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In pattern recognition, the selection of appropriate features is paramount to both the

performance and the robustness of the system. Over-reliance onmachine learning-based

feature selection methods can, therefore, be problematic; especially when conducted

using small snapshots of data. The results of these methods, if adopted without proper

interpretation, can lead to sub-optimal system design or worse, the abandonment of

otherwise viable and important features. In this work, a deep exploration of pain-based

emotion classification was conducted to better understand differences in the results

of the related literature. In total, 155 different time domain and frequency domain

features were explored, derived from electromyogram (EMG), skin conductance levels

(SCL), and electrocardiogram (ECG) readings taken from the 85 subjects in response

to heat-induced pain. To address the inconsistency in the optimal feature sets found in

related works, an exhaustive and interpretable feature selection protocol was followed to

obtain a generalizable feature set. Associations between features were then visualized

using a topologically-informed chart, called Mapper, of this physiological feature space,

including synthesis and comparison of results from previous literature. This topological

feature chart was able to identify key sources of information that led to the formation of

five main functional feature groups: signal amplitude and power, frequency information,

nonlinear complexity, unique, and connecting. These functional groupings were used

to extract further insight into observable autonomic responses to pain through a

complementary statistical interaction analysis. From this chart, it was observed that EMG

and SCL derived features could functionally replace those obtained from ECG. These

insights motivate future work on novel sensing modalities, feature design, deep learning

approaches, and dimensionality reduction techniques.

Keywords: affective computing, EMG, emotion recognition, feature extraction, feature selection, multimodal

analysis, heat pain, physiological signals

1. INTRODUCTION

Emotion is the basis of subjective experience that drives human behavior and regulates many
physiological states. Throughout nearly all forms of life, motivation spurred by primal emotions
like fear and desire facilitates successful adaptation to surrounding environments. In the field of
affective computing, a desire to reciprocate this interaction has begun through emotion recognition
and the development of affect sensitive systems. By monitoring these manifestations of emotion,
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called “affects,” an intelligent surrounding environment
can respond to enhance engagement and cohesion with its
participants. These systems are pervasive across applications
such as pain detection (Nezam et al., 2018), education (Lara et al.,
2018), workplace optimization (Zenonos et al., 2016), and more.

Systems have been constructed to respond to affective
states; however, none have yet to register the full spectrum
of emotions ubiquitously due to the sophistication and
variability of emotions. Instead, affective computing has
primarily embraced four theories that quantify affective state:
expression, embodiment, neuroscience, and arousal-valance
(Marsella et al., 2010). Specifically, expression outlines the
relationship between affective states and their corresponding
observable tendencies (Darwin, 1916). In contrast, embodiment
characterizes emotions with their accompanying physiological
symptoms (James, 1884). Dalgleish et al. (2009), and Borsook
et al. (2010) demonstrated that many key cognition, emotion,
and pain pathways are shared in the brain. Thus, a theory
that concentrates on the brain as an indicator of affective
state has shown merit in the application of existing techniques
from affective neuroscience. Deconstruction of emotional states
into the concepts of arousal and valence has facilitated the
practical application of emotion classification (Russell, 1980;
Lang et al., 1998). This two-dimensional scale has provided
a framework for quantifying emotional state in many recent
affective computing studies (Khalili and Moradi, 2009; Rahnuma
et al., 2011 ;Zhang and Zhang, 2017).

The merits of each theory of affective state have been shown
through a variety of experiments. The arousal-valance theory
is used as a continuous-spectrum substitute for basic emotions,
instead of using discrete categories. Arousal corresponds to
the intensity of the emotion; whereas valance corresponds
to the disposition (pleasant/unpleasant). For instance, as a
response to harmful stimuli, pain can elicit a state of high
arousal characterized by sympathetic arousal and heightened
attention to the source of the stimuli. Alternatively, arousal
and valance together can discriminate between complex
emotions; both sadness and anger have negative valance,
but anger has high arousal and sadness has low arousal
(Shu et al., 2018). Within experiments, media materials
are often used to evoke various responses on the arousal-
valence curve that correspond to basic emotions (Zong
and Chetouani, 2009). Developments in neuroscience have
led to the use of functional magnetic resonance imaging
(fMRI) (Han et al., 2015) and electroencephalogram (EEG)
(Petrantonakis and Hadjileontiadis, 2010) in affective
state studies. The theory of expression has been verified
by recording facial features (Ekman and Freisen, 2003;
Valstar and Pantic, 2012), posture (D’Mello and Graesser,
2009), and voice characteristics (Juslin and Scherer, 2005)
in response to emotion-evoking material. Studies that
use expression-based recognition, however, necessitate an
isolated environment for audio monitoring, and privacy is
a concern when monitoring video (Chen et al., 2018). An
additional limitation of video is that individuals can consciously
mimic or hide facial expressions confounding specificity and
sensitivity, respectively.

With the advancement of wearable technologies, physiological
signals can now be monitored non-intrusively, with high fidelity,
and alleviate many of these privacy concerns. Studies that employ
physiological signals such as electromyogram (EMG) (Wijsman
et al., 2013), electrocardiogram (ECG)/ plethysmogram (PMG)
(Valderas et al., 2015), skin conductance level (SCL, also known
as galvanic skin response, GSR) (Murali et al., 2015), respiration
rate (RR) (Wu et al., 2012), and pupil dilation (PD) (Babiker
et al., 2013), have reinforced the embodiment theory of emotion
by using physiological signals for emotion recognition. In
addition to validating these theories, these studies corroborate
the correlation between affective state and various modalities.

The emergence of multimodal studies has greatly enhanced
the performance of affect-sensitive systems.While demonstrating
superior performance, multimodal emotion recognition studies
also provide a unique environment to contrast the unique and
pooled discriminative ability of various physiological modalities.
For example, EMG, ECG, SCL, and RR were used to mediate
distractions during a daily commute using driver distress level
(Healey and Picard, 2005). An overall accuracy of 97.4% was
achieved in a three-level stress detection task with ECG and
SCL contributing the most discriminative power. The use of
SCL, PMG, PD, and skin temperature for the detection of
stress induced by the Stroop Effect has also been explored
(Zhai and Barreto, 2006), with classification accuracy of stress
levels reaching 90.1%.

In order to achieve these high classification accuracies in
emotion recognition, the selection of appropriate features may be
considered as the most critical for machine learning. However,
over-reliance on automated feature selection methods can be
problematic, especially when conducted using small snapshots
of data. The results of these methods, if adopted without proper
interpretation, can lead to sub-optimal system design, or worse,
the abandonment of otherwise viable and important features. To
navigate this problem in a tangible way, we focus on a specific
case study of emotion recognition; heat pain assessment, for
which the selection of features and modalities is a current and
acknowledged problem in the scientific literature.

The perception of pain is affected by emotion and the response
to pain evokes an emotional response (Woo et al., 2015). While
pain can be studied as a model for arousal, the development
of pain recognition systems has considerable clinical relevance.
Self-reported methods of reporting pain are subjective and thus
ill-suited for the complexity of pain perception. Furthermore,
self-reporting of pain is not always feasible for all patients,
such as those experiencing trauma (Berthier et al., 1998),
or those with dementia (Zwakhalen et al., 2006) or other
cognitive impairments.

Many researchers have conducted experiments resulting in
a wide range of performances in the classification of pain. A
number of characteristics of these studies, however, have made
their results difficult to interpret and harmonize. First, many
have chosen to focus on a particular modality and/or feature
type. Differing subsets of feature modalities (Werner et al.,
2014; Kächele et al., 2017; Lopez-Martinez and Picard, 2017)
or feature types (Chu et al., 2017) have detracted from the
ability to translate and compare results between studies. Second,
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the absence of feature selection methods has failed to identify
the source of enhancements compared to other studies (Chu
et al., 2014). In others, some feature selection methods may
have found an optimal feature set for a specific instance of a
classification algorithm, but not necessarily for the generalizable
classification problem (Walter et al., 2014; Gruss et al., 2015;
Kächele et al., 2015). Third, subject-dependent feature selection
protocols increase accuracy, but the source of improvement
cannot be distinguished between subject specific information or
classifier conformity to noise (Walter et al., 2014). These factors
have led to a lack of consensus on the selection of optimal
modalities and features for the classification of pain intensities.
As more researchers build on the work of others, this could
lead to the abandonment of otherwise useful modalities or the
selection of sub-optimal features.

While the use of automated feature selection methods
accelerates the discovery of meaningful techniques and features,
their narrow scope can limit comprehension of the phenomena
being classified. The field of automatic pain detection has
indeed been streamlined by primarily focusing on classification
accuracy, without necessarily emphasizing the underlying
problem. Researchers have proposed a variety of methods
for discriminating between perceived pain intensities given
measured autonomous responses, yet no consensus has been
reached due to a lack of comprehensive examination of their
discriminative ability.

In this exploration, we aim to meet two purposes: (1) To
obtain meaningful, discriminatory sets of generalizable features
for pain recognition with minimal bias to the underlying
methods selected. By conducting a one hundred epoch selection
followed by a majority vote, the most frequently selected features
are revealed. (2) To quantify associations between modalities and
features to enhance comprehension of autonomic pain responses.
By employing Mapper (Singh et al., 2007), a topological data
analysis tool, an understanding of the unique and common
discriminative aspects of available features is gained. With these
newfound insights, differences between previous related works
can be better understood and compared.

2. MATERIALS AND METHODS

Categorization of pain levels was conducted using a pipeline,
consisting of five stages: data collection, data pre-processing,
feature extraction, feature selection, and classification. Briefly,
this pipeline removed unwanted artifacts from the signals and
segmented measurements into finite-length windows by pre-
processing. The information density was increased in each
of these windows by extracting features of relevant signal
characteristics. These features were evaluated and screened to
identify key discriminative features for use by the classifier.
The classification algorithms then harnessed the information
captured by these features to segregate the data into pre-defined
classes of pain.

2.1. Emotion Data
The dataset—Biopotential and Video (BioVid) Heat Pain
Database—outlined by Gruss et al. (2015) was adopted for this

work as it was publicly available and includes physiological
modalities common across a majority of related works. The
collection of the data, as explained by Walter et al. (2013), was
carried out in accordance with the recommendations of the
ethics committee of the University of Ulm with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The
protocol was approved by the ethics committee of the University
of Ulm (196/10-UBB/bal). The data include surface EMG from
the zygomaticus (zEMG), corrugator (cEMG), and trapezius
(tEMG) muscles, ECG, and SCL elicited in response to a pain-
inducing heat stimulus. For each trial, a randomly selected pain
stimulus level was applied for 4 s and the physiological response
was recorded for 5.5 s. Eighty-five participants conducted 20
trials at each of the five pain-intensity levels.

Specifically, heat-pain stimuli levels were calibrated on a
per subject basis. A baseline, (B), was defined as 32◦C. The
first pain level, pain threshold (T1), was given as the transition
from a sensation of warmth to a burning, pulling, or stretching
sensation. The fourth and highest pain level, pain tolerance
(T4), was given by the upper limit of tolerable pain due to
heat. Two linearly spaced values between pain threshold and
pain tolerance, T2 and T3, provided additional resolution of
intensity levels, but were not tied to a sensory trigger event. For
simplification, detection of these heat-pain levels were divided
into four classification problems, (1) pain threshold problem
(B vs. T1), (2) pain tolerance problem (B vs. T4), (3) three-class
problem (B vs. T1 vs. T4), and (4) five-class problem (B vs. T1
vs. T2 vs. T3 vs. T4).

2.2. Data Pre-processing
Prior to feature extraction, the physiological signals underwent
pre-processing to remove unwanted artifacts. The raw EMG and
ECG signals were bandpass filtered using 4th order Butterworth
filters with pass bands of 20–250 Hz and 0.1–250 Hz for EMG
and ECG, respectively (Walter et al., 2014). The signals were
then broken down into their intrinsic mode functions by use of
empirical mode decomposition (EMD) (Huang et al., 1998). This
enabled the intrinsic mode function that corresponded to power-
line interference to be removed from the measured signals.
Afterwards, the Hilbert spectrum was used to highlight EMG
activity for data segmentation (Azarbad et al., 2014). Finally,
features were normalized by z-score, zero-mean unit-variance
distribution, to enforce scale across modalities and feature types.

2.3. Feature Extraction
Feature extraction is the process of increasing information
density by retrieving key properties from a larger element of data.
These properties are leveraged to build models able to predict
the class of sampled data. Within this context, features were
extracted from physiological data during the 5.5 s window after
the onset of the painful stimuli. Largely, feature domains are
classified by the continuum from which they were calculated,
i.e., time domain and frequency domain. Time domain features
extract information directly from the sampled time series after
pre-processing. SCL time domain features have been found
to be effective in arousal quantification, where responses to
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stimuli were shown to be largely time-invariant (Bach et al.,
2010). Observation of EMG time domain reveals non-stationarity
(Lei et al., 2001). Regardless, time domain EMG features
have been shown to yield impressive accuracies in controlled
settings (Phinyomark et al., 2013). In contrast, frequency domain
features are calculated from transformed data and involve
characterization of the spectral domain. The phasic component
of SCL, the skin conductance response, has also shown to be
correlated with arousal (Cuthbert et al., 2000; Bradley and Lang,
2003). Alternatively, signals that have a characteristic profile like
ECG may require the use of a transform to identify landmarks of
the signal as features. For instance, heart rate variability metrics
extracted from ECG have been used to measure autonomic
nervous system activity (Jiang et al., 2017).

In addition to these feature domains, feature extraction
methods may also be categorized by the theoretical type of
information they are designed to extract. Within this study,
several theoretical feature types were explored, including those
that capture (1) signal amplitude, (2) variability, (3) stationarity,
(4) entropy, (5) linearity, (6) similarity, and (7) frequency
properties (Gruss et al., 2015). A full list of these 155 features is
shown in Table 1. Abbreviations of feature names were chosen to
be as concise as possible while still translating across the related
physiology literature. The mathematical definitions of these
features can be found within the works listed in the definition
column. The zEMG, cEMG, and tEMG modalities were each
characterized by 39 features (#1-#39), the SCL modality was
characterized by 35 features (#1-#35), and the ECG modality was
characterized by three features (#40-#42) (Table 1).

2.4. Feature Selection
Feature selection is the process of determining a subset of
features that provide meaningful information to the classification
problem. In contrast to feature extraction, which improves
information density, feature selection aims to improve quality
with a minimum loss of information. Machine learning-based
feature selection involves ordering a set of features based on some
criterion, such as discriminative power. Once ranked, features are
incrementally and iteratively added to the classification model
until some desired threshold was met.

To improve the robustness of the resulting feature sets and
reduce the variations observed in the results of previous studies,
a one-hundred-epoch hold-out-and-k-fold cross-validation (CV)
scheme was employed (Figure 1). Specifically, 100 independently
and randomly generated subsets of the dataset were segmented
to provide the classifier with a wide range of classification tasks.
Data were stratified on the basis of subject and heat-pain level
to ensure constant representation of subjects and stimulus level
across all CVs. In each of the epochs, a one-quarter hold-out
was used to ensure that a test set remained unseen during the
selection process. In this way, 75% of each CV was used as a
training set, while the remaining 25% were reserved as a test set.
Each training set was further divided into a 3-fold CV. Two of
the folds (50% partition of the original dataset) were used as a
training set for feature selection process and the third (25% of
the original dataset) was used as a validation set. These resulted
in 10 and 5 samples per subject per stimulus level, respectively.

An illustration that outlines the stages of the one-hundred-epoch
cross-validation feature selection scheme is shown in Figure 1.

Feature selection was conducted using commonly employed
feature selection approaches: univariate feature selection (UFS)
and sequential forward selection (SFS). First, UFS involves the
characterization of features, quantifying their discriminative
power using a univariate statistical test such as an analysis of
variance (ANOVA) F-value, distance correlation coefficient, or
mutual information. For instance, Walter et al. (2014) previously
ranked a set of features derived from this dataset based on their
p-value. Within this study, our approach for UFS used F-value as
the criterion for filter-based feature selection. F-value is the ratio
of variance described by the feature to the variance not explained
by the feature. The F-value for each feature was determined
through a one-way ANOVA. The features were then ranked
according to their mean F-value determined from the feature
selection train set of each CV.

Second, SFS involves the direct use of a classifier in the
determination of the most beneficial features for inclusion. The
classifier is used as an objective function to judge the classification
performance of features. For instance, Kächele et al. (2015) uses
a similar wrapper-based feature selection using the classification
accuracy of a support vector machine (SVM) algorithm. Within
this study, our approach for SFS used a Naïve Bayes classifier
employed as the objective function to ensure features that
had higher independence from included features and improve
model accuracy were prioritized. The process begins by selecting
the one feature that yields the highest individual classification
performance. All remaining features are then evaluated in
conjunction with this feature, and the feature that adds the most
discriminative power is added. The process is then repeated
iteratively using the remaining set of available features until all
features have been added or until no significant improvement is
gained by the addition of more features.

2.5. Classification
These machine learning-based feature selection protocols were
repeated for each of the four classification problems (i.e.,
pain threshold problem, pain tolerance problem, three-class
problem, and the five-class problem). After feature selection
process was completed and robust feature sets were determined,
an SVM classifier was constructed for each training set and
tested against the corresponding test set. The classification stage
was conducted using a set of SVMs with linear kernels in a
one-against-one strategy.

The number of features included in the robust set for both
UFS and SFS were determined post hoc by two methods: local
maximum and global maximum. First, the set yielding the first
local maximum classification accuracy was defined as the number
of features included where adding the next feature yielded no
significant or substantive difference in classification accuracy
(p < 0.05). For each CV, a local maximum was identified.
The average local maximum across all CVs dictated the number
of features included in the robust feature set. Identification
of maxima are especially important for classification since,
unlike regression problems, the addition of ambiguous feature
may hinder both computation time and accuracy. Second, the
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TABLE 1 | List of all features included in the exploration, in alphabetical order and theoretical groups.

# Abbreviation Theoretical

group

Full name References

1 HOMAV1 Amplitude First Higher-Order Mean Absolute Value Phinyomark et al., 2014

2 HOMAV1n Amplitude Normalized 1st Higher-Order Mean Absolute Value Phinyomark et al., 2014

3 HOMAV2 Amplitude Second Higher-Order Mean Absolute Value Phinyomark et al., 2014

4 HOMAV2n Amplitude Normalized 2nd Higher-Order Mean Absolute Value Phinyomark et al., 2014

5 MAV Amplitude Mean Absolute Value Phinyomark et al., 2012

6 P2P Amplitude Peak to Peak Amplitude Walter et al., 2014

7 PK Amplitude Peak Amplitude Walter et al., 2014

8 RMS Amplitude Root Mean Square Phinyomark et al., 2012

9 TMNP Amplitude Mean Relative Time of the Peaks Phinyomark and Scheme, 2018

10 TMNV Amplitude Mean Relative Time of the Valleys Phinyomark and Scheme, 2018

11 IQR Variability Interquartile Range Walter et al., 2014

12 R Variability Range Walter et al., 2014

13 SD Variability Standard Deviation Walter et al., 2014

14 VAR Variability Variance Phinyomark et al., 2012

15 IDS Stationarity Interal Degree of Stationarity Cao and Slobounov, 2011

16 MD Stationarity Median Walter et al., 2014

17 MIDS Stationarity Modified Integral Degree of Stationarity Cao and Slobounov, 2011

18 MMNDS Stationarity Modified Mean Degree of Stationarity Cao and Slobounov, 2011

19 SDMN Stationarity Standard Deviation of Mean Vector Walter et al., 2014

20 SDSD Stationarity Standard Deviation of Standard Deviation Vector Walter et al., 2014

21 ApEn Entropy Approximate Entropy Ferenets et al., 2006

22 FuzzyEn Entropy Fuzzy Entropy Al-sharhan et al., 2001

23 SampEn Entropy Sample Entropy Richman and Moorman, 2000

24 ShannonEn Entropy Shannon Entropy Ferenets et al., 2006

25 SpectralEn Entropy Spectral Entropy Ferenets et al., 2006

26 LDF Linearity Lag Dependence Function Walter et al., 2014

27 PLDF Linearity Population Lag Dependence Function Walter et al., 2014

28 CC Similarity Correlation Coefficient Kennedy, 2007

29 MDCOH Similarity Median Coherence Dukic et al., 2017

30 MI Similarity Mutual Information Chen et al., 2003

31 MICOH Similarity Modified Integral of Coherence Dukic et al., 2017

32 MNCOH Similarity Mean Coherence Dukic et al., 2017

33 MMNCOH Similarity Modified Mean Coherence Dukic et al., 2017

34 BW Frequency Bandwidth Walter et al., 2014

35 CF Frequency Center Frequency Walter et al., 2014

36 MDF Frequency Median Frequency Phinyomark et al., 2012

37 MNF Frequency Mean Frequency Phinyomark et al., 2012

38 MOF Frequency Mode Frequency Walter et al., 2014

39 ZC Frequency Zero Crossings Phinyomark et al., 2012

40 MNRR Variability Mean Resting Rate Shaffer and Ginsberg, 2017

41 RMSSD Variability Root Mean Square Successive Interval Differences Shaffer and Ginsberg, 2017

42 slopeRR Variability Slope Resting Rate Shaffer and Ginsberg, 2017

Feature abbreviations are included along with theoretical feature types and an accompanying article with mathematical definition.

sets of features that yielded the global maximum classification
accuracy, indicating an upper performance limit, were identified.
These global maxima were determined as the mean number of
included features that yielded the maximum accuracy across all
CVs. This threshold occurred when many more features were
included than feasible in any practical application; however,

this metric was useful in understanding the variance in
feature information across the entire dataset and the measure
of complexity of the classification problem. For example,
global maxima that occurred with a small number of features
correspond to low variance across features in the dataset;
whereas, global maxima that occurred with a large number of
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FIGURE 1 | Illustration of one-hundred-epoch hold-out-and-k-fold cross-validation scheme used for machine learning-based feature selection approaches.

features correspond to broad range of feature information across
all features.

2.6. Topological Data Analysis
In addition to the machine learning-based feature selection
approach, a cluster analysis tool based on topological data
analysis (TDA) was employed to highlight associations between
feature types. A topological simplification approach called
Mapper (Singh et al., 2007) produced controlled simplifications
and visualizations based on similarity or metric characteristics
of the dataset. The controlled simplification comprised of a
network that grouped complex high-dimensional data into a
lower dimensional projection while preserving the associations
present in the high-dimensional state. It is expected that features
that have similar definitions characterize the same information
and are thus grouped together. The intent of this algorithm,
however, was to identify sets of features across modalities and
feature types that characterize similar information for novel
insight (Phinyomark et al., 2017). The use of Mapper as a
cluster analysis tool has shown success in identifying an unknown
subtype of breast cancer (Nicolau et al., 2011), analyzing the
organization of the brain while processing complex tasks (Saggar
et al., 2018), and has been validated on several datasets including
genomic and spinal cord injury data (Lum et al., 2013).

2.6.1. The Mapper Algorithm
The process required to form these simplifications consists of a
pipeline of four stages:

1. Transforming raw data into a point cloud: the global shape of
high-dimensional feature data was extracted and represented
as a point cloud of data (low-dimensional) using a distance
matrix (Euclidean distance, in this study). The 155 features
comprised the rows of the matrix, and the 8,500 feature values
(20 trials× 5 pain levels× 85 subjects) comprised the column
of the matrix.

2. Segmenting the point cloud data into overlapping regions using
a filter function: To analyze the similarity between features,
the distance to the kth nearest neighbor (k-NN) (k = 2), an
(inverse) measure of density, was employed as a filter function.
The resolution of the network was determined by defining a set
of regions that span the entire domain of the filtered dataset.
This set contains N regions which overlap one another by L%.
In the case of this study, a network was defined as a consistent
structure reproducible across multiple CVs, and was found
using N and L of 4 and 50%, respectively. It should be noted
that the application of a single filter function allowed for the
data to be transformed from its original high-dimension to
one-dimensional projection. Multiple filter functions can be
used at a time to create a multidimensional network; however,
this added complexity was not necessary for this study.

3. Applying a clustering approach to create clusters from each
region: the type of clustering that was used within this
study was hierarchical cluster analysis with Ward’s minimum
variance method (Ward, 1963). Each of the clusters that result
from this process served as a node in the topological network.

4. Constructing the topological network: nodes were connected to
one another with an edge when sets of nodes contained the
same features. The edge width was based on the amount of
shared features between them. As a result, a topological feature
chart was created.

For an extended coverage of a time-series TDA
processing pipeline, the reader is encouraged to consult
Phinyomark et al. (2018).

2.6.2. Interpretation of Topological Networks
The relationship depicted by the topological network is specific
to the filter function applied in the first stage of Mapper. By
classifying the features by their smallest pairwise Euclidean
distances, the similarity between features was quantified. The
nodes of the topological network can be considered as functional
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groups of emotion features. Features that are grouped together
within nodes located at small k-NN distances express very similar
information (as with the nodes near the left edge of Figure 4).
The information characterized by such a node can therefore be
represented using a very small number of its features. On the
other hand, although features with high k-NN distance (more
independent features) can be locally grouped into clusters, these
features contain less similar information (as with the nodes near
the right edge of Figure 4). The number of features required
to describe the information contained in these nodes is much
higher, by comparison.

The shape of the resulting topological network greatly
depends on the resolution defined in the second stage of Mapper.
With larger N and L, the network is more sensitive to fine details
in its structure. Conversely, by decreasing these parameters,
the network is more sensitive to coarse details in its structure.
Conventionally these parameters are chosen by manually tuning
these parameters to get a stable network.

Once the network was rendered, additional cues were used
to provide more insight into the contents of each node. The
number of features within the node was indicated by an Arabic
numeral within the node and the node size was scaled accordingly
(Figures 3, 4). The nodes were also divided and colored
according to their composition of modality (Figures 3, 4). At
a glance, general information, like features grouped according
to modality, can be extracted from this network; however, to
extract more specific information topological feature charts must
be employed. For an extended coverage of how to interpret
a topologically informed chart of feature space, the reader is
encouraged to consult Phinyomark et al. (2017).

2.6.3. Complementary Feature Sets
In this work, the topological feature chart tool was also used to
investigate and explain the feature sets determined here, as well

as those proposed by previous studies using the BioVid database.
For readability, the feature sets from these studies are abbreviated
as FS1, FS2, FS3, and FS4 for Walter et al. (2014), Kächele et al.
(2015), Kächele et al. (2017), and Gruss et al. (2015), respectively,
as outlined as follows:

• FS1 (3 features): cP2P, cShannonEn, hslopeRR.
• FS2 (26 features): sSDSD, cP2P, cPK, cR, cSDSD, cSD, cRMS,

cMAV, cHOMAV1, cTMNV, cTMNP, cHOMAV2, zPK, sVAR,
cVAR, zP2P, zR, cIQR, sApEn, cCF, sR, sFuzzyEn, sP2P,
zSDSD, zVAR, sHOMAV2n.

• FS3 (5 features): sSDSD, tP2P, hslopeRR, tPK, tZC.
• FS4 (10 features): zCC. zSDMN, cPK, cCC, cMI, tCC, zRMS,

zLDF, zVAR, tMI.

2.7. Statistical Analysis
To generalize feature and functional group relationships present
within this analysis, the distributions of the baseline and pain
tolerance conditions were tested for statistical and substantive
difference. First, a linear model was formed to isolate the feature
response to pain from inter-subject variation. Normality of
the residuals were determined using the Kolmogorov-Smirnov
test. Wilcoxon rank sum tests were then used in the case of
a non-normally distributed residual feature vector; whereas t-
tests were used when the residual feature vector was normally
distributed. Substantive significance was used to compliment
statistical significance when applicable. The Cohen’s effect size,
d, was used to quantify the substantive significance into three
categories: small, medium, and large categories for effect sizes of
0.2, 0.5, and 0.8, respectively (Cohen, 1988). These coefficients
were used to determine the observable relationship between
the included physiological modalities driven by the autonomic
nervous system (ANS) and the heat-pain level grouped by the
functional information they capture.

TABLE 2 | Classification performance of features using UFS.

i Pain threshold Pain tolerance Three-class Five-class

Feature F-Value Accuracy (%) Feature F-Value Accuracy (%) Feature F-Value Accuracy (%) Feature F-Value Accuracy (%)

1 cCC 547.52 72.31 ± 1.27 cR 702.81 72.86 ± 1.12 cCC 536.47 49.64 ± 0.87 cCC 444.48 28.81 ± 0.65

2 tCC 484.56 78.37 ± 1.15 cP2P 702.41 72.89 ± 1.12 cR 518.41 63.22 ± 1.14 tCC 383.7 32.19 ± 0.68

3 zCC 210.86 79.38 ± 1.18 cPK 650.11 72.72 ± 1.14 cP2P 517.96 63.22 ± 1.13 cR 294.41 40.62 ± 0.7

4 tMICOH 155.25 79.27 ± 1.19 cCC 640.95 84.43 ± 0.96 cPK 479.09 63.08 ± 1.16 cP2P 294.22 40.62 ± 0.69

5 tMNCOH 155.25 79.28 ± 1.19 cSD 617.44 84.44 ± 0.89 tCC 456.92 67.04 ± 1.02 cPK 278.13 40.68 ± 0.76

6 cMNCOH 113.4 79.21 ± 1.18 cRMS 617.15 84.45 ± 0.89 cSD 445.75 66.91 ± 0.96 cSD 266.09 40.52 ± 0.79

7 cMICOH 112.78 79.22 ± 1.18 cSDSD 609.82 84.47 ± 0.9 cRMS 445.32 66.91 ± 0.96 cRMS 265.88 40.51 ± 0.8

8 zMICOH 49.2 79.18 ± 1.23 cMAV 555.3 84.73 ± 0.95 cSDSD 445.18 66.9 ± 0.98 cSDSD 261.74 40.3 ± 0.82

9 zMNCOH 49 79.21 ± 1.2 cTMNV 554.45 84.71 ± 0.94 cMAV 401.88 66.83 ± 0.98 cMAV 245.97 40.47 ± 0.8

10 sMICOH 13.29 79.11 ± 1.17 cTMNP 545.99 84.6 ± 0.94 cTMNV 400.05 66.73 ± 0.96 cTMNV 239.48 40.49 ± 0.78

36 tSDME 4.33 80.38 ± 1.13 sR 236.66 90.6 ± 0.85 zZC 162.89 70.22 ± 0.96 sR 92.06 43.2 ± 0.8

44 cBW 3.15 80.2 ± 1.2 cMNCOH 193.51 90.96 ± 0.8 cMNCOH 113.11 70.64 ± 1.01 sSD 68.58 43.1 ± 0.84

47 zR 2.89 80.25 ± 1.2 cMDF 151.55 90.82 ± 0.78 hRMSSD 95.12 70.52 ± 1 hRMSSD 48.89 43.32 ± 0.79

49 cFuzzyEn 2.81 80.3 ± 1.18 cMNF 149.31 90.91 ± 0.73 tPK 88.13 70.83 ± 1.06 sMICOH 47.89 43.27 ± 0.78

i denotes the rank of feature’s F-value and SFS iteration included in the model. Feature abbreviation, and the classification accuracy (mean ± sd) were displayed for each of the four

classification problems. Local maxima are indicated by bolded entries in the upper part of table. Iterations were abridged within the lower part of table where global maxima for each

classification task are indicated by bold entries.
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TABLE 3 | Classification performance of the three most frequently selected features for each SFS iteration.

i R Pain threshold Pain tolerance Three-class Five-class

Feature Votes (%) Accuracy

(%)

Feature Votes (%) Accuracy

(%)

Feature Votes (%) Accuracy

(%)

Feature Votes (%) Accuracy

(%)

1 1 cCC 100 72.3 cCC 100 73.7 cCC 92 48.6 cP2P 61 29.9

2 – – – – – – cP2P 5 48.4 cR 13 29.9

3 – – – – – – cR 3 48.3 cCC 13 29.7

E – – – – – – – – – Other 13 29.5-29.8

2 1 tCC 100 78.4 cRMS 47 83.8 cPK 61 62.7 cCC 87 38.4

2 – – – cP2P 19 84.0 cR 19 62.9 cPK 7 35.5

3 – – – cSD 16 84.0 cP2P 12 63.0 cP2P 4 33.3

E – – – E 18 83.4 cCC 8 61.6 cR 2 35.4

3 1 zCC 84 79.3 tCC 100 86.2 tCC 100 66.6 tCC 100 40.6

2 cHOMAV1 4 79.0 – – – – – – – – –

3 sSDSD 2 78.8 – – – – – – – – –

E Other 10 77.4-78.7 – – – – – – – – –

4 1 cHOMAV2n 17 79.8 tMAV 28 87.8 sSDSD 91 68.1 sSDSD 48 41.4

2 cShannonEn 10 79.8 sSDSD 17 87.5 hslopeRR 5 67.7 sApEn 12 41.2

3 cHOMAV1n 10 79.9 tRMS 16 87.3 sP2P 2 67.5 cShannonEn 7 41.1

E Other 63 78.5-79.2 Other 39 87.3-88.1 – – – Other 33 40.6-41.1

5 1 cShannonEn 7 80.3 sSDSD 32 89.0 hslopeRR 72 69.0 hslopeRR 28 41.5

2 zPK 6 80.1 zCC 16 88.7 sSDSD 6 68.9 sSDSD 17 41.8

3 sMICOH 5 80.0 cApEn 7 88.4 tRMS 4 68.9 sApEn 8 41.9

E Other 82 78.7-79.8 Other 45 87.6-89.2 Other 8 68.0-68.1 Other 47 41.2-42.1

6 1 sMICOH 6 80.4 zCC 55 89.4 zCC 61 69.5 tCC 20 42.0

2 zShannonEn 5 80.4 cApEn 4 89.3 cShannonEn 15 69.5 zIQR 11 41.9

3 cPK 4 80.3 sSDSD 3 89.2 tShannonEn 7 69.4 hslopeRR 7 42.0

E Other 85 78.8-80.2 Other 38 87.7-89.9 Other 17 68.2-68.8 Other 62 41.4-43.0

7 1 sMICOH 4 80.6 zIQR 21 89.9 zCC 17 69.9 zCC 20 42.5

2 cIQR 4 80.4 zCC 12 89.8 cShannonEn 10 70.0 cShannonEn 10 42.4

3 zMAV 4 80.3 zVAR 10 89.8 cSampEnz 7 70.0 zIQR 9 42.4

E Other 88 79.0-80.2 Other 57 87.7-90.2 Other 66 68.3-69.5 Other 61 41.8-43.2

8 1 zPLDF 5 80.0 zPLDF 6 90.3 tSDSD 8 70.3 zCC 18 43.0

2 sIDS 4 80.0 tMIDS 4 90.2 zIQR 7 70.3 zIQR 7 42.9

3 cShannonEn 3 80.1 zMIDS 4 90.1 cFuzzyEn 6 70.3 sVAR 6 42.9

E Other 88 79.2-80.6 Other 86 88.5-90.7 Other 79 68.6-69.6 Other 69 41.7-43.4

Classification problem i Accuracy(%)

Pain threshold 38 80.8 ± 1.1

Pain tolerance 78 90.9±0.9

Three-class 65 71.1 ± 1.1

Five-class 73 43.3 ± 0.8

i denotes the iteration of the feature selection protocol. R denotes the rank of the feature determined through majority vote. Feature abbreviation, the number of CVs the feature appears

across (Votes), and classification accuracy (Accuracy) are displayed for each of the four classification problems. – denotes that the top 3 features or 100 votes were already allocated.

Where the top 3 features did not inlcude all CV votes, remaining results are summarized with accuracy ranges as “Other”. Bolded entries indicate that a local maxima was reached for

the classification problem. Global maxima determined for all classification tasks using the SFS protocol are abridged in the bottom table. Number of features for the global maxima were

included as i with corresponding means and standard deviations of accuracies across CVs given in percentages.

3. RESULTS

The selection and classification results of the two feature

selection processes, UFS and SFS, are shown in Tables 2, 3.

The first local maximum classification accuracies that were

found using the top ranked features for pain threshold,

pain tolerance, three-class, and five-class problems were 3,
1, 2, and 3 using UFS, and 5, 8, 8, and 4 using SFS,
respectively. Additionally, global maxima were found at 36,
44, 49, and 47 features for UFS and 38, 78, 65, and 73 for
SFS. From these details, the feature sets determined during
SFS for each task were labeled as FSa, FSb, FSc, and FSd
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for pain threshold, pain tolerance, three-class, and five-class
problems, respectively.

• FSa: cCC, tCC, zCC, cHOMAV2n, cShannonEn.
• FSb: cCC, cRMS, tCC, tMAV, sSDSD, zCC, zIQR, cP2P.
• FSc: cCC, cPK, tCC, sSDSD, hslopeRR, zCC, cR, cShannonEn.
• FSd: cP2P, cCC, tCC, sSDSD.

The performance of the robust feature sets determined by SFS
were directly compared to the previous feature sets from the
literature (FS1-FS4), as shown in Figure 2. The proposed sets
were found to be a significant improvement compared to the
state-of-the-art configuration. By achieving accuracies consistent
with previously described state-of-the-art feature sets while using
fewer features, the generalizability and computational costs of the
system have are improved (Dietrich et al., 1999).

The empirical design of the feature sets were also assessed
using the Mapper approach. Figure 3 shows the corresponding
network based on the k-NN distance between features. Figure 4
consists of a topological feature chart that explicitly displays and
contrasts the features selected here (FSa-FSd) and in previous
studies (FS1-FS4).

Finally, relating to the overall autonomic nervous system
response to pain, Table 4 displays the interaction effects between
autonomic parameters with the heat-pain stimulus quantified by
effect size.

4. DISCUSSION

4.1. Purpose 1: Identification of General
Discriminative Feature Sets
The first purpose of this study was to obtain meaningful,
discriminatory sets of generalizable features that capable of
high pain recognition rates with minimal bias to the feature
selection and classification methods selected. Throughout this
investigation to identify meaningful features, several issues were
found that are worth discussion.

4.1.1. Feature Selection Approaches
The classification accuracies obtained from the SFS and
UFS protocols during the 100 epoch selection served as a
robust performance metric for evaluating the modalities and
features explored in this study over four classification problems
(Tables 2, 3). Assessment of feature sets for the classification of
pain threshold (B vs. T1) yielded accuracies of 79.4 and 80.3%
for UFS and SFS, respectively. Conversely, when classifying pain
tolerance (B vs. T4; the largest stimulus difference) the accuracies
for UFS and SFS were found to be 72.9 and 90.3%. This large (and
counterintuitive) discrepancy in the UFS results (79.4 vs. 72.9%)
was a result of an early local maximum (reaching stop criteria)
found during UFS post-hoc analysis. For the multi-level three-
and five-class problems, accuracies for the UFS chosen feature
sets were 63.2 and 40.6%, respectively; whereas SFS selected
feature sets with accuracies of 70.3 and 41.4%, respectively.
The performance of SFS feature sets has significantly improved
as compared to the previous state-of-the-art (Figure 2), and
they also required fewer features than the state-of-the-art
feature set (e.g., FS4), making them more attractive options

from a processing and memory standpoint. However, it should
be noted that these accuracies may remain inadequate for
clinical or commercial application. Future research with major
adjustments is required, whether through novel methods of pre-
processing, the discovery of new features or sensing modalities,
or the investigation of a more meaningful categorization of
pain thresholds. One such example for future research is
the application of deep learning techniques that may be able
to decipher ambiguous class boundaries using an adequately
large dataset.

Specifically, across all classification problems and CVs, the
robust feature sets derived in this work (FSa-FSd) significantly
outperformed those of Walter et al. (2014), Kächele et al. (2015),
and Kächele et al. (2017). The discrepancy between the SFS and
UFS feature sets can be attributed to differences in sensitivity
to correlation between features. This insensitivity resulted in
changes in model accuracy between iterations that are atypical
to the standard diminishing trend seen with SFS. For example,
as seen in Table 2, the feature selected at i = 4 of the
pain tolerance problem via UFS—cCC—described less across-
class variance than cP2P and cPK features (as indicated by a
lower F-value). Nevertheless, it still provided useful information
that was independent from the previously included features, as
indicated by the 12% increase in accuracy (72–84%). Conversely,
the information provided by cP2P and cPK, as selected in i = 2
and i = 3 of the pain tolerance problem, were highly related,
resulting in no improvement in accuracy (see the SAP cluster of
cEMG in Figure 4). The undesired effects of feature correlation
were less profound when using SFS due to the use of Naïve
Bayes classification and its aversion to correlated features. Within
the complementary feature sets, FS1 used UFS (F-value criteria)
whereas FS2-FS4 used SFS.

In summary, an advantage of UFS is the direct applicability
of findings to the general classification task. The alternative,
using a classifier in the feature selection stage, introduces system
optimization tailored to that specific classifier and ambiguates the
results. A disadvantage of UFS, however, is that the correlation
between features is not accounted for in the process of feature
selection. This can be somewhat mitigated through the use of an
upper threshold on allowable correlation between added features;
however, the determination of the optimal threshold for this
classification problem is nontrivial. To alleviate this source of
ambiguity, no correlation thresholding was used in this work.
The purpose of UFS was to verify the discriminative power of
each feature in isolation, whereas SFS assesses discriminative
power in the presence and context of other features. Largely,
the features selected by UFS had strong correlation to one
another, as no restriction for similar features was imposed.
In future research, this redundancy between chosen features
could be removed by using feature projection techniques like
principal component analysis (PCA), t-distributed stochastic
neighbor embedding (t-SNE), or other advanced feature selection
techniques such as swarm intelligence-based algorithms.

4.1.2. Functional Feature Groups
Combining the originally presented theoretical feature groups
and the analysis of the composition of the topological feature
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TABLE 4 | Relationships between heat-pain intensity and features derived from zEMG, cEMG, tEMG, SCL, and ECG.

Feature zEMG cEMG tEMG SCL ECG

PK ↑↑ ↑↑ ↑ ↑ na

P2P ↑↑ ↑↑ ↑ ↑↑ na

RMS ↑↑ ↑ ↑ ↑ na

TMNP ↑↑ − ↑ ↑ na

TMNV ↓↓ − ↓ ↑ na

MAV ↑↑ ↑ ↑ ↑ na

HOMAV1 ↑↑ ↑ ↑ ↑ na

HOMAV1n ↑ ↑↑ ↑ ↓ na

HOMAV2 ↑↑ ↑ ↑ − na

HOMAV2n ↑ ↑↑ ↑ ↓ na

VAR ↑ − ↑ ↑ na

SD ↑↑ ↑ ↑ ↑↑ na

R ↑↑ ↑↑ ↑ ↑↑ na

IQR ↑ − ↑ ↑↑ na

MD − ↑ − − na

MMNDS ↑ ↑ − − na

IDS ↓ − − − na

MIDS − − − − na

SDMN ↑ ↑ − ↑↑ na

SDSD ↑↑ ↑↑↑ ↑ ↑↑ na

ApEn ↑ ↑ ↑ ↓ na

FuzzyEn − − − ↓ na

SampEn − − − ↓ na

ShannonEn ↑↑ ↑↑ ↑ ↑ na

SpectralEn ↑ − − − na

PLDF − − − − na

LDF ↓ ↓ − − na

MDCOH − − − − na

MNCOH − ↓ ↓ − na

MMNCOH − − − − na

MICOH − ↓ ↓ − na

CC ↓↓ ↓↓↓ ↓↓↓ ↓ na

MI ↑↑ ↑↑ ↑ ↑ na

MNF ↑ ↑ − − na

MDF ↑ ↑ − − na

ZC ↑↑ ↑↑↑ ↑ na na

MOF ↑ ↑ − na na

BW − − − na na

CF − − − na na

MNRR na na na na ↓

RMSSD na na na na ↓

slopeRR na na na na ↓

Symbol p-value Effect size Interaction

↓↓↓ p < 0.05 d > 0.8 µB > µT4

↓↓ p < 0.05 0.5 < d < 0.8 µB > µT4

↓ p < 0.05 0.2 < d < 0.5 µB > µT4

- p > 0.05 d < 0.2 na

↑ p < 0.05 0.2 < d < 0.5 µT4 > µB

↑↑ p < 0.05 0.5 < d < 0.8 µT4 > µB

↑↑↑ p < 0.05 d > 0.8 µT4 > µB

Relationships were quantized into seven levels dependent on their statistical and substantive significance (as shown in the right sub-table).
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FIGURE 2 | Accuracy of feature sets across all 100 CVs determined by SFS (FSa-FSd) as compared to those previously identified in the literature (FS1-FS4) (y-axis on

the left side). Error bars are representative of standard deviation across all CVs. Circles indicate the number of features within each feature set (y-axis on the right side).

FIGURE 3 | Topological network rendered by the Mapper algorithm using k-NN distance as the filter function.

chart (Figure 4), the available features could be categorized into
five functional feature groups:

1. Signal amplitude and power (SAP) was composed of
most theoretical amplitude features across EMG and SCL
modalities (e.g., RMS, MAV, PK), with the inclusion of
theoretical variability features (e.g., VAR, IQR, R) for
EMGmodalities.

2. Nonlinear complexity (NLC) was composed of most measures
of information (e.g., ApEn, SampEn, MI) in addition to
features that describe signal complexity (e.g., ZC).

3. Frequency information (FI) was primarily composed of
frequency domain features from the EMG modalities (e.g.,

MDF, MNF), but also included features that characterize
spectral content (e.g., SpectralEn).

4. Unique (UNI) was comprised of features from the similarity,
stationarity, and linearity theoretical feature groups.

5. Connecting (CON) consisted of features that bridge
adjacent groups.

As identified by the map, the SAP nodes corresponded to
low k-NN distances, signifying a high measure of linear and
nonlinear correlation between contained features. Differences
between feature sets can therefore be seen as minimal when the
SAP features are interchanged. Alternatively, the NLC and UNI
functional feature groups correspond to medium and high k-NN
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FIGURE 4 | Topological feature chart. Node expansion highlighting key features selected within the SFS protocols for all classification tasks (FSa-FSd) and feature

sets identified through other works of literature (FS1-FS4). Features belonging to defined feature sets were identified through superscripts (FSa: a, FSb: b, FSc: c, FSd:
d , FS1: 1, FS2: 2, FS3: 3, FS4: 4). Node composition by modality is shown by pie charts. Node functional group is denoted by bold acronym (SAP, Signal Amplitude

and Power; NLC, Nonlinear Complexity; FI, Frequency Information; UNI, Unique; CON, Connecting).

distances, respectively; this signifies that features within these
nodes are less correlated to one another. In the NLC functional
feature group, the medium range k-NN distance allowed for
features that better describe class-discriminative information,
thus were selected more often than other features within the
group (i.e., cShannonEn). However, the performance margin
among the alternative features is not so large that perturbations
in the dataset may not motivate selection of the other features.
In the UNI functional feature group, the repeated appearance
of several features across all feature sets (e.g., sSDSD, zCC,
cCC, tCC, and hslopeRR) illustrates the variability of class
discriminative information present under high k-NN distances.
In future work, this framework could be applied to quickly
validate and rationalize the use of newly proposed features.

In general, functional feature groups were empirically
determined collections of features that were grouped into the
same node based on the type of information they described. The
benefit of using functional feature groups over theoretical feature
groups is that associations can be defined between features based
on what information they actually contribute rather than their
designed purpose. The inclusion of variability features is an
example of grouping features based on the information they
contribute. As an EMG signal characteristically exhibits zero-
mean behavior when the sampling window is sufficiently large,
the computation of variability features, such as SD, reduces

to simply the signal values, resulting in the variability feature
being asymptotically similar to RMS, an amplitude feature.
With the current dataset, 7 theoretical feature groups were
transformed into 5 functional feature groups that characterize
4 types of information. With this understanding, new features
could be designed specifically to improve a particular functional
feature group or to define a new functional feature group
altogether. One example, based on pre-processing, could be to
segment the EMG signal into frequency bands prior to the
extraction of features (Koelstra et al., 2012; Abadi et al., 2015).
Alternatively, time-frequency representations, which have not
yet been exhaustively explored, have successfully been used to
improve EMG classification accuracies in other related fields
(Englehart et al., 2001; Phinyomark et al., 2011). For any
new candidate feature to meaningfully impact the classification
problem, it will have to outperform current features within an
existing functional group or, better, drive the creation of a new
functional group. The latter, in particular, could be achieved
through the design of new features, or the introduction of new
sensing modalities.

It is important to note that these functional feature groups
represent distinct units of information that are determined
through mathematics that prioritize generalizability; therefore,
they are expected to represent the actual phenomenon and not
simply the chosen dataset. In a study by Phinyomark et al. (2017),
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the same functional groups of EMG features for classification
of hand and wrist gestures were identified using multiple
datasets with different subjects, experiments, and data acquisition
systems. In other words, the topological feature charts are robust
and generalize well across multiple datasets, when compared with
purely data-driven feature selection techniques. It is reasonable
to expect that the functional feature groups defined here should
be more applicable to other related pain datasets than those
previously proposed in the literature. Moreover, the approach
described here can be directly generalized to any other type
of data in the field of emotion recognition. Future studies
investigating multiple datasets containing data from multiple
emotions would be a valuable addition to the literature.

4.1.3. General Discriminative Features
The use of the one-hundred-epoch feature selection approach
was intended to be the foundation for generalization of
discriminatory information among results highlighted within
literature. The framework constructed using the topological
network allowed for a thorough comparison of the feature sets
determined here, FSa-FSd, and those previously proposed in
the literature, FS1-FS4. Although the feature sets determined
here through feature selection differed from those previously
identified in the literature (despite using an identical dataset
to that used in FS4), there were some commonalities. Both
the current and previous studies favored the SAP features
(particularly from cEMG), and a subset of features within the
UNI functional feature group.

Specifically, the mixed modality UNI functional feature group
had feature candidates that captured similarity information
(i.e., CC) that were consistently selected throughout the
feature sets they were available (i.e., FS4, FSa-d). In particular,
the CC features involved computing a statistical difference
in a physiological signal between a pain-free state (from
a baseline measure) and an unknown state measurement
window. In a study of Yang et al. (2018), arousal and valence
classification was also improved when features were normalized
using the difference between an annotation segment and
the precedent before, or a neutral state baseline segment.
Through this adaptive normalization process, the interactions
between dependent variables (autonomic parameters) and
random variable (between-subject effect, between trial effect) are
minimized, resulting in a direct measurable relationship between
the dependent variable and independent variable (pain). Put
another way, by normalizing the autonomic response to the
subject and monitoring the evolution of autonomic parameters,
the fidelity of the system was greatly enhanced. In future
works, the relationship between higher-order representations
of autonomic parameters and emotion should be explored to
characterize the dynamic, transient, and temporally encoded
aspects of emotion which have traditionally been ignored.

Through the grouping of features into nodes and their
connections, information that is distinct to, and shared between,
modalities can be distinguished. From the grouping of the three
EMG modalities into their own distinct SAL and NLC nodes,
it can be ascertained that each EMG site provides distinct
information. This importantly validates the use of these three

muscle sites as they each contribute distinct, class-discriminative
information. Additionally, SCL forms distinct nodes for SAL,
NLC, and UNI functional group. This distinct clustering, in
addition to the isolation of a prevalently selected feature, sSDSD,
validates the use of the SCL as a sensing modality. In contrast
to other modalities, ECG does not occupy a node by itself.
This signifies that of all the modalities evaluated here, ECG
contributed the least distinct information. Though hslopeRR was
selected in multiple feature sets, it is possible that features from
other modalities could be used as a comparable replacement,
thus eliminating the need for this modality. In future work,
there remains great potential in the exploration of additional
modalities that could augment the current feature space (e.g.,
EEG, MEG, and fMRI, intramuscular EMG). Though each new
candidate modality will have its drawbacks, whether complexity,
invasiveness or cost, their contribution could be validated by
including them in such an analysis.

In summary, one could expect a feature set involving several
EMG and SCL features extracted from the SAP and UNI
functional feature groups to be sufficient to represent the targeted
emotion pain classes. It should be noted that the variability
among features in these sets with comparable classification
accuracies signifies that no one feature set should be blindly
adopted at the cost of abandonment of other equally viable
feature sets. One should exercise caution when presenting one
local optimum feature set as the best, or otherwise risk the loss
of equally useful features. That is, there is sufficient redundancy
between the features and modalities to provide the designer with
some flexibility. The understanding provided by the topological
feature charts could enable emotion recognition system designers
to incorporate additional prior knowledge, leading to more
robust and generalizable feature and modality selection.

4.2. Purpose 2: Insights Into Autonomic
Parameters
The second objective of this study was to quantify and
explain the associations between these autonomic parameters (or
features) to improve comprehension of the actual classification
problem. Through the combination of feature-pain interaction
effects and functional feature groups defined by the topological
simplification, autonomic nervous system activity was observed.

Largely, the SAP functional feature group for the facial
muscles (zEMG-cEMG) and the trapezius had a moderate-high,
and weak strength positive interaction with pain (Table 4). This
interaction effect supports established theories that electrical
muscle activity of myofacial muscles have the ability to detect
sympathetic arousal (Nilges and Traue, 2007). Additionally,
the ability to detect facial expressions in response to pain are
corroborated by earlier facial expression recognition studies that
achieved great success (Hamedi et al., 2018). In general, the
high interaction effect between cEMG and pain intensity in the
context of a high arousal, neutral valence stimulus is consistent
with expectations from facial expression studies (Lee et al., 2009;
AlZoubi et al., 2012; Khezri et al., 2015). Furthermore, the SAP
functional feature group for the trapezius muscle similarly had
a positive interaction effect with pain-intensity; however, the
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strength was weaker than those of facial EMG. Nevertheless,
tEMG has successfully been harnessed as an unconscious marker
of stress in the context of driver induced stress (Wijsman et al.,
2013), corroborating its interaction effect with pain in this study.
Therefore, the interaction effect between tEMG SAP and pain
supports evidence of an increase in muscle tone as a stress
response to painful stimuli, and reflectory head movements.
The relationship between an increase in SAP of EMG signals
in response to a heightened state of arousal is also consistent
with the literature Kim and André (2008). These findings,
however, are inconsistent with the implications of studies using
the popular Database for Emotion Analysis Using Physiological
Signals (DEAP), where facial EMG signals have been found
to provide no meaningful contribution for the classification of
emotions defined using the arousal-valence dimensions (Koelstra
et al., 2012). Further investigation is thus needed using multiple
emotion datasets to determine the optimal conditions for
implementation of facial EMG in this context. Importantly, facial
EMG within emotion datasets are typically collected using lower
sampling frequencies than other EMG applications, which could
alias key components of the signal that provide benefit in positive
exemplars of facial EMG implementation.

Another source of discriminative information lies within the
NLC functional feature group of facial EMG. Specifically, cZC
and zZC, respectively, were found to have strong and moderate
positive interaction effects with pain. Increases in ZC correspond
to an increase in muscle tone due to sympathetic activation of the
muscles. In a similar relationship to that of SAP, the interaction
effect between the NLC function group for the facial muscles
and the trapezius with pain were of moderate-high, and weak
strength, respectively.

The strong interaction effect found between the EMG
CC features and pain indicated that there was a repeatable
autonomic excitation that evolved in response to pain. This
could reinforce the earlier notion that sympathetic responses
to painful stimuli are influenced by your current mental
state. Potentially due to repeated stimuli over the course of
the experiment or a gradual change in emotional-state, the
response to painful stimuli later in the experiments elicited
subtle differences as compared to earlier recordings of the
same level. The differences led to higher reliability of EMG
CC features as compared to SAP features when characterizing
this response.

Interestingly, the topological clustering segmented SCL
amplitude feature into two categories, one with only amplitude
features (identified as SAP functional group) and the other
comprised of an assortment of amplitude, frequency, linearity,
entropy, and similarity features (identified as UNI functional
group). The SCL SAP functional group had a weak strength
positive interaction with pain intensity. The SCL UNI functional
group had a moderate strength positive interaction with pain
intensity and justifies its common use as an indicator of arousal-
state. Specifically, features within this UNI cluster were capable of
capturing the phasic/transient activity of SCL, i.e., sP2P, sR, and
sSDSD features, whereas features that were within the SAP SCL
group were able to capture tonic activity of SCL, i.e., sRMS and
sMAV (Bach et al., 2010).

While metrics extracted from ECG (i.e., heart-rate, blood
pressure, heart-rate variability, and blood oxygen level) are
conventionally used alongside RR by anesthesiologist to monitor
pain levels and medical intervention effectiveness for surgical
procedures, the interaction effect between pain level and ECG
during this study was found to be weak and negative. This
result suggests that the onset of pain results in an observable
parasympathetic reaction on the heart, while all other modalities
elicited a sympathetic reaction. The observation is likely
misleading to the true nature of the autonomic response to pain.
Likely, as a reflex to sudden pain, the subjects exhaled sharply
overpowering the sympathetic rise of heart-rate with a behavior-
induced reduction of heart-rate caused by respiratory sinus
arrhythmia. While this phenomenon would explain the nature
of this relationship, respiration rate is not present in the current
dataset; thus, future work is required for a definitive conclusion.

The emotional state elicited in response to pain stimuli
resembles that of imminent threat fear or suspense characterized
by the positive relationship with corrugator SAP, positive
relationship with phasic SCL, and negative relationship with
heart-rate features (Hubert and de Jong-Meyer, 1991; Kreibig,
2010). Both fear and suspense emotional-states manifest in
high arousal and neutral valence dimensions that are related
to activity in noradrenergic structures. During the onset of
pain, these structures produce norepinephrine, the neuropeptide
responsible for broadcasting a sympathetic response to the
autonomic nervous system. This sympathetic response manifests
in a heightened sense of arousal characterized by phasic SCL
activity, facial expression, and a sudden increase in heart rate.
The overall observed parasympathic response for the heart was
likely forced by either one of two factors. The first factor was
respiratory sinus arrhythmia, as discussed in the prior paragraph.
The second factor could be due to a descending nociceptive
pathway involving the activation of opiodergic structures,
the periaqueductal gray, that modulated the perceived pain
(Pavlovic and Bodnar, 1998). The release of these neuropeptides
envoke an autonomic response to inhibit signaling of affected
second-order neurons and reduce sympathetic tone resulting in
lower heart rate and respiration rate. These endocrine signals
governed by neurological processes and behavioral reactions
were responsible for the observable SCL, EMG, and ECG
embodiments that resembled emotional-states within this, and
other pain related studies.

5. CONCLUSION

In summary, the two objectives sought out through this study
were completed. The first purpose was an exploration to obtain
a general understanding of effective autonomic parameters and
isolate a robust feature set for each classification problem. The
feature sets provided through this protocol contained fewer
features and improved performance compared to the state-of-
the-art. The second purpose was to form associations between
autonomic parameters through topological data analysis. The
relationship between the features chosen within our selection and
those of four accompanying studies provided insight into the
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types of information necessary for the development of a pain
detection system. Of note, the signal amplitude and power, and
unique functional feature groups of EMG modalities provided
useful information across all feature sets, while nonlinear
complexity information appeared often.

The framework constructed here to define the information
contribution of features also provided an environment to
evaluate future contributions to this field. This approach can be
directly generalized to any other type of emotion data. Directions
for future work highlighted by this study include the introduction
of new modalities, new feature types, new feature selection
techniques, and new feature projection techniques, each of which
can be evaluated using the described topological network.
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