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CD5—A BRIDGE BETWEEN THYMIC SELECTION AND
PERIPHERAL DIFFERENTIATION OF TREG CELLS

CD5 is a cysteine-rich scavenger-like receptor expressed by B-1a and T cells that is generally
thought to be a negative regulator of antigen-specific receptor signaling (1). In developing
thymocytes, expression of CD5 correlates with T cell receptor (TCR) signal strength, resulting
in high CD5 expression by thymocytes that strongly interact with self-peptide: major
histocompatibility complexes (MHC) (2). While the mechanisms that mediate the ability of CD5
to dampen TCR signaling are still partially unclear, it has been shown that negative regulators,
including SHP-1, Ras-GAP, c-Cbl and casein kinase 2 (CK2), are recruited to the cytoplasmic
domain of CD5 (1, 3). Further, CD5 has been shown to interact with TCR signaling molecules
such as PI3K, Fyn, Lck, and ZAP-70 (1, 4, 5). Other functions of CD5 in mature peripheral T
cells influence their survival, anergy, and T helper 17 (Th17) cell differentiation. These functions
of CD5 rely on regulation of the activation of mechanistic target of rapamycin (mTOR) as well
as crucial interactions between CD5 and CK2 (3, 6, 7). Although ligation of CD5 can modify its
functions, the cell-autonomous functions of CD5 in T cells are independent of CD5 engagement
of its extracellular domain by a specific ligand (8). In contrast, such cell-autonomous functions of
CD5 depend on its specific level of expression. In the thymus, negative regulation of TCR signaling
by CD5 allows for strongly self-reactive thymocytes to escape deletion during thymic selection,
therefore extending the range of naïve T cells cross-reactive against various pathogens (2, 9–14).
These T cells retain high expression of CD5 upon their migration to the periphery, so the expression
of CD5 in T cells can be used as a marker of TCR signal strength (1). Further, a specific high
or low expression of CD5 may also indirectly mark some T cells differing in intrinsic changes in
TCR signaling pre-determined by TCR interactions in the thymus (14, 15). Overall, the increased
expression of CD5 in CD4+ T cells may serve as an indicator of self-reactivity in the polyclonal T
cell repertoire and such CD5hi T cells present greater risks for autoimmune responses (11–14).

Additional specific mechanisms are therefore needed to mitigate the risk of autoimmune
responses by self-reactive CD5hi T cells that are released into the periphery. Our previous results
elucidated a CD5-dependent mechanism, separate from its role in regulation of TCR signaling, that
facilitates the formation of peripheral regulatory T (pTreg) cells from CD5hi T cells (16, 17). This
mechanism is also consistent with the previously proposed idea of precursors for pTreg cells that
are present among peripheral T cells (18, 19). In contrast to the CD5-dependent process of pTreg
cell conversion, the development of tTreg cells in thymus is independent of CD5 functions (20, 21).
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FIGURE 1 | Some cDC1s express BTLA, which can signal through HVEM in naïve CD4+ T cells to activate MEK and subsequently ETS1 to increase expression of

Cd5. High CD5 expression allows these to cells to convert to Foxp3+ pTreg cells by interfering with mTOR activation, even in the presence of effector-differentiating

cytokines such as IL-4, IL-6, and IFN-γ.

We found that CD5 promotes induction of Foxp3 expression
and conversion into pTreg cells by opposing in CD5hi T cells
the activation of mTOR mediated by effector differentiating
cytokines such as interleukin-4 (IL-4), IL-6, and interferon-γ
(IFN-γ) that can be constantly produced by small numbers
of effector T cells present even under physiological steady
state conditions (16, 17). Similarly in vitro, the functions of
CD5 prevent effector differentiating cytokines from blocking
the TGF-β mediated induction of iTreg cells (17, 22). This
effect on mTOR activation is likely mediated through CD5
interference with PI3K signaling, and an inhibition of either
PI3K or mTOR leads to a restored conversion of Treg cells in
T cells lacking CD5 functions (17). This is consistent with the
established roles of PI3K and mTOR in the inhibition of Treg
cell differentiation (23–25). While it is still unclear how CD5
inhibits PI3K/AKT/mTOR signaling in pTreg cells, CK2 may
be involved in this process as it has been shown to modulate
activation of this pathway in other contexts (26, 27). Further,
it remains unclear to what extent the initially formed CD5hi T
cells can resist subsequent differentiation into effector T cells
under acute pro-inflammatory conditions. Future research may
clarify this.

REGULATION OF PERIPHERAL CD5
EXPRESSION BY DENDRITIC CELLS

The formation of pTreg cells is crucial for peripheral tolerance
and prevention of specific autoimmunity (28, 29). However, as

discussed above, the expression of CD5 among a polyclonal
T cell repertoire represents a spectrum resulting in different
expression of CD5 in T cells of various antigenic specificities

(11–14). Therefore, the designation of T cells leaving the thymus

as “CD5hi” is in fact relative. Also, despite a lower affinity for

the peptides represented in thymus, some of the developing

CD5lo T cells can still include clones highly responsive to
peripheral self-antigens (30). Therefore, the increased expression
of CD5 induced in the thymus cannot sufficiently direct a
conversion of antigen-specific pTreg cells. Further, a model
that relies on pTreg cell conversion being pre-programmed in
the thymus is not easily reconciled with the well-established
instructive roles of peripheral dendritic cells (DCs) to govern
pTreg cell conversion in response to specific antigens and other
signals perceived by such T cells and DCs in the periphery
(28). However, in addition to the mechanisms regulating CD5
expression previously identified in the thymus, peripheral T
cells can also increase their CD5 expression in response to
pro-tolerogenic stimulation (31, 32). Such upregulation of CD5
expression in peripheral self-reactive T cells may therefore
act to further promote a conversion into pTreg cells. We
recently clarified the mechanisms governing induction of CD5
expression in peripheral T cells. Results from our laboratory
have elucidated crucial roles for the immunoregulatory axis
dependent on the immunoglobulin superfamily member B and T
lymphocyte associated (BTLA) expressed on some DCs (BTLAhi)
that signals through herpesvirus entry mediator (HVEM) in T
cells to up regulate the expression of CD5 and instruct the
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conversion of pTreg cells under physiological conditions that
include multiple pro-effector and pro-tolerogenic cytokines (17,
22) and (Figure 1).

DCs are antigen presenting cells (APCs) that are critical
for the initiation and regulation of T cell responses to foreign
and self-antigens. The outcomes of antigen-specific interactions
between DCs and T cells are governed by immunomodulatory
molecules expressed by each cell type (33). Both human and
murine DCs consist of two main populations, conventional
(myeloid) (cDC) and plasmacytoid (pDC), both of which develop
from progenitors in the bone marrow that differentiate into
various subsets present throughout multiple tissues (34–36).
The cDC population can be further divided into the cDC1
and cDC2 subsets, defined by the transcription factors required
for their development. The cDC1 subset, which requires the
transcription factors Irf8, Id2, and Batf3 for development, can
be distinguished by expression of XCR1 and BTLA. In contrast,
the cDC2 subset depends on the transcription factor Irf4 for
development and is distinguished by expression of CD172a
(SIRPα) (22, 34, 35). In the absence of specific acute pro-
inflammatory stimuli (steady state), DCs generally promote T
cell tolerance that crucially relies on the induction of pTreg cells
(29, 37, 38). Although the developmental designation of DC
subsets does not strictly overlap with their distinct immune
functions, the specific subsets are characterized by a degree
of functional specialization. Whereas, cDC2s can preferentially
promote Th2, Th17, and follicular helper T cell differentiation,
cDC1s have crucial roles for the cross-priming of CD8+ T cells,
priming of Th1 cells, and induction of CD4+CD25+Foxp3+

pTreg cells (28, 33, 34, 39).

BTLA AND HVEM INSTRUCTED
REGULATION OF CD5 EXPRESSION

In addition to cDC1s, BTLA is also expressed in T cells, B
cells, macrophages, NK cells, and NKT cells (22, 40–42). BTLA
contains three immunoreceptor tyrosine-based inhibition motifs
(ITIMs) which, upon phosphorylation, recruit Src homology
domain 2 (SH2)-containing protein tyrosine phosphatases, SHP-
1 and SHP-2, which exert a variety of inhibitory effects within
various lymphocytes (40, 41). However, in addition to the
above-described intrinsic signaling mediated by its intracellular
domains, BTLA also serves as a ligand for HVEM, a tumor
necrosis factor receptor (TNFR) superfamily member primarily
expressed in naïve CD4+ and CD8+ T cells, which downregulate
its expression following activation (41). HVEM contains four
extracellular cysteine-rich domains (CRDs) that mediate its
specific binding to BTLA or other ligands such as LIGHT
in different conformations (41). Following ligation by LIGHT,
HVEM activates PI3K leading to immunogenic lymphocyte
activation (43). Upon binding to BTLA, HVEM can signal
through TNF receptor associated factor 2 (TRAF2) to induce
phosphorylation of STAT3, resulting in NF-kB activation as
well as other pro-survival signals (44, 45). These interactions
between BTLA and HVEM can also modulate a variety of
immunological processes, including CD8+ T cell survival and

memory formation, Treg cell functionality, and DC homeostasis
(41, 42, 45, 46). We recently established specific roles for BTLA
and HVEM in governing a conversion of pTreg cells through the
modulation of CD5 expression in T cells (22). We found that
in antigen-specific T cells activated by BTLA-expressing cDC1s,
HVEM-mediated signals lead to an increased phosphorylation
of mitogen-activated protein kinase (MAPK) kinase (MEK) and
expression of ETS1, resulting in increased transcription of Cd5
and the corresponding increased surface expression in CD5hi

T cells (22). While other signals might contribute to regulation
of CD5 expression, BTLA-HVEM signaling is indispensable for
the upregulation of CD5 in T cells activated by DCs in vivo
under normal physiological conditions (22). The subsequent
conversion of such DC-induced CD5hi T cells into pTreg
cells is then enhanced because CD5hi T cells become resistant
to the specific mTOR-dependent signals mediated by effector
differentiating cytokines as discussed above (Figure 1).

CONCLUSIONS AND
FUTURE DIRECTIONS

The regulation of immune tolerance by DCs through the
induction of pTreg cells is mediated by various mechanisms
utilized by specific subsets of DCs (28, 33). The BTLA-
HVEM-CD5 signaling axis is critically important for the
ability of cDC1s to promote differentiation of pTreg cells
that have crucial functions in blocking an autoimmune
process (22). Despite the finding that BTLA-HVEM signaling
upregulates CD5 expression in T cells, the mechanisms utilized
by CD5 to modulate functions of mTOR and to promote
the differentiation of pTreg cells still need to be fully
clarified. Particularly, determining the possible roles of the
established interactions between CD5 and CK2 could help
to elucidate this process. Further, CD5 may govern relevant
molecular functions in the newly formed pTreg cells whose
responses to cytokine-mediated stimulation depend on specific
transcription factors (22, 38). Obtaining a deeper mechanistic
understanding of the signaling mechanisms by which DCs
control T cell responses, such as the BTLA-HVEM-CD5 axis
described here, is necessary for the development of new
immunotherapies for the treatment of cancer, autoimmunity,
and infection.
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