlier reported [10]. Recently, Veillonella spp.,
Streptococcus spp., Prevotella spp., and Lactobacillus spp.
were reported predominantly to be abundant among
children’s with caries [33]. However, differential abundance
analysis through PICRUST analysis after normalization
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(a) (b)

(c)

Figure 1: (a) Scatter plot and correlation estimates of bacterial species abundance between nonsmokers and smokers in granulation tissue
of chronic periodontitis samples. (b) Heatmap profile of abundance distribution of identified species in between nonsmokers and smokers in
granulation tissue of chronic periodontitis samples. (c) Mean proportion of bacterial species abundance between nonsmokers and smokers
in granulation tissue of chronic periodontitis samples. The significant differences observed between the two groups at 95% confidence level
and p>0.05 are reported.

of OTU’s showed the dominance of Phyla-Fusobacteria-
Streptobacillus moniliformis; Phyla-Firmicutes-Streptococcus
equi; Phyla Proteobacteria-Enhydrobacter aerosaccus; Phyla-
Firmicutes-Staphylococcus saprophyticus in nonsmokers
(p>0.05) compared to smokers. This differential dominance
of these species among nonsmokers led significant minor
upregulation of KEGG pathways involved in primary
immunodeficiency which may increase the susceptibility
to infections in smokers as supported by Ballow et al. [34]
that primary immunodeficiency is uncommon, chronic, and
severe disorders of the immune system in which patients
cannot mount a sufficiently protective immune response,
leading to an increased susceptibility to infections. We
also observed upregulation of citrate cycle, metabolism of
Vitamin B6, butanoate, glycine, serine and threonine in
smokers which has also been shown by Barupal et al., [35],
where they reported that environmental tobacco smoke
(ETS) exposure in adult rats shows adverse effects on the
mitochondrial respiratory chain, lung elasticity, membrane
integrity, redox states, cell cycle, and normal metabolic and
physiological functions of lungs, even after subchronic ETS
exposure. Further, alteration in metabolism of thiamine,

D-glutamine and D-glutamate, D-arginine, and D-
ornithine has also been earlier reported [36] and inhibition
of pancreatic acinar mitochondrial thiamin pyrophosphate
uptake by the cigarette smoke component 4-(methylnitro-
samino)-1-(3-pyridyl)-1-butanone was suggested. Vulimiri et
al. [37] showed that global metabolome is affected by whole
smoke significantly and most importantly alters glutathione
(GSH levels), glutamine and increased polyamine, and
pantothenate (vitamin B5) phospholipid degradation.

A decrease in homologous recombination and DNA
replication showed trivial significant downregulation in
smokers suggestive of higher formation of DNA adducts,
which may lead to the process of carcinogenesis. Decrease in
aminoacyl-tRNA biosynthesis and translation factors is sup-
ported by the recent evidence that suggests that RNA species
are required at initiation, because treatment of cells with
antibiotics, drugs, or chemical carcinogens (hydrocarbons of
smoking) may inhibit RNA synthesis (including both rRNA
and tRNA) and cause a decrease in protein synthesis [38].
A decrease in synthesis and degradation of ketone bodies,
which are particularly important for the brain which has
no other substantial nonglucose-derived energy source, may



BioMed Research International 7
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Figure 2: Heatmap profile of predicted functions of identified bacterial species between nonsmokers and smokers in granulation tissue
of chronic periodontitis samples. Scatter plot and correlation estimates of bacterial species functional predictions between nonsmokers
and smokers in granulation tissue of chronic periodontitis samples. Mean proportion of bacterial species functional predictions between
nonsmokers and smokers in granulation tissue of chronic periodontitis samples.The significant differences observed between the two groups
at 95% confidence level and p>0.05 are reported.
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(c)

Figure 3: (a) Heatmap profile of metagenome predictions of identified species between nonsmokers and smokers in granulation tissue
of chronic periodontitis samples. (b) Scatter plot and correlation estimates of bacterial species functional predictions between nonsmokers
and smokers in granulation tissue of chronic periodontitis samples. (c) Mean proportion of bacterial species functional predictions between
nonsmokers and smokers in granulation tissue of chronic periodontitis samples.The significant differences observed between the two groups
at 95% confidence level and p>0.05 are reported.

further alter both the tricarboxylic acid cycle and oxidative
phosphorylation pathways and may lead to oxidative stress
[39]. Additionally, a decrease in phosphonate and phosphi-
nate metabolism, polycyclic aromatic hydrocarbon degrada-
tion, ascorbate and aldarate metabolism and glycosamino-
glycan degradation, and glycosyltransferases may further
modulate the metabolism and hence niche of the granulation
tissue.

A high abundance of bacterial species associated with
K09472-gamma-glutamyl-gamma-aminobutyraldehyde de-
hydrogenase was involved in oxidative stress; K04080-
molecular chaperone IbpA was involved in cell division and
cell cycle; K03185 2-octaprenyl-6-methoxyphenol hydroxy-
lase (EC:1.14.13.-) was involved in cofactors, vitamins, pros-
thetic groups, pigments, quinone cofactors, and ubiquinone
biosynthesis; and K02299 cytochrome O ubiquinol oxidase
subunit III (EC:1.10.3.-) was involved in respiration and

electron accepting reactions may be associated with the
severity of chronic periodontitis in smokers.

5. Conclusions

In the present work, we demonstrated the diversity and
complexity of the oral microbial community associated
with chronic periodontitis and species richness affected by
smoking. At the species level, dysbiosis was caused due to
smoking complicating the disease conditions modulating
the global metabolic pathways related to amino acids, vita-
mins, phosphonate and phosphinate, ascorbate and aldarate
metabolism. In addition, increase in primary immunode-
ficiency; decrease in homologous recombination and DNA
replication; decrease in degradation of ketone bodies and
polyaromatic hydrocarbons pathways in smokers may lead to
the increased risk of carcinogenesis.
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Supplementary Materials

Supplementary Figure 1: taxonomic hits distribution of
five (CP+S) patients’ sample: the charts represent the dis-
tribution of taxa using a contigLCA algorithm finding a
single consensus taxonomic entity at phylum level on each
individual sample. Supplementary Figure 2: taxonomic
hits distribution of five (CP+S) patients’ sample: the charts
represent the distribution of taxa using a contigLCA algo-
rithm finding a single consensus taxonomic entity at genus
level on each individual sample. Supplementary Figure 3:
taxonomic hits distribution of five (S) control sample: the
charts represent the distribution of taxa using a contigLCA
algorithm finding a single consensus taxonomic entity at
phylum level on each individual sample. Supplementary
Figure 4: taxonomic hits distribution of five (S) control
sample: the charts represent the distribution of taxa using a
contigLCA algorithm finding a single consensus taxonomic
entity at genus level on each individual sample. Supple-
mentary Figure 5: alpha diversity of five control (a) and
experimental (b) samples: the above images show the range
of 𝛼-diversity values. The min, max, and mean values are
shown, with the standard deviation ranges (𝜎 and 2𝜎) in
different shades.The𝛼-diversity of thismetagenome is shown
in red. Supplementary Figure 6: rarefaction curve of

five control (a) and experimental (b) samples: the plot
shows the rarefaction curve of the total number of annotated
species richness per sample as a function of the number of
sequences sampled. Supplementary Table 1: screening of
30 chronic periodontitis (CP) patients where five patients
(CP B1, CP B2, CP C1, CP C2, and CP D1) with the history
of smoking and tobacco chewing, bleeding on probing, and
periodontal pockets ≥ 5mm and having clinical attachment
loss (CAL) were selected as experimental group (CP+S).
Five patients of corresponding age group (CP 6, CP 7, CP 8,
CP 15, and CP 20) with the history of no smoking and
tobacco chewing, bleeding on probing, and periodontal
pockets ≥ 5mm and having clinical attachment loss (CAL)
were included as control group. Raw reads and filtered con-
sensus sequences (CCS) were obtained after demultiplexing
of barcoded individual samples. (Supplementary Materials)
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