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Viral hepatitis, the leading cause of liver diseases worldwide, is induced upon infection with hepatotropic viruses, including
hepatitis A, B, C, D, and E virus. Due to their obligate intracellular lifestyles, culture systems for efficient viral replication are
vital. Although basic and translational research on viral hepatitis has been performed for many years, conventional
hepatocellular culture systems are not optimal. These studies have greatly benefited from recent efforts on improving cell culture
models for virus replication and infection studies. Here we summarize the use of human stem cell-derived hepatocyte-like cells
for hepatotropic virus infection studies, including the dissection of virus-host interactions and virus-induced pathogenesis as
well as the identification and validation of novel antiviral agents.

1. Introduction

Viral hepatitis manifests itself as continuous liver inflamma-
tion and eventually liver injury and hepatic failure. As
summarized in Table 1, the major causative agents of viral
hepatitis are five hepatotropic viruses, including hepatitis A
virus (HAV), hepatitis B virus (HBV), hepatitis C virus
(HCV), hepatitis D virus (HDV), and hepatitis E virus
(HEV). HAV and HEV normally spread through contact
with contaminated water or food, resulting in an estimated
annual incidence of 1.5 million HAV infections and
20 million HEV infections [1, 2]. Both HAV and HEV
typically cause acute infections; however, HEV can also
cause chronic infections in immunocompromised patients

[2]. HBV, HCV, and HDV are transmitted through blood
transfusions, organ transplants, sex, and injection behav-
ior [3–5]. Approximately, 10–15% of chronically HBV-
infected patients are coinfected with HCV and 5% with
HDV [6]. Infection with HBV, HCV, and HDV can cause
both self-limited and chronic hepatitis and is the leading
cause of liver diseases including fibrosis, cirrhosis, and
hepatocellular carcinoma (HCC) [3, 4, 7]. In order to prevent
disease progression, early diagnosis and treatments are vital.
In spite of recent extraordinary advances in the treatment of
hepatitis C, based on the success of HCV basic research [8],
the need remains to understand the underlying molecular
and cellular mechanisms of liver pathogenesis caused by
the other hepatotropic viruses. The development of novel
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specific drugs against hepatotropic virus infection has been a
challenging task, partially due to the lack of physiologically
relevant cell culture models that can be used for medium/
high-throughput drug screening.

Hepatoma cells have been invaluable across the history of
hepatotropic virus studies in cell culture. Yet, their aberrant
intracellular signaling and metabolic activities limit investi-
gations of the viral and cellular innate immunity interactions
as well as effects on cellular proliferation, metabolism, and
apoptosis pathways. Furthermore, most hepatoma cell lines
lack various functional enzymes, such as CYP450 and other
phase I, II, and III drug-metabolizing enzymes, which make
them unsuited for the assessment of antiviral drug interac-
tions and metabolism [9, 10]. Therefore, studies using these
models are limited in their ability to mimic natural virus-
induced pathologies in the liver.

The most authentic cell culture system for hepatotropic
virus studies is primary human hepatocytes (PHH). Yet, their
use is hindered by limited donor supply, donor-to-donor
variability, and rapid dedifferentiation upon plating in cell
culture [11]. Given the limitations and challenges of using
hepatoma cells and PHHs, hepatocyte-like cells (HLCs)
derived from human embryonic stem cells (hESCs) or
induced pluripotent stem cell (iPSC) have emerged as a
promising cell culture model to study basic and transla-
tional liver diseases as well as hepatitis virus infection
[12–14]. HLCs have been differentiated from diverse
resources, such as hESCs, iPSCs, liver-resident hepatic pro-
genitor cells, and bone marrow-derived mesenchymal stem
cells [15]. Differentiated HLCs are functionally character-
ized by the production of urea, indocyanine green uptake,
glycogen storage, and inducible cytochrome P450
(CYP450) activity [16]. In addition, they can rescue liver

function after transplantation into animal models [17].
To date, HLC infection models for HBV, HCV, and
HEV have been successfully established [17–19]. Here,
we summarize the current knowledge on cell culture-
based models available for these viruses and highlight the
advantages of HLCs derived from stem cell as an
improved system for basic and translational viral
hepatitis research.

2. Hepatocyte-Like Cells for HBV Infection

Despite the availability of an efficient prophylactic vaccine,
HBV infection is still a global public health burden with an
estimated 257 million chronically infected people who are
at increased risk of developing liver related-fibrosis, cirrhosis,
and hepatocellular carcinoma (HCC) [25]. HBV contains a
partially double-stranded, relaxed circular DNA (rcDNA)
genome of approximately 3.2 kb, covalently linked to the
HBV polymerase [26]. The rcDNA is delivered into the
nucleus after viral entry and converted into fully double-
stranded DNA, which is itself converted by ligation into an
intracellular HBV replication intermediate called covalently
closed circular DNA (cccDNA). cccDNA is responsible for
HBV persistence in infected cells [6, 26]. A curative treat-
ment of chronic hepatitis B should therefore target perma-
nent transcriptional silencing or elimination of cccDNA [27].

Currently, treatments for chronic hepatitis B are limited
to type 1 interferons (IFN-α) and five approved nucleos(t)ide
analogues (NAs) [28]. Due to severe side effects of interferon
therapy, only few patients are eligible for treatment, and less
than 10% of them show a sustained virological response
evidenced as loss of hepatitis B surface antigen (HBsAg)
[29]. NAs are the most potent drugs; tenofovir and entecavir

Table 1: Overview of hepatitis viruses.

HAV HBV HCV HDV HEV

Classification Picornavirus Hepadnavirus Hepacivirus Deltavirus Hepevirus

Genome +ssRNA dsRNA-RT +ssRNA -ssRNA +ssRNA

Incubation (days) 20-40 45-160 15-150 30-60 15-60

Transmission Fecal-oral
Parenteral
Perinatal
Sexual

Parenteral
Perinatal
Sexual

Parenteral
Sexual

Fecal-oral

Chronicity Acute
5-10% chronic1

80% neonates
70% chronic Coexistence with HBV

Acute2

(Chronic in immunocompromised patients)

Natural host
Human

Chimpanzee
Monkey [20]

Human3 [21] Human3 [22] Human3 [23]
Human

Animal4 [24]

Carcinogenesis – + + – –

Prophylaxis Vaccine Vaccine NA HBV vaccine Vaccine5

Therapy NA IFN, NAs DAAs IFN RBV and withdrawal of immunosuppressants

Cure Self-cure No Yes No Self-cure (yes)
15-10% in immunocompetent adults; 2mild in normal patients and severe in pregnant women; 3chimpanzees are susceptible but not naturally infected;
4genotype 3- and 4-specific; 5licensed in China. ss: single-stranded; ds: double-stranded; RT: reverse-transcriptase; IFN: interferon-α; NAs: nucleos(t)ide
analogues; DAA: direct-acting antiviral; RBV: ribavirin; NA: not applicable.
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can reduce viral DNA, often below the detection limit with
low resistance development [30, 31]. However, most patients
remain HBsAg-positive even after prolonged treatment and
the frequent viral rebound upon therapy withdrawal indi-
cates a need for lifelong treatment [32]. In addition, long-
term administration of tenofovir has been associated with
Fanconi syndrome, a decrease in bone mineral density and
chronic renal tubular damage [33]. Since current antiviral
strategies cannot completely eradicate viral infection, an
urgent need for the development of novel antiviral therapeu-
tics remains [34].

Basic and translational research has been hindered by the
absence of in vitro experimental models that feature the
physiological condition of hepatocytes and permits efficient
HBV and infection. As shown in Table 2, human hepatoma
cell lines, such as Huh-7 and HepG2, are widely used as
surrogate models for HBV infection, even though they only
partially mimic physiological hepatic functions. Stable
HBV-integrated hepatoma cell lines have been generated
through transfection of human hepatoma cells with an
HBV-expressing plasmid [35–38]. Alternative systems were
the delivery of the HBV genome by baculoviral or adenoviral
vectors, which resulted in sufficient HBV replication and
viral particle production [39, 40]. However, these cell lines
are not permissive for natural infection as they are unable
to mediate early steps of virus infection, including entry,
uncoating, and cccDNA formation. Primary human hepato-
cytes (PHHs) support the full viral replication cycle and serve
as the gold standard of HBV infection. However, they have
many disadvantages, including high donor variability, short
lifespans, and limited availability. Despite many attempts to
improve methods for maintaining freshly isolated PHHs,
they often rapidly dedifferentiate in culture dishes [19, 41–
43]. HepaRG cells are liver progenitor cells that can be differ-
entiated in vitro and then support the whole HBV life cycle,
an alternative tool for HBV studies [35, 44]. However, the

efficiency of HBV infection in these differentiated HepaRG
cells remains lower than in other cell systems. In addition,
the differentiated cells contain both hepatocyte and biliary
lineages, which affects HBV-host interaction studies in a
hepatocyte-specific environment [45]. New HBV infection
cell culture models have been developed when human
sodium taurocholate cotransporting polypeptide (NTCP)
was identified as the HBV entry receptor [46]. NTCP-
overexpressing hepatoma cell lines were generated including
HepG2-NTCP and Huh-7-NTCP cell lines, which provide an
easily accessible platform for HBV-host interaction and anti-
viral studies [46, 47]. But, as mentioned above, although the
entire HBV life cycle is recapitulated, hepatoma cells have
altered physiological signaling pathways.

Recently, iPSC-derived HLCs were reported to support
HBV infection [19, 63]. A time-course experiment showed
that both a full activation of the transcription machinery
and an expression of NTCP on the cell surface are essential
to achieving productive HBV infection. This demonstrated
the potential of human iPSC-derived HLCs for in vitro stud-
ies of HBV biology, yet the infection efficiency remained very
low. Although the authors observed temporal induction of
interferon-stimulated genes (ISGs) in HBV-infected HLCs,
studies from other groups rather support the notion that
HBV is a stealth virus both in vitro and in vivo [68–71].
Similarly, Sakurai et al. established human iPSC-derived
HLCs that allow about 20% HBV infection efficiency [62].
Xia et al. used an optimized protocol [72] to differentiate
the non-colony-type monolayer culture of hESCs and iPSCs
to HLCs in 15 days (Figure 1). The HLCs maintained their
differentiated state and allowed HBV infection for more
than 4 weeks. Importantly, the authors successfully demon-
strated that the optimized protocol for HLC differentiation
provided an in vitro model capable of supporting HBV
spread. Notably, the dedifferentiation process occurred at a
slower rate in HLCs than in PHHs, as high expression levels

Table 2: Receptors and infection models of hepatitis viruses.

HAV HBV HCV HEV

Receptor TIM-1 [48] NTCP [46] CD81, SR-BI, OCLN, CLDN1 [49–52] Unknown

Cell model HAV HBV HCV HEV

PHH +[53] +[46] +[54] +[55]

HepG2 +[53] +/– – +[56]

HepG2NTCP Unknown +[46] – Unknown

HepaRG Unknown +[44] – +[57]

Huh7 Unknown +/– +/– +[56]

Huh7NTCP Unknown +[46] +/– Unknown

Huh7.5.1 Unknown – +[58, 59] Unknown

HLCZ01 Unknown +[60] +[60] Unknown

PLC/PRF5 Unknown Unknown Unknown +[61]

A549 Unknown – – +[61]

iPSC-derived HLC Unknown +[19, 62–64] +[17, 65] +[18, 66, 67]

hESC-derived HLC Unknown +[19] +[17, 65] +[18, 66, 67]

TIM-1: T-cell immunoglobulin and mucin domain 1; NTCP: sodium taurocholate cotransporting polypeptide; CD81: cluster of differentiation 81;
SR-BI: scavenger receptor class B type I; OCLN: occluding; CLDN1: claudin-1; PHH: primary human hepatocyte; iPSC: induced pluripotent stem cell;
hESC: human embryonic stem cell; HLC: hepatocyte-like cell. +: permissive; +/-: barely permissive; -: not permissive.
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of proviral factors, including NTCP, HNF4A, and RXRA,
were maintained for more than 3 weeks, making them a suit-
able model for long-term HBV infection studies [19]. Knock-
ing down NTCP reduced HBV infection while knocking
down antiviral factor APOBEC3A enhanced viral replication,
indicating that HLCs constitute an appropriate system for
virus-host interaction studies. By using this model, the

authors identified two host-targeting agents, genistin and
PA452, as novel antivirals. Recently, Nie et al. used iPSCs
to generate liver organoids and evaluated their application
in studying HBV virus–host interactions [73]. They cultured
iPSC-derived endodermal, mesenchymal, and endothelial
cells with a chemically defined medium in a three-
dimensional (3D) microwell culture system, in which the

iPSC/hESC Definitive endoderm
priming

Hepatic
specification 

Hepatoblast
expansion 

Hepatic
maturation Differentiation

Morphology

Day 0 4 5 12 15 45

(a)

HBV and HDV
ActivinA 
Wnt-3A

HGF
Y-27632
DMSO

HGF
DMSO

DEX Insulin
HC
DMSO

OCT4 SOX17
FOXA2

Albumin
AFP
HNF4A
RXR
NTCP

(b)

HCV

Day 0  3  11  14  28

Activin A
bFGF

HGF
DMSO

DEX Insulin
HC
DEX

OCT4
NANOG

SOX17
FOXA2

HNF4A Albumin
AFP
HNF4A
CD81
CLDN1
APOB

Albumin
AAT
HNF4A
FOXA2

Day 0  4 10 13 19 21

FGF-2
Wnt-3A

Activin AActivin A
FGF-2

FGF-10 FGF-10
Retinoic acid

SB431542

FGF-4
HGF
EGF

FGF-4
HGF
EGFOCT4 CXCR4 CK-7 AFP Albumin

(c)

HEV
Day 0 5 10 15 2021

Activin A
FGF-2

Wnt-3A

Activin A
bFGF

BMP4
bFGF

EGF
HGF

Oncostatin-M
OCT4

NANOG
GATA4
FOXA2
CXCR4

HNF4A
PROM1
KRT19

AFP
CYP2C9

Albumin
CYP3A4
CYP4V2

(d)

Figure 1: Stem cell-derived hepatocyte-like cells support virus research of HBV, HCV, and HEV. (a) During differentiation, iPSC or hESC
undergo definitive endoderm induction, hepatic specification, hepatoblast expansion, and hepatic maturation to become HLCs that are
permissive for infection with hepatitis viruses. (b) For HBV infection, cells are treated with activin A and Wnt-3A enhancer for 4 days and
HGF and Rock inhibitor Y-27632 for one day, followed by HGF for 1 week. Hepatoblast cells are administered with DEX for 3 days and
can be used for HBV infection at this point. The infected cells can be maintained in the presence of insulin, HC, and DMSO for another 1
month [19]. (c) For HCV application, iPSC/hESC is differentiated using two methods. Upper: this arm is similar to (b) (a, [17]). Lower:
cells are treated with activin A and FGF-2 until day 4 when FGF-10 is added for 2 days and then coadded with retinoic acid and TGF-β
inhibitor SB431542 until day 10. Cells are further treated with FGF-4, HGF, and EGF for about 10 days [65]. (d) On day 5, endoderm is
formed by activin A, FGF-2, and bFGF and further differentiated by BMP4 and bFGF until day 10. Cells are terminally differentiated by
EGF and HGF to hepatocyte-like cells. Cells can be infected with HEV or maintained in the medium containing oncostatin-M [18, 75].
Abbreviations: AAT: α-1-antitrypsin; AFP: alpha fetoprotein; APOB: apolipoprotein B; BMP4: bone morphogenetic protein 4; Cd81:
cluster of differentiation 81; CK-7: cytokeratin 7; CLDN1: claudin-1; CXCR4: C-X-C chemokine receptor type 4; CYP: cytochrome 450
enzyme; DEX: dexamethasone; DMSO: dimethyl sulfoxide; EGF: epidermal growth factor; FGF: fibroblast growth factor; FOXA2:
forkhead box protein A2 (also known as hepatocyte nuclear factor 3-beta); GATA4: GATA-binding protein 4; HC: hydrocortisone; hESC:
human embryonic stem cells; HGF: hepatocyte growth factor; HNF: hepatocyte nuclear factor; iPSC: induced pluripotent stem cells;
KRT19: cytokeratin 19; NANOG: Nanog homeobox; NTCP: sodium taurocholate cotransporting polypeptide; OCT4: octamer-binding
transcription factor 4; PROM1: prominin 1; RXR: retinoid X receptor; SOX17: sex determining region Y-box 17; TGF: tumor growth factor.
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cells organized themselves to gradually differentiate into a
functional liver organoid. They showed that the organoid
exhibited stronger hepatic functions than did 2-cultured
HLCs with a higher susceptibility to HBV infection [73].
Yuan et al. developed a mouse model to study in vivo HBV
infection by engrafting iPSC-derived HLCs into immune-
deficient mice [74]. The liver of these mice contains approx-
imately 40% HLCs at week 6 and maintained at this level for
at least 14 weeks. After HBV infection, viral replication
markers such as HBsAg, HBeAg, RNA, DNA, and cccDNA
were detectable in the sera. Furthermore, these mice can be
used to test different antivirals [74]. Together, all these stud-
ies demonstrated that HLCs fully support HBV infection and
virus-host interactions, allowing the identification and vali-
dation of novel antiviral agents.

3. Hepatocyte-Like Cells for HCV Infection

Around 71 million people worldwide are chronically infected
with HCV, which increases their risk of progressive liver
disease [76]. Although the standard of care for chronic
HCV infection has been dramatically improved through
direct-acting antiviral agents (DAAs), it still poses significant
problems, including treatment failure in some patient groups
and limited access to therapy due to high cost of treatment.
Further, a protective vaccine is still in need. Notably, 15–
45% of HCV-infected individuals are able to clear the virus
within six months without intervention, but the underlying
mechanisms remain unknown [77, 78].

To address these scientific questions and develop new
anti-HCV drugs, various in vitroHCV-infection models have
been developed. JFH-1 is a unique cell culture- (cc-) adapted
strain of HCV to study the complete viral life cycle in the
hepatoma system [79]; however, it does not reflect the
variability and diversity of HCV infection in patients [80].
The Huh-7.5.1 cell line derived from Huh-7 cells that carries
a defect retinoic-inducible gene I (RIG-I), a critical player in
viral genome recognition and host immune response, is
frequently used for JFH-1 HCVcc infection [81].

Several studies have independently validated that HLCs
are competent to support HCV infection (Table 2). In
preliminary research, HLCs were generated from iPSCs
differentiated with growth factors and by adenovirus delivery
of SOX17, HEX, and HNF4A. All HCV entry receptors were
expressed on these HLCs, including CD81, SR-B1, claudin-1,
and occludin, which allowed the entry and replication of
HCV pseudoparticles and subgenomic replicons, respectively
[82]. Subsequently, other groups demonstrated that HLCs
are not only permissive to different forms of cell culture-
adapted HCV (viral pseudoparticles and JFH-1; HCVpp
and HCVcc) but also showed detectable infection with
different serum-derived HCV genotypes 1a, 1b, 2, 3, and 4;
this is not possible with hepatoma cell lines since they are
not permissive for infection with patient isolates [17, 83].

HLCs support the complete life cycle of HCV genotype
2a for up to 21 days (Figure 1) [65, 68]. Another feature of
HLCs is that HCV can spread from infected cells to adjacent
cells, suggesting possible direct cell-to-cell transmission of
HCV, as has been described previously in HuH-7 cells [17].

A recent study used human iPSCs derived from human
mesenchymal stem cells that were subsequently differenti-
ated into HLCs with polycistronic OSKM-reprogramming
factors. These HLCs supported the entire life cycle of wild-
type HCV (genotype 1a, 1b, 3a, 3b, 6f, and 6n) isolated from
patients and achieved increasing infection rates by incu-
bating cells with α-tocopherol. The released HCV viral
particles could infect both naïve HLCs and HuH-7 cells
and were susceptible to treatment with IFN-α, ribavirin,
or sofosbuvir [85].

Although HLCs represent a unique and highly relevant
model to study HCV infection in vitro and in vivo, particu-
larly in the context of a patient-specific genetic background,
some limitations of this model remain to be addressed. First,
the production of viral particles remains very low compared
with reported levels from HuH-7 cell lines [86]. It has been
shown that the permissive and persistent infection of HCV
in hepatic progenitor cells is affected by liver-specific
microRNA-122 and cellular cytokines [87, 88]. By inhibiting
the JAK/STAT pathway to block IFN responses, viral
infection and replication were improved in HLCs [89]. Addi-
tionally, higher HCV replication levels were observed in
STAT2- but not STAT1-deficient HLCs [89]. Even after
JAK/STAT pathway inhibitor treatment, HLCs demon-
strated intact type III interferon and ISG responses. This
suggests that HLCs may be a suitable model to study the
HCV-host interaction [86]. Multiple mutations in different
regions of the viral genome of JFH-1 HCVcc enhanced the
titers in HuH-7 cells, and infections were maintained in an
animal model, but the appearance of mutations has not been
investigated in the HLCs. A further concern in the HLC
model is the observed variability between cell lines with
timing or cytokine concentrations necessary for hepatocyte
differentiation. Thus, iPSC differentiation protocols and
HLC culture conditions need to be optimized. For example,
humanized liver chimeric mice based on human hepatocyte
(such as HLCs) engraftment were reported to support HCV
infection [90]. Engrafting HLCs in vivo to produce human
liver chimeric mouse models has been fraught with low
efficiencies [91]. By using an optimized hepatocyte differenti-
ation protocol on transgenic mice, which carry the uPA
(urokinase-type plasminogen activator) gene driven by the
major urinary protein promoter onto a SCID (severe
combined immunodeficiency)/beige background, HLCs
differentiated from both hESCs and patient-specific iPSCs
were able to engraft and undergo further maturation
in vivo. Productive and chronic HCV infection in these
repopulated liver injury models can be launched with high-
dose inoculations (1,000 CID50 per mouse) [17]. Although
challenges remain, robust cell culture and animal models
for serum-derived HCV using HLCs provide remarkable sys-
tems for investigating HCV life cycle and HCV-associated
hepatocellular carcinoma development.

4. Hepatocyte-Like Cells for HEV Infection

HEV is recognized as an important global health problem
[92]. HEV is a nonenveloped positive-strand RNA virus of
the Hepeviridae family, which is divided into two genera:
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Orthohepevirus and Piscihepevirus [93]. The Orthohepevirus
genus is further divided into four species A, B, C, and D.
Human-infecting HEV strains belong to the Orthohepevirus
A, which include human-restricted genotypes (gt) 1 and 2
as well as zoonotic genotypes 3, 4, and 7. The human-
restricted genotypes are transmitted fecal-orally and sporad-
ically lead to large waterborne outbreaks in developing
countries with poor sanitation (reviewed in [94]). These
infections are mostly acute and self-resolving but can cause
an increased virulence in pregnant women, leading to a
25% maternal mortality in the third trimester [95]. For the
zoonotic viruses, infected animals serve as reservoirs and
can transmit HEV through the consumption of infected meat
[94]. These zoonotic species of HEV cause acute and chronic
diseases in immunocompromised patients [92]. Reducing
immunosuppression in combination with using off-label
ribavirin is the only available treatment, but treatment resis-
tances have been reported [96–98]. A high-efficacy vaccine
has been developed and licensed in China but is not available
elsewhere [24].

The 7.2 kb polyadenylated HEV genome contains
three partially overlapping open reading frames (ORF1-3)
(reviewed in [2]). ORF1 encodes the viral replicase, ORF2
for the capsid, and ORF3 for a small protein involved in virus
assembly and secretion [2]. A range of different expression
systems have been used to study HEV without resulting in
authentic virus replication [67]. In this regard, HEV behaves
like other hepatotropic viruses, in that they grow poorly in
cell culture, which has severely hampered molecular studies,
leaving many fundamental aspects of its life cycle poorly
understood [67].

Breakthroughs in developing robust HEV cell culture
systems have been made through the isolation of specific viral
strains with improved replication efficiency and the identifi-
cation of compatible cell lines [99]. After serial passaging in
these cell lines, the isolated strains accumulated mutations
and/or insertions, which increased their ability to replicate.
For example, a gt3 HEV virus, the Kernow-C1 strain, was
isolated from a chronic HEV patient [100] and serially pas-
saged six times (passage 6) in the hepatoma cell line HepG2
[101]. A virus with an insertion derived from the human
40S ribosomal protein S17 in the ORF1 region became the
dominant species with greater in vitro replication ability
and broadened host range [101]. Similarly, other strains with
insertions into ORF1 have been reported with enhanced viral
fitness in vitro [102–104]. These adapted clones enabled
molecular HEV studies and yielded valuable insights into
HEV biology. Yet, this approach is limited to gt3 and 4
viruses and, to our knowledge, has not been successful for
other genotypes.

Studies have proposed utilizing HLCs differentiated from
iPSC/hESC as an alternative HEV cell culture model to
hepatoma cells and PHHs (Figure 1) [18, 66]. HLCs can be
infected with the adapted p6 strain [18, 66, 75]. Transition
studies showed that germ layer cells support intracellular
HEV replication but not infection [66]. Only when endoder-
mal cells were differentiated to immature hepatocytes did
they become susceptible for HEV infection [18]. This
strongly suggested that virus entry, governed by the

expression of a yet unknown cellular protein, was the limiting
factor which could also be the key determinant of HEV tissue
tropism [66]. In addition, HLCs are readily permissive for
HEV isolates from animals infected with gt1-4 without prior
adaptation [18]. Surprisingly, an early, nonadapted passage
of the Kernow-C1 strain replicated better than the adapted
p6 strain in HLCs. This suggests that acquired mutations in
cell culture attenuate viral replication in more physiologically
relevant systems. HLCs therefore enable studies of not only
authentic HEV replication but also pan-genotype HEV
biology. The high degree of heterogeneity among HEV geno-
types has not been fully explored to date, but HLCs may now
provide a reproducible platform to study such differences. As
such, viral or cellular determinants that may define a host
range and infections across species barriers have not been
defined yet and are one of the many poorly understood topics
in the field.

Employing precise editing technologies, such as CRISPR
(cluster regularly interspaced short palindromic repeats)/
Cas9 (CRISPR-associated protein 9), allows for rapid and
efficient genome-editing of relevant host factors in stem cells
to explore their importance in HEV replication pathways.
Using CRISPR-Cas9, we identified at least one striking differ-
ence between nonadapted and adapted HEV replication [18].
The host factor cyclophilin A, which was previously reported
to restrict HEV replication [18], only inhibited the cell
culture-adapted p6 clone but not the original Kernow-C1
isolate replication in HLCs [18]. Corroborating evidence
has shown discrepancies in drug responsiveness between
in vitro and in vivo conditions; molecules (i.e., mycophenolic
acid and rapamycin) that affected adapted HEV replication
in cell culture [105, 106] failed to show any effect in patients
[107]. If this discrepancy is due to alterations of the viral
genome or a reflection of in vivo complexity as opposed to
viral replication studies in a single cell type, it can be now
explored using HLCs. With recent efforts in identifying
novel compounds that inhibit HEV replication [75, 108–
110], validation in the HLCs system will become more
and more relevant.

Several studies suggest that host genetics determine
susceptibility to HEV infection [111–113]. The ability to
study replication of nonadapted HEV isolates in tandem with
autologous, patient-derived iPSCs enables personalized
models of HEV infection [67]. This may provide patient-
tailored platforms to test potential treatments in vitro,
especially for chronic HEV patients who have already
developed resistance against RBV. An alternative treatment
approach that we are currently exploring is based on the
use of nonpathogenic adeno-associated viruses (AAV) com-
bined with CRISPR-Cas9 to deliver short hairpin RNA
(shRNA) to downregulate HEV replication. In this scenario,
genetic vaccination would be achieved by transducing
patient-derived iPSCs prior to HLC differentiation and
transplantation into the liver of chronic HEV patients to
establish a genetically protected hepatocyte population.
Alternatively, hepatotropic AAVs will allow direct delivery
of target shRNAs in vivo. These approaches are not restricted
to HEV, as HLCs are permissive for HCV and HBV isolates
[63, 65] (Table 1). With that, HLCs provide a uniquely
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reproducible and genetically tractable cellular system in
which to perform coinfection studies as widely used hepa-
toma cell lines vary in their virus permissiveness (Table 2).

Beyond HLCs, stem cell technology may also provide a
platform to study other aspects of HEV biology. HEV mainly
infects the liver but likely additional tissues [114] as some
patients experience extrahepatic manifestations including
neurological disorders, thrombocytopenia, renal injury, and
other conditions [115]. This is further corroborated by the
observation that HEV can replicate in vitro in nonhepatic cell
types, such as lung [116], neuronal [117], and placental [118]
cell lines. Stem cells, with their intrinsic ability to give rise to
cells of various lineages, may help to define the determinants
of HEV tissue tropism [66]. In conclusion, knowledge on the
viral life cycle of HEV and virus-host interactions, i.e., on
systemic and cellular levels, remains scarce. Studies of pan-
genotype HEV biology in a physiologically relevant cell
system such as HLCs, which support authentic HEV infec-
tion and replication, shall significantly advance our under-
standing of HEV biology. This will facilitate and promote
the development of specific anti-HEV therapies.

5. Conclusions and Future Directions

HLCs derived from hiPSC or hESC provide a promising tool
to study the biology of hepatotropic viruses and to screen
novel antiviral treatments in the future. We summarized
current progress in developing HLCs that support the entire
life cycles of HBV, HCV, and HEV (Figure 1). HLCs consti-
tute a novel cell culture model that is more physiologically
relevant than immortalized hepatoma cell lines. Beyond that,
the use of HLCs may help overcome two major limitations of
PHHs: donor-to-donor variability and long-term culture to
study chronic infection. Specifically, HLCs support high-
efficiency and long-term HBV replication and, remarkably,
virus spread [19]. In terms of the nature of diverse genotypes
and high replicative mutations of RNA viruses, such as HCV
and HEV, HLCs allow pan-genotype permissiveness and
even support direct infection with patient-derived isolates
that have not been adapted in cell culture. Engrafting HLCs
into immunosuppressive liver injury mouse models, like the
uPA/SCID mice, may facilitate studies of antiviral evaluation
and virus-host interaction in vivo.

Coinfections of hepatitis viruses (e.g., HBV, HCV, and
HEV) occur in patients. However, the exact modes of coin-
fection are poorly described due to the single permissiveness
of available culture models (Table 2). HLCs therefore
constitute a universal tool, in which to study how two or
more hepatitis viruses modulate host factor(s) such as MAVS
and cyclophilin. This may provide information on how and
in which order coinfected patients could be treated.

HLCs derived from iPSCs are of less societal and ethical
concern than PHHs or fetal tissue-derived hepatocytes are.
In addition, HLCs serve as a powerful tool to assess the influ-
ence of genetic factors on virus infection, as HLCs can be
generated from iPSCs with a diverse genetic background.

Despite these advantages and optimization of available
protocols, HLC differentiation remains time-consuming
and complicated. Although HLCs are more physiologically

relevant than many hepatoma cell lines, they retain an imma-
ture phenotype and cannot fully recapitulate hepatocyte
functions. Perhaps, differentiation under 3D-culture condi-
tions may improve this and yield HLCs that resemble PHHs
more closely. Supporting this, Gieseck et al. have demon-
strated that hepatocyte-specific genes are higher expressed
in HLCs, when cultured in 3D conditions [119].

Ultimately, HLCs provide a personalized platform for
viral hepatitis studies. For patients who do not respond to
available treatments, personalized iPSC-derived HLCs are
the best model to study the host determinants and validate
second-line antivirals. Taken together, HLCs provide an
important tool for studying the life cycle of hepatitis viruses,
in spite of the distinct replicative nature of HBV, HCV, and
HEV. The development of HLCs derived from stem cells
has opened a new era and provides a physiologically rele-
vant system to advance our understanding of the viral life
cycles. This will ultimately contribute to the development
of novel therapeutic strategies towards the elimination of
viral hepatitis.
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