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Abstract: Neoplastic cellularity contributes to the analytic sensitivity
of most present technologies for mutation detection, such that they
underperform when stroma and inflammatory cells dilute a cancer
specimen’s variant fraction. Thus, tumor purity assessment by light
microscopy is used to determine sample adequacy before sequencing
and to interpret the significance of negative results and mutant allele
fraction afterwards. However, pathologist estimates of tumor purity
are imprecise and have limited reproducibility. With the advent of
massively parallel sequencing, large amounts of molecular data can
be analyzed by computational purity algorithms. We retrospectively
compared tumor purity of 3 computational algorithms with neo-
plastic cellularity using hematoxylin and eosin light microscopy to
determine which was best for clinical evaluation of molecular
profiling. Data were analyzed from 881 cancer patients from a
clinical trial cohort, LCCC1108 (UNCseq), whose tumors had tar-
geted massively parallel sequencing. Concordance among algorithms
was poor, and the specimens analyzed had high rates of algorithm
failure partially due to variable tumor purity. Computational tumor
purity estimates did not add value beyond the pathologist’s estimate
of neoplastic cellularity microscopy. To improve present methods, we
propose a semiquantitative, clinically applicable strategy based on
mutant allele fraction and copy number changes present within a

given specimen, which when combined with the morphologic tumor
purity estimate, guide the interpretation of next-generation sequenc-
ing results in cancer patients.
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Traditional molecular testing methods have relatively high
thresholds for limits of detection. Sanger sequencing can

detect >20% variant allele fraction (VAF) or 40% neoplastic
cellularity, while pyrosequencing detects >5% VAF or 10%
neoplastic cellularity.1 It is a standard practice to estimate
neoplastic cellularity using hematoxylin and eosin (H&E) light
microscopy estimates before testing to ensure that the mini-
mum limit of detection can be met for a certain test method
and if necessary, to perform macrodissection to enrich the tu-
mor content of the analyzed tissue. However, it has previously
been shown that there is limited reproducibility of estimating
tumor cell content by microscopy among pathologists.2–5

Targeted testing for single mutations with methods
such as quantitative or allele-specific polymerase chain
reaction can achieve analytic sensitivity for detecting
mutations to <1%.6 With massively parallel sequencing
(MPS), multiple targets may be interrogated to theoretical
sensitivities of <5% or less, with a concurrent increase in
detection of subclonal populations.7

The demand for clinical testing of small tissue samples
and needle biopsies is increasing. Such samples may not be
amenable to microdissection. If these samples are held to tra-
ditional levels of minimum neoplastic cellularity, they might be
rejected even though mutations could be detected by newer
molecular techniques. For example, samples taken from
pancreatic adenocarcinomas usually have a low neoplastic
cellularity.8 In another situation, samples from small volume
biopsies may go directly for molecular assays without the
possibility of light microscopy review. However, determination
of whether a negative result is a true negative, rather than an
artifact of low tumor input may be difficult to determine
without a frame of reference. Therefore, it is imperative to be
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able to distinguish false-negative from true-negative results in
patients. While the concept of informatically assessed “tumor
purity” has attempted to address this issue, such algorithms
have not been widely applied to clinical data sets. For example,
most methods have been evaluated in the large data sets
of The Cancer Genome Atlas that excluded >50% of all
samples submitted based on tumor cellularity <60%.9 These
algorithms10–12 aim to estimate the amount of neoplastic cells
in a sample relative to nontumor cells such as stroma and
inflammatory cells. However, unlike the traditional purity
estimate of light microscopy, such algorithms utilize the genetic
information contained within a tumor. We compared the
application of computational tumor purity estimates to neo-
plastic cellularity estimates performed by light microscopy
to determine their applicability in clinical analysis of tumor
sequencing and to provide a framework for analysis of these
complex data sets in determining whether a sample submitted
for sequencing was appropriate for testing. As a complement,
we also propose a semiquantitative, clinically applicable
strategy based on mutant allele fraction (MAF) and copy
number changes present within a given specimen, which when
combined with the morphologic tumor purity estimate, help
guide the interpretation of next-generation sequencing (NGS)
results in cancer patients.

MATERIALS AND METHODS

Cohort and Trial (1108)
Subjects for the current analysis were consented between

18 November 2011 and 6 August 2014 on the clinical trial
LCCC1108: Development of a Tumor Molecular Analyses
Program and Its Use to Support Treatment Decisions
(NCT01457196), which has been previously described.13

Briefly, inclusion criteria for the study were broad such that
most patients treated for cancer at the University of North
Carolina (UNC) were eligible for inclusion. Subjects were ei-
ther referred by their treating physicians in settings where the
physician felt the sequencing might be potentially beneficial or
alternatively patients were consented as part of an ongoing
cancer registry trial. Tumor tissue and matched normal con-
trols were acquired for all study subjects. In the first phase of
the study ∼400 patients whose tumors were available as fresh
frozen material after banking on a research protocol were
enrolled. As the sequencing technology allowed, the protocol
transitioned nearly uniformly to rely on surplus paraffin-em-
bedded tumor material. Normal control DNA was largely
harvested in the form of lymphocytes from peripheral blood,
although in isolated cases cells from a buccal swab were
collected. Tumor and normal samples were sequenced using
protocols that depended on Agilent Sure Select Custom
Targeted panel of∼250 genes and the Illumina HiSeq platform
in either single end or paired end formats of 75 and 100 bases
per end. Average depth of coverage for target sequences
was between 500 and 1000 reads. Raw sequencing images were
converted to FASTQ file format using Illumina CASAVA
v1.8.2 software (http://support.illumina.com/sequencing/
sequencing_software/casava.html). The sequence reads were
aligned to the genome using the bwa mem algorithm (v0.7.4)
with the default parameters. Realignment was performed

simultaneously for tumor and normal pairs using ABRA
(v0.46) with the default parameters. Variants were called
using FreeBayes and somatic mutations using Strelka. Copy
number assessments were performed using custom software.
Quality statistics were generated with Picard and include
measures of fragment length, sequence content, alignment,
capture bias and efficiency, coverage, and variant call
metrics. Final somatic calls were filtered to require a Strelka
assigned quality of at least 30. All variants were annotated in
their gene specific context using SnpEff (v3.1) and crossed
with COSMIC and internal databases that capture the
information from the UNC Clinical Committee for
Genomic Research.13 The subset of patients with frozen
material available were subjected to analysis using the
Genome-Wide Human SNP Array 6.0 microarray (Affyme-
trix, Santa Clara, CA) for detecting copy number variation
(CNV) using methods that have been previously described.14

Computational Tumor Purity Analysis
For the purposes of assessing tumor purity a variety

of previously published tools were applied to the se-
quencing data and single nucleotide polymorphism
(SNP) arrays. To identify representative and widely
adopted approaches, the literature was reviewed in May
2014 by searching PubMed for algorithms associated
with tumor purity, MPS, and SNP chip/copy number
data. On the basis of the results of this search we iden-
tified multiple algorithms including ABSOLUTE,10

ASCAT,11 ExPANdS,15 PurityEst,16 PurBayes,17 and
THetA2.12 In addition, we attempted to determine if robust
comparisons of these algorithms suggested any which would
lead us to select it as the standard method. Meta-analysis of
these methods was lacking to justify selection of one as su-
perior to the others. While objective measures are lacking to
select the optimal algorithms, we determined that the fol-
lowing approaches were representative of the field. The
ABSOLUTE algorithm was selected because it is applicable
to both SNP chip data and NGS data and has been used in
large cancer cohort studies such as The Cancer Genome
Atlas.18 ABSOLUTE therefore allowed for analysis of the
relative ability to assess tumor purity by different molecular
assays (SNP chip and NGS) but using the same computa-
tional framework and same DNA isolation for a subset of
samples. In order to assess the impact of a competing
computational approach on SNP chip tumor purity esti-
mates we applied the allele-specific copy number analysis of
tumors (ASCAT) algorithm to the SNP chip data set.11 In
order to assess the impact of a competing computational
approach on NGS tumor purity estimates we applied the
THetA2 algorithm to the NGS data set.12 In order to ensure
that each algorithm was applied in the manner most con-
sistent with optimal performance, we obtained the original
data and software from the manuscripts reporting ABSO-
LUTE, ASCAT, and THetA2 and repeated the original
reports as published by the authors (results not shown). We
then applied the software to our novel data set. All the SNP
and sequencing data were preprocessed to be suitable to run
each computational algorithm. For SNP chips, we used
Affymetrix Power Tools (v1.15.1) and HAPSEG (v1.1.1) to
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run ABSOLUTE (v1.0.6), used PennCNV to run ASCAT
(v2.3). For sequencing data, we used an internal UNC
pipeline to run ABSOLUTE and used ExomeCNV to
run THeTA2 (v0.62). Subsequently, all algorithms were
run in a default setting and parameters. After applica-
tion, ABSOLUTE and ASCAT are intended to return a
“failed” result in a fraction of samples they run as
described in the publications for samples that fail to
conform to the model parameters. The THetA2 algorithm
does not issue a “fail” call but does report a warning flag
which for the purposes of this study were considered the
same as a “fail.”

Light Microscopy
A paraffin section immediately adjacent to that from

the block providing the tumor sample was obtained for
each patient. In cases where the tumor was obtained from
frozen material, the tumor was bisected before freezing
and divided such that a paraffin block immediately ad-
jacent to the tumor could be generated. This block was
sectioned and served as the source of morphologic review,
including percent tumor nuclei. In cases where paraffin
material was used as the source of DNA, DNA was ob-
tained from sections immediately adjacent from one which
provided the source of morphologic review of the tumor.
For all subjects in the study, a 5-µm section was obtained
and prepared in the usual manner to generate an H&E
stain for review by light microscopy. Each slide was given
a tumor purity by a single pathologist reported as the
percentage of viable malignant nuclei in respect to total
nuclei. Factors such as necrosis and immune infiltration
were not graded independently. For the purposes of as-
sessing interobserver variability for light microscopy esti-
mates of tumor purity a random subset of 100 cases was
selected for review by a second pathologist by the same
criteria.

Statistical Analysis
All statistical analysis was performed using R 3.0.1

software (http://cran.r-project.org) unless otherwise stated.
Pearson correlation coefficient (R) was used to assess lin-
ear relationship on tumor purity estimate among data
type, different algorithms, and light microscopy. Root
mean square deviation (RMSD) was used to measure the
difference between the estimates mentioned above.

RESULTS
Patients included in the cohort represented a broad

cross-section of cancer histologies and fractional tumor
nuclei (Table 1). The mean tumor purity across all tumors
was 57% (SD±27). Fourteen percent of patients fell into
the <20% tumor category that would generally have been
excluded from molecular characterization by standard
methods. An additional 14% contained <50% tumor and
would generally also be excluded from large cohort studies
of molecular characterization. These data suggest that in
clinical practice a significant proportion of patients (28% in
our series) have tumor cellularity below the level by which
computational algorithms would have been investigated in

prior studies, a level generally set at 50% to 70%. The
remaining 72% of samples would have been more consistent
with tumors characterized in most reported research data
sets such as The Cancer Genome Atlas.9,18 In addition, we
note that our series included tumors of many different
organs with gynecologic tumors being the most common
(20%), followed by gastrointestinal (14%), and breast
cancers (13%). As expected, percent tumor varied across
the tumor types. The tumors represented in our cohort were
a function of patients referred to the study, which we noted
had a lower fraction of lung cancers and malignant
hematology specimens. We suspect this was due to the
fact that these patients had molecular profiling done as
standard of care and were therefore less likely to be referred
to the trial.

We analyzed the concordance of different estimates
of tumor purity based on 3 data sets (pathologist review of
light microscopy, SNP chip copy number data, and NGS
sequencing data) and 3 computational methods [ABSO-
LUTE (SNP and NGS), THetA2 (NGS only), and AS-
CAT (SNP only)]. This produced 8 estimates of
concordance using the RMSD methodology, such as the
concordance between SNP and NGS using ABSOLUTE,
SNP Absolute and SNP ASCAT, and SNP LM (Table 2).
As SNP chips and secondary pathology reviewer were

TABLE 1. Patient and Tumor Characteristics Subdivided by
Light Microscopy Neoplastic Cellularity Estimates

Neoplastic Cellularity by Light
Microscopy

0%-20% 20%-50% 50%-100% NA Total

Sex
Male 44 45 196 70 355
Female 76 76 320 54 526

Age (y)
Min, max 24, 89 2, 90 1, 88 14, 90 1, 90

(range)
Mean, median 55, 57 54, 55 54, 55 56, 57 —

Ethnicity
Hispanic or

Latino
4 1 25 6 36

Not Hispanic or
Latino

116 120 491 118 845

Race
African

American
16 22 90 12 140

White 96 94 382 102 674
Others 8 5 44 10 67

Tumor types
Gynecologic 31 36 93 15 175
Gastrointestinal 33 34 46 13 126
Breast 17 14 69 16 116
Genitourinary 13 8 63 13 97
Brain/CNS 1 5 50 3 59
Head and neck 9 3 38 5 55
Skin 5 6 32 5 48
Noncancer

diagnosis
2 1 57 11 71

Musculoskeletal 3 3 35 3 44
Others 6 11 33 40 90

CNS indicates central nervous system; NA, light microscopy estimate not
available.
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only obtained for a subset of cases, the last column of
Table 2 provides the absolute number of samples available
for the specified comparison.

The first striking observation was the high failure rate
of the computational methods, especially at the lower range
of tumor cellularity. The failure rates for each algorithm can
be seen in comparison to light microscopy (data rows 4 to 7
in Table 2) as all failures in those comparisons are
attributable to the computational methodology. Overall,
of the 3 algorithms, ABSOLUTE (SNP/SEQ) and ASCAT
had similar failure rates (18%/25% and 21%, respectively).
The overall THETA failure rate was 34% for samples. On
the lower end of tumor purity, failure rates reach up to 65%
using ASCAT. Even in tumors of high purity, the failure
rate never fell below 15%. It is clearly an advantage of light
microscopy that pathologists were able to assign sample
purity to every case.

We then assessed concordance for each of the 8 pos-
sible comparisons using RMSD both overall and as a
function of tumor cellularity. RMSD was most favorable in
the low purity samples assessed by repeat light microscopy
by independent pathologists at 0.12 (highest agreement).
The lowest agreement was in low purity samples comparing
ASCAT to light microscopy, 0.73. As expected, RMSD
increased with decreasing purity samples in each individual
computational algorithm as compared with light microscopy.
Interobserver light microscopy was the most concordant
methodology in every comparison. When comparing RMSD
of SNP methods (SNP ABS vs. SNP ASCAT) across the
cellularity range, no pattern was clearly seen. Interestingly,
when comparing RMSD of sequencing methods (SEQ ABS
vs. SEQ THetA2) across the cellularity range, the RMSD did
not vary. In the comparison of SNP versus sequencing using
ABSOLUTE, there appeared to be an improvement in
RMSD with higher purity samples.

We conclude that existing computational methods
have failure rates that render them difficult to rely upon in a
clinical setting even at high purity samples. Likewise, when
compared with light microscopy or to other computational
methods, the overall high RSMD for all molecular estimates
did not support these as robust estimates of tumor purity in
clinical practice and failed to suggest parameters for the
settings in which they would be most useful. RSMD was

high in both low and high cellularity cases and failures were
common. We therefore considered alternative approaches,
including semiquantitative and integrated approaches based
on our experience in reviewing the first 880 cases (Table 3).

TABLE 2. Concordance of Purity Estimates by Computational Methods and Pathologist Interpretations of Hematoxylin and Eosin
Light Microscopy
Estimated Cellularity 0%-20% (Low) 20%-50% (Moderate) 50%-100% (High) Overall

Method 1 Method 2 RMSD % Failed N RMSD % Failed N RMSD % Failed N RMSD % Failed N

SNP ABS SEQ ABS 0.45 68 37 0.45 38 29 0.36 39 201 0.38 43 267
SNP ABS SNP ASCAT 0.37 78 37 0.17 38 29 0.25 29 201 0.25 37 267
SEQ ABS SEQ THeTA2 0.33 37 120 0.36 43 121 0.33 32 516 0.34 34 757
SNP ABS LM 0.65 65 37 0.33 21 29 0.28 19 201 0.31 25 267
SNP ASCAT LM 0.73 46 37 0.29 28 29 0.17 15 201 0.28 21 267
SEQ ABS LM 0.63 7 120 0.47 17 121 0.26 18 516 0.39 18 757
SEQ THeTA2 LM 0.62 37 120 0.34 43 121 0.23 32 516 0.33 34 757
LM p1 LM p2 0.12 0 17 0.2 0 19 0.12 0 64 0.14 0 100

ABS indicates ABSOLUTE; LM, light microscopy; p1, Pathologist 1; p2, Pathologist 2; RMSD, root mean square deviation (higher RMSD values indicate lower
concordance); SEQ, sequencing; SNP, single nucleotide polymorphism.

TABLE 3. Integrated Interpretation of Neoplastic Cellularity
and Sequencing Results (IINCaSe) Guidelines

Neoplastic Cellularity on H&E

No H&E or <20%
Tumor

20%-50%
Tumor

> 50%
Tumor

Canonical/
expected
alterations
present

TRUE positive:
Sufficient tumor
present for analysis

TRUE positive: Use as
a starting point to
calculate purity of
sample and infer
presence/absence of
clonal populations,
especially if varying
range of VAF are
present

Novel
alterations
present

FALSE positive:
Consider likelihood
of sequencing errors,
especially when
present at low VAF
—evaluate against
background level of
sequencing errors to
determine which are
true positives

High level copy
number changes may
be able to identify
presence of tumor
(Fig. 3)

TRUE positive: Use as
sequence variants
(SNV, indels) as
evidence for
presence/absence of
clonal populations
(Fig. 1)

Alterations
absent

FALSE positive:
Insufficient tumor in
specimen, sequence
alternate sample

TRUE negative:
(sequence variants)

FALSE negative: (copy
number variants)
Consider assay
limitations and
tumor type to
evaluate probability
of true vs false
negative

True
nega-
tive

H&E indicates hematoxylin and eosin; VAF, variant allele fraction.
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The Integrated Interpretation of Neoplastic
Cellularity and Sequencing Results (IINCaSe)
Approach

We propose an empiric and semiquantitative
framework—IINCaSe (Integrated Interpretation of Neo-
plastic Cellularity and Sequencing Results) for tumor purity
that incorporates expected relationships that may be seen
during review of copy number and minor allele frequencies
in individual samples, and incorporates the expectation of
variants commonly associated with the tumor under review.
These patterns are classifiable based upon assumptions
about the expected patterns of mutation in a gene based
upon its mechanism of action in tumor biology. For ex-
ample, in oncogenes such as KRAS, a known activating
mutation on a single allele (heterozygous mutation) is
enough to support tumor growth, whereas tumor suppressor
genes such as APC may attain either a heterozygous or
homozygous loss of function state, either through mecha-
nisms of loss of heterozygosity or compound heterozygous
mutations or epigenetic silencing.

When analyzing an individual sample, VAF provide
support for characterizing the relationships of mutations in a
sample. The majority of samples demonstrated the presence of
groupings when VAF was plotted against mutation density
(Figs. 1A, B). The VAF distributions usually fell into a
primary group characterized by mutations in oncogenes such
as IDH1 and MET, which are expected to occur as
heterozygous mutation. When a canonical mutation in an
oncogene (like IDH1 R132H or MET M1268T) occurs, it is
assumed to be heterozygous and a likely driver mutation,
present in all neoplastic cells. Heterozygous mutation VAFwill
therefore equal approximately half of the tumor purity (tumor
purity=heterozygous mutation allele frequency×2, Fig. 2A).

Two common additional groupings of mutations may
also be identifiable. The first occurs at a VAF approximately

twice that of the heterozygous group, and is characterized
by mutation in tumor suppressor genes such as TP53
(Figs. 1A, B). These types of mutations are expected to
occur as part of a “double-hit” resulting in complete
inactivation of protein product in tumor cells by mutations
in both alleles or more commonly by deletion of one allele
and mutation of the other. Of interest when analyzing these
2 tumor suppressor genes is the observation that PTEN
mutations more commonly occurred in a heterozygous
state, while TP53 mutations occurred at both heterozygous
and homozygous frequencies in tumors. This difference in
mutation patterns is supported by the known presence of
gain-of-function and inactivating mutations in TP53.19

The second grouping of mutations is most often seen if a
sample has a high tumor burden, where mutations may be
seen at VAF less than that of the primary oncogene peak
(Fig. 1B). These mutations may represent subclonal
populations of neoplastic cells or reductions in allele
frequency due to complex genomes. The interpretation of
subclonal mutations may be more complex for several reasons.

First we consider the case in which a tumor is homo-
genous in its clonality, but complex in its genome such as
hyperdiploid (>2 copies of each chromosome) tumors and
aneuploidy tumors. In such tumors, mutations may occur
after genome doubling such that heterozygous mutations
occur in <50% of the alleles. For example, it is not un-
common to see colorectal tumors with 3 APC mutations
with one at 50% VAF, and the second and third mutations at
25% each. In this case, the driver APC mutation occurred
before genome doubling when the tumor was 2n. After ge-
nome doubling the original APC mutation is found on 2
copies of chromosome and 2 independent and additional
APC mutations occur on the third and fourth copies of
chromosome 5 in the tumor cell containing 46 chromosomes.
A hyperdiploid genome can also explain situations such as a

FIGURE 1. Sample variant allele frequency graphs demonstrating density of mutations occurring at specified variant allele
frequency, with genes of therapeutic or biological significance noted in 2 individuals tumors (A, B). Mutation densities were
calculated using a kernel density estimate from R package with default parameters. Genes listed in black have protein altering
mutations and genes listed in gray have nonprotein altering mutations, such as intronic, 3′UTR, and synonymous changes.
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PTEN mutation is present at 100% VAF and KRAS mu-
tation is present at 25%. In this case, there may have been an
initial mutation of PTEN followed by chromosome 10 loss,
then genome doubling and then mutation of 1 of 4 copies of
chromosome 12p at the KRAS locus. Subclonal mutations
may also occur in regions of more complex copy number
alteration such as is often seen for EGFR. Mutant EGFR is
often present at many copies per genome above the baseline
ploidy of the sample, such that the MAF may approach
100% of all alleles in the sample, deviating from the ex-
pectation that oncogenes usually occur in the heterozygous
state. Alternatively, the oncogene may occur in a region of
copy number gain, but not be present in all of the mutated
alleles. Our experience suggests that the gene PIK3CA,
which is often mutated in squamous tumors in a region of
amplification on chromosome 3q often demonstrates this
phenomenon. In such a case, the mutational allele frequency
in this oncogene will occur at <50% of the estimate of tumor
purity.

The interpretation of subclonal mutations is more
complex in the setting of tumor cellular heterogeneity. In
samples in which the population of malignant cells is
heterogenous with different clones under the influence of
different driver mutations, it is more challenging to pro-
pose the rules by which we might estimate the tumor pu-
rity. Such mutations would not be expected to follow the

periodicity described in the sections above. There is little
data to inform the estimation of tumor heterogeneity al-
though it might be reasonable to expect that in most cases
tumor samples would be comprised of one dominant clone
with subclones present at low fractions. In this case, mu-
tation detection in subclones becomes a more daunting
task with many heterozygous mutations expected in the
low single digits for their fractional component. Unless
special molecular techniques are employed (single mole-
cule bar-coding) mutations at allele fractions << 5% are
difficult to interpret even if the quality and coverage of the
variant allows the automated algorithm to call the variant
as somatically mutated. The challenges and tools to
overcome them in mutation calling at low allele frequency
are beyond the scope of this report. Ultimately clinical
judgment must be used in such situations such that some
variants with high pretest probability (KRAS codon 12/13
mutations in lung cancer) are likely to be true whereas
variants of unknown significance (especially missense) or
that are otherwise unexpected should be viewed more
skeptically.

Our experience suggests that tumor heterogeneity
does not present a common dilemma in clinical inter-
pretation for the most common purpose of driver gene
characterization in cancer. Our conclusion is supported by
most reports of tumor heterogeneity in which the vast

FIGURE 2. Variant allele fraction versus neoplastic cellularity. A, Individual samples plotted by percent neoplastic cellularity and
variant allele frequency of mutations in specified genes. Reported mutant allele fraction from sequencing data may be used to
adjust the percent neoplastic cellularity, as shown by the gynecologic tumor represented by a blue star. B, Grouped sample analysis
for all KRAS mutations in gastrointestinal carcinomas. GI indicates gastrointestinal; H&E, hematoxylin and eosin; LOH, loss of
heterozygosity; TSG, tumor suppressor gene.
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majority of subclonal mutations are “passenger” non-
coding or low impact mutations. By contrast, in hetero-
genous tumors most driver mutations will be present in all
clones. Again, expert knowledge should guide inter-
pretation of exceptions in cases such as patients pretreated
with therapies known to induce selective pressure. Specific
clinical situations are known to result in clinically relevant
clonal evolution such as in endocrine therapy for breast
and prostate cancer and targeted therapies in lung cancer,
gastrointestinal stromal tumors, and chronic myelogenous
leukemia. Likewise, the clinician should remain alert of
unusual situations such as the melanoma case seen in our
trial population, where a patient whose tumor was highly
pure in tumor content had a BRAF V600E mutation de-
tected at a low MAF by standard of care targeted se-
quencing. He progressed upon treatment with a BRAF
inhibitor and was later found to have an NF1 mutation at
a MAF concordant with his reported tumor purity on our
UNCseq assay.

We consider one final category of common single
nucleotide variant that the clinician will encounter
commonly in this setting. These are variants that appear
either at ∼50% or ∼100%. While allele frequencies
around 50% or 100% occur commonly as somatic var-
iants, unappreciated germline variants may also appear
commonly in this distribution. This is particularly a
challenge in cases where tumor is sequenced without
matched germline DNA, although for technical reasons
matched germline DNA does not completely eliminate
the concern. Unappreciated germline variants are often
identified by referring to public databases of germline
polymorphisms, although there remain some limitations
of this approach. The 2 primary concerns are that some
pathogenic variants are present in the germline data-
bases at a frequency that approaches common normal
variants. Until a catalogue of such pathologic variants is
completed, this creates a challenge for automatic ex-
clusion of variants present in germline databases from
mutation reports. The second challenge is that at the
present time it is estimated that 10% of all single nu-
cleotide variants in the germline of any given patient are
not yet annotated in public databases.

As a final note to the complexity of sequence variant
interpretation, the rules leveraging VAF to estimate tumor
purity do not apply to the variant class called “insertion/
deletions” or “indels.” Indel mutations detected in se-
quencing data are more difficult to align in the computa-
tional pipeline that ultimately determines the VAF. As
such, the sequencing reads containing indels are more
likely to be excluded as “questionable sequencing” com-
pared with reads from the alleles without these mutations.
This creates the situation in which the indel read is un-
dercounted relative to its presence in the data, and a
falsely low VAF for this class of mutations.

By following the rules described above, with an
emphasis on the canonical variants, we are able to dem-
onstrate that the VAF across tumor types tracks very
closely with the pathologists’ estimates of percent tumor
nuclei. This is true across tumor types and variants
(Fig. 2A) and within a single tumor type such as colorectal
cancer (Fig. 2B). The individual assumptions about gene
VAF biology are supported in grouped sample analysis.
For example, when all mutations in KRAS occurring in
gastrointestinal carcinomas were plotted against estimated
VAF by light microscopy, the majority of mutations
trended along a line most consistent with heterozygous
presence of KRAS mutation within tumor cells (Fig. 2B).
This may be compared with PTEN in gynecologic cancers,
where mutations occur in the compound heterozygous and
homozygous states, as well as in subclonal populations, as
endometrial tumors are known to be heterogenous.
Individual case examples are plotted against the
expected category of mutation in Figure 2A.

In some cases, however, canonical mutations are
absent or confusing in their interpretation. In such cases,
we have relied on copy number changes (Fig. 3) to
characterize the tumor. When expected mutations are not
detected, for example KRAS or APC in a colorectal
cancer, the presence of expected copy number changes such
as amplification of chromosome 13 offer some confidence
that sufficient tumor is present to offer confidence in the
negative result. By contrast, in the same situation with no
APC mutation and none of the expected copy number
changes generates concern that a false-negative is more

FIGURE 3. Copy number variation (CNV) changes providing evidence for tumor presence. A, CNV plot demonstrating genomi-
cally stable tumor with focal loss of CDKN2a on chromosome 9. B, CNV plot demonstrating genomically unstable tumor with
segmental copy number changes and amplification of EGFR on chromosome 7.
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likely. Certain tumors, such as sarcomas, are characterized
by cytogenetic changes with less frequent single nucleotide
mutations such that the presence of segmental copy
number change by massive parallel sequencing may be
sufficient to prove that adequate tumor (usually > 30%
tumor burden) was sequenced. Again, this allows greater
confidence in sequencing results, including reporting that
important genes are truly wild type. While segmental
(whole chromosome arm) single copy gains and losses are
difficult to detect as percent tumor falls much below 30%,
focal gene-level amplifications may be detectable even at
low percentage of tumor nuclei (> 10% tumor burden).
When present, genes such as ERRB2 and MYC may
appear abnormal in the context of high levels of
amplification, with affected cells possessing > 20 copies
of the gene in question.20 In addition, comparison of
expected copy number with VAF can provide information
to help resolve unexpected patterns of mutations.

DISCUSSION
No computational method for estimating tumor

purity emerged as a “gold standard,” especially as algo-
rithms did not produce a discrete estimation of “tumor
purity” a significant proportion of the time. While useful
for curated research cohorts, we feel this excludes cur-
rently available computational purity algorithms from use
in decision trees for clinical settings.

The most concordant analyses were those made be-
tween the 2 pathologists by light microscopy. This is likely
due to the fact that while tumors may appear morpho-
logically homogenous, there is often significant genetic
heterogeneity within a single lesion.7 While imperfect, this
allows for a level of reproducibility that supports its
continued use.

In clinical settings, microscopic estimation of tumor
purity is unique in that it is the only method available before
sequencing, and may therefore be used to quickly disqualify
inappropriate samples for analysis. In addition, clinical
samples are formalin-fixed and paraffin-embedded, and
must have H&E slides made for clinical purposes. This en-
ables earlier identification of optimal samples for analysis
and faster return of patient results to physicians. However,
disqualification of samples at pathologist review should be
done judiciously as MPS with increased sensitivity now
enables mutation detection at allele frequencies approaching
1%. With the high yield of information and relatively low
cost of sequencing,20 as well as lowering limits of detection,
usable data can be obtained from nearly all samples with
tumor present, including those which were previously con-
sidered unusable samples for molecular testing (neoplastic
cellularity <20%).

When applied in the research setting, the ability to
determine whether a sample had sufficient tumor present
for sequencing based on sequencing data alone may fa-
cilitate faster turnaround of specimens and ultimate cost
savings as the need for pathologist review and macro-
dissection may be reduced. In addition, there may be savings in
terms of specimen quantity/purity, as non–paraffin-embedded

specimens do not have to be further processed to create
slides.

By appropriate combination of the estimates of tu-
mor purity by light microscopy with the VAF, knowledge
of the specific gene involved (tumor suppressor vs. onco-
genic), the class of mutation [missense variant of unknown
significance, missense canonical mutation, silencing mu-
tation (nonsense, most splice site mutations, most indels)],
and other expert knowledge, pertinent clinical value can
be added to the sequencing report. The utilization of these
tools are important in oncology with the added complexity
of additional genomic data supplied by NGS. For exam-
ple, while the biological importance of TP53 has long been
known, its clinical relevance in patient care has been
largely absent. Recent months, however, have seen an
explosion of reports as to the emerging clinical use of
TP53 mutation in myelodysplastic syndrome, germ cell
tumors, and acute leukemia.21–23 To characterize this tu-
mor suppressor gene we will be increasingly challenged to
confidently call both mutations and wild type across a
range of tumor purities with a confidence that has been
absent before the advent of NGS.

In summary, the neoplastic cellularity estimate by a
pathologist may give rough guidance for interpreting
clonality as evidenced by VAF within the sample
(Table 3). If no mutations are found, interpretation of this
result should be done in light of data on tumor purity. In
cases having an acceptable but marginally low percent
cellularity (< 20%), the report should indicate that a
negative result does not fully imply a lack of mutation,
and state that the specimen may not have contained
enough malignant cells (false-negative result). For
specimens with higher amount of neoplastic cellularity
(> 50%), the pathologist can state with a high level of
confidence that no mutation was detected in the gene
regions encompassed by the assay (true negative result).
Correlation of VAFs within the sample with estimated
tumor purity light microscopy can be incorporated into
interpretations addressing the likelihood that specific
mutations are primary or secondary (subclonal) events.
This is especially important given documented reports of
intratumor heterogeneity for known driver mutations with
implications for targeted therapy, such as BRAF V600E in
melanoma.24
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