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Assessing power-law cross-correlations between a pair – or among a set – of processes
is of great significance in diverse fields of analyses ranging from neuroscience to financial
markets. In most cases such analyses are computationally expensive and thus carried
out offline once the entire signal is obtained. However, many applications – such as
mental state monitoring or financial forecasting – call for fast algorithms capable of
estimating scale-free coupling in real time. Detrended cross-correlation analysis (DCCA),
a generalization of the detrended fluctuation analysis (DFA) to the bivariate domain,
has been introduced as a method designed to quantify power-law cross-correlations
between a pair of non-stationary signals. Later, in analogy with the Pearson cross-
correlation coefficient, DCCA was adapted to the detrended cross-correlation coefficient
(DCCC), however as of now no online algorithms were provided for either of these
analysis techniques. Here we introduce a new formula for obtaining the scaling functions
in real time for DCCA. Moreover, the formula can be generalized via matrix notation to
obtain the scaling relationship between not only a pair of signals, but also all possible
pairs among a set of signals at the same time. This includes parallel estimation of
the DFA scaling function of each individual process as well, thus allowing also for
real-time acquisition of DCCC. The proposed algorithm matches its offline variants
in precision, while being substantially more efficient in terms of execution time. We
demonstrate that the method can be utilized for mental state monitoring on multi-
channel electroencephalographic recordings obtained in eyes-closed and eyes-open
resting conditions.

Keywords: detrended cross-correlation analysis, detrended fluctuation analysis, real-time, bivariate, fractal, long-
range coupling, fractal connectivity

INTRODUCTION

Fractal dynamics are widely present both in man-made systems such as financial markets (He and
Chen, 2011) or the flow of traffic (Zebende et al., 2011), as well as in natural phenomena including
seismic activity (Shadkhoo and Jafari, 2009) or physiological processes including spontaneous
neural fluctuations (Racz et al., 2021) or the variability of heart rate (Ivanov et al., 1996). Moreover,
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many processes express long-range correlations not only on the
univariate level of their individual dynamics, but also in their
bivariate coupling, such as the absolute values of returns of
the Dow Jones and S&P500 indices (Podobnik et al., 2007),
the fluctuations in oxygenated and deoxygenated hemoglobin
compartments of cerebral blood volume (Mukli et al., 2018),
or electrophysiological activities recorded simultaneously from
various cortical regions (Stylianou et al., 2020). Assessing
fractal coupling in these systems is often crucial for their
better understanding as it can reveal characteristics and inner
structures that otherwise would remain undetected by scale-
dependent approaches (He and Chen, 2011; Zilber et al., 2012;
Stylianou et al., 2020).

Given that assessment of long-range couplings can be of
relevance for a broad range of scientific disciplines, many
different methods and analysis techniques have been developed
recently for this purpose. The first of such methods was
introduced by Podobnik and Stanley (2008), termed detrended
cross-correlation analysis (DCCA). DCCA was directly derived
from detrended fluctuation analysis (DFA) of a single signal
(Peng et al., 1994; Kristoufek, 2014a), for estimating the
detrended covariance between two signals as the scale-invariant
measure. Analogously to DFA, in case of long-range coupling
between two signals the detrended covariance would also show
power-law scaling with a bivariate scaling exponent (Podobnik
and Stanley, 2008; Podobnik et al., 2009). Zhou (2008) shortly
generalized DCCA to the multifractal domain along the lines of
multifractal DFA (Kantelhardt et al., 2002). DCCA was extended
further into a different direction: Zebende (2011) proposed to
calculate the detrended cross-correlation coefficient (DCCC) as
a measure superior to the Pearson-correlation coefficient for
non-stationary series. Several alternative approaches have been
proposed as well, such as the detrended moving average cross-
correlation analysis (He and Chen, 2011) or the height cross-
correlation analysis (Kristoufek, 2011), while it has also been
shown that DCCC acts as a true cross-correlation coefficient,
namely it is bounded between [−1, 1] and appropriate confidence
intervals can be generated to assess its significance (Podobnik
et al., 2011). Nevertheless, straightforward implementations of
these algorithms are computationally expensive, which reduces
their applicability in areas where real-time processing is key, such
as in the case of financial markets (Demirer et al., 2020) or online
mental state monitoring (Gateau et al., 2015). Despite the need
for such tools, to the best of our knowledge no online algorithms
have been proposed yet for the real-time computation of fractal
cross-correlation coefficients.

The most computationally demanding step of obtaining long-
range correlations is the assessment of the scaling function. Here
we introduce a formula that allows for obtaining the bivariate
scaling function in real-time, which constitutes the backbone of
both univariate DFA, DCCA, and DCCC analysis. Furthermore,
by generalizing the formula using matrix notation we open the
method up for efficiently obtaining the scaling functions of
all possible pairs in a set of simultaneously recorded signals.
Our algorithm allows faster execution time with decreased
memory usage while maintaining the precision of the previously
mentioned offline solutions. We demonstrate our method’s use

in mental state monitoring via the analysis of multi-channel
electroencephalographic recordings obtained in eyes-closed and
eyes-open resting conditions.

MATERIALS AND METHODS

Here we present a generalization of the real-time algorithm
proposed by Hartmann et al. (2013) – which was introduced for
performing online DFA analysis – to the bivariate domain. We
show that our algorithm is equivalent with simple univariate DFA
analysis when the bivariate scaling function of a time series is
calculated with itself. Given that one can obtain both the uni- and
bivariate scaling functions of two processes at the same time, the
DCCC can thus also be obtained with ease.

Offline Detrended Cross-Correlation
Analysis
Let us consider two long-range cross-correlated time series x(t)
and y(t), each of length N. First, both time series are integrated
to obtain X (t) =

∑t
i = 1 x(i) and Y (t) =

∑t
i = 1 y(i). Then,

the integrated time series are divided into k = N − s + 1
overlapping windows, each of length s, starting at t = k and
ending at t = k + s− 1. The local trends X̃j and Ỹj are
estimated in all windows j by ordinary least squares estimation.
For example, local trend in the first window of X (t) has the form

X̃1(t) = m × t + b, (1)

where the coefficients can be expressed as

m =
n
∑n

i = 1 X (i) i−
∑n

i = 1 X (i)
∑n

i = 1 i

n
∑n

i = 1 i2 −
(∑n

i = 1 i
)2

b =
∑n

i = 1 X(i)−m
∑n

i i
n

(2)

according to Hartmann et al. (2013). The local trends are then
utilized in calculating the covariance of the residuals in each box
such as

f 2
DCCA

(
s, j
)
=

1
s− 1

j + s−1∑
i = j

(
X (i)− X̃j (i)

) (
Y (i)− Ỹj (i)

)
. (3)

Finally, the detrended covariance at scale s is defined (Podobnik
and Stanley, 2008) as

F2
DCCA(s) =

1
N − s + 1

N−s + 1∑
j = 1

f 2
DCCA

(
s, j
)

(4)

and its square root as

FDCCA (s) =

√√√√ 1
N − s + 1

N−s + 1∑
j = 1

f 2
DCCA

(
s, j
)
. (5)
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From Eqs. (3) and (5) one can see, that if we consider the special
case of x (t) y(t), we arrive at the formula of univariate DFA

FDFA (s) =

√√√√ 1
N − s + 1

N−s + 1∑
j = 1

f 2
DFA

(
s, j
)
, (6)

where f 2
DFA

(
s, j
)
= (s− 1)−1 ∑j + s−1

i = j
(
X (i)− X̃j (i)

)2 (Peng
et al., 1994; Podobnik et al., 2011). In case of long-range
autocorrelations FDFA (s)∝sα, while in case of long-range cross-
correlations FDCCA (s)∝sλ (Podobnik and Stanley, 2008). From
these measures, analogously to the Pearson cross-correlation
coefficient Zebende (2011) defined the DCCA cross-correlation
coefficient for non-stationary time series as

ρDCCA (s) =
F2

DCCAx,y
(s)

FDFAx(s)FDFAy(s)
, (7)

where FDFAx(s) and FDFAy(s) denote the univariate scaling
functions of x(t) and y(t), with FDCCAx,y(s) as their bivariate
scaling function. It can be shown both empirically and
theoretically that ρDCCA (s) is a dimensionless coefficient ranging
from −1 to 1, for which appropriate confidence intervals can be
constructed (Podobnik et al., 2011).

Note that the approaches described in Eqs. (1–7) utilize a
sliding window approach, while it is more common to divide
the analyzed signal into bN/sc non-overlapping windows at
each successive scale s, where b·c denotes the floor function
(Eke et al., 2002; Kantelhardt et al., 2002). Furthermore, the
window size s is not increased in a linear but rather in a
logarithmic fashion, given that the power-law scaling relationship
is assessed following log-log transformation of the scaling
function and the scale. Hence, logarithmically increasing s
yields an even sampling of the scale-free measure after the
transformation. The most commonly used values of s are powers
of 2 (i.e., dyadic), usually ranging from 23 to N/5 or N/4 (Barunik
and Kristoufek, 2010; Mukli et al., 2015).

Online Analysis
When one would like to obtain an estimate on either α, λ, or
ρDCCA (s), one has to run through the signal at each window size
at least once. Also, the statistical measure is usually computed
using a two-pass formula. However, as shown by Hartmann et al.
(2013), one can compute the statistical measure in real-time using
a one-pass approach by accumulating data in appropriate helper
variables. In what follows we show that the same approach can be
utilized in the bivariate case.

Analysis Strategy
The key point of the online algorithm is to define helper variables
that accumulate the incoming signal datapoint-by-datapoint. Let
us consider an incoming stream of two processes, x(t) and y(t)
and their respective cumulatively summed versions X(t) and
Y(t). X(t) and Y(t) are obtained in real time by simple addition

of the next incoming datapoint of x(t) and y(t). Then, define the
following set of helper variables for each value of s:

sx(s) =
t + s−1∑

i = t

X (i), sy(s) =
t + s−1∑

i = t

Y (i) (8)

sxi(s) =
t + s−1∑

i = t

iX (i), syi(s) =
t + s−1∑

i = t

iY(i)

sx2(s) =
t + s−1∑

i = t

X2 (i), sy2(s) =
t + s−1∑

i = t

Y2 (i)

sxy (s) =
t + s−1∑

i = t

X (i)Y (i) .

Notably, these helper variables are defined for each scale
(window size) s, and are used to fill the values of f 2

DCCA(s) in
a fashion which is both parallel and sequential, as illustrated in
Figure 1. Precisely, helper variables are initiated at all scales, then
once a given window at scale s is “filled,” the scaling function
value is computed and stored, and the corresponding helper
variables at scale s are re-initialized. Note that helper variables
sx2(s) and sy2(s) are only defined here explicitly for illustrative
purposes [see Eq. (12) below] but are not required for real-
time DCCA analysis.

As an example, at the beginning of the analysis helper variables
are zero at all scales and start to accumulate data points as they
arrive. Given a dyadic set of scales ranging from smin = 23,
the first window will be filled after eight datapoints. At that
timepoint, f 2

DCCA (8, 1) is computed (see below) and stored, and
sx (8), sy (8), sxi (8), syi (8), and sxy(8) are re-initialized to 0 and
start accumulating data again at t = 9. The next time when
another window is filled is at t = 16, however in this case
both windows at s = 23 and s = 24 are filled. Therefore,
both f 2

DCCA (8, 2) and f 2
DCCA (16, 1) are computed and stored, and

their corresponding helper variables re-initialized. The procedure
continues in a similar fashion until windows of all sizes are filled,
and then it starts over again. From this example it follows, that
one also has to define two index variables as well: a relative
index i for each scale s, which denotes the offset in the current
windows of all sizes [which is required for obtaining sxi(s) and
syi(s)] and a window index w that points to the actual largest
scale (i.e., if the analysis is at relative data point 512 in W,
then the algorithm computes f 2

DCCA
(
s, j
)

values up at scales
23
− 29, thus w = 7). The offset index i is reset at each scale

when the current window is filled at the given scale, while the
window index w is reset each time when the largest window
(smax) is filled. Note that in the real-time algorithm W denotes
the moving analysis window size, i.e., the resolution of the
analysis. Also note that this moving window is progressed by
steps of smax and the elongation is circular, meaning that once
the window progressed, scaling function values from the first
smax data points are dropped, and the rest is shifted backwards
(see Figure 1). Then, it also follows that initially the algorithm
also has to store the number of times the window at smax
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FIGURE 1 | Methodology of real-time parallel signal processing. The sliding window (containing multiples of each given window size) is continuously filled with values
from each time series in a manner shown in the box at the bottom. An estimate of the scaling function is first computed at tinit when the sliding window is completely
filled. Subsequently, the window slides forward by a length of smax . The shaded window scales are left unused as advised by previous studies (Peng et al., 1994).

is filled, as to return the first estimate of F2
DCCA(s) when W

datapoints are processed, and then provide the new estimate after
every smax datapoints. Finally, the algorithm is memory efficient
since it does not have to store the entire signal of length W
to compute the scaling function, only the helper variables at
every window sizes.

Online Detrending
In order to f 2

DCCA
(
s, j
)

one first has to compute the local trend in
window (s, j) and then subtract it from the given segment of data
[see Eq. (3)]. This procedure is usually carried out by least squares
estimation of the trend after the data segment is accumulated.
Nevertheless, with substituting the appropriate helper variables
from Eq. (8) to Eq. (2) one can obtain both coefficients of a linear
trend for a segment of X(t) in real time as

mx,s = −
6(−2

∑s
i = 1 iX (i) + (n + 1)

∑n
i = 1 X (i))

s
(
s2 − 1

)
= −

6(−2sxi(s) + (n + 1) sx(s))
s
(
s2 − 1

) (9)

bx,s =

∑s
i = 1 X (i)

s
−

mx,s (s + 1)

2

=
sx (s)

s
−

mx,s (s + 1)

2
,

and similarly, for Y(t).

Online Derivation of the Measures
We can also reformulate the general formula for f 2

DCCA (s) from
Eq. (3) as

f 2
DCCA (s) =

1
s

s∑
i = 1

(
X (i)− X̃ (i)

) (
Y (i)− Ỹ (i)

)
(10)

=
1
s

s∑
i = 1

(
X (i)−mx,s × i− bx,s

) (
Y (i)−my,s × i− by,s

)
.

Note, that all the terms in Eq. (10) can indeed be expressed via
helper variables defined in Eq. (8), so we arrive to the real-time
formula for f 2

DCCA (s) as

f 2
DCCA (s) =

1
s

sxy (s)−
my,s

s
sxi (s)−

by,s

s
sx (s)−

mx,s

s
syi (s)

−
bx,s

s
sy (s) +

mx,smy,ss2

3
+

mx,smy,ss
2

+
mx,smy,s

6
(11)

+
mx,sby,s (s + 1)

2
+

my,sbx,s (s + 1)

2
+ bx,sby,s,

which is one of the main contributions of this manuscript. It can
also be shown that if we take the special case of X (t) = Y (t),
Eq. (11) reduces to

f 2
DFA (s) =

1
s

sy2 (s)−
2my,s

s
syi (s)−

2by,s

s
sy (s) +

m2
y,ss

2

3

+
m2

y,ss

2
+

m2
y,s

6
+ my,sby,s (s + 1) + b2

y,s, (12)
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which is equivalent to the real-time DFA formula presented as
Eq. (15) of Hartmann et al. (2013) after taking the square root.
After f 2

DCCA
(
s, j
)

is obtained for all windows j at all scales s
one can obtain F2

DCCA(s) by averaging f 2
DCCA

(
s, j
)

at all scales
over j. Note that the algorithm does not have to explicitly store
all f 2

DCCA
(
s, j
)

for different values of j; once a window is filled
f 2
DCCA

(
s, j
)

is just added to f 2
DCCA (s), and once all windows

are filled f 2
DCCA (s) is divided by bN/sc for the corresponding

scale. This denominator term depends only on arbitrarily defined
parameters (the analysis window and set of scales) and thus can
be defined upon initialization.

Matrix Notation Formula
The above formulas were derived assuming two simultaneous
processes, however in real-world situations one often has to deal
with a larger set of signals, e.g., electroencephalography (EEG)
recorded from many cortical regions or a portfolio of various
stocks. In such a case, computing f 2

DCCA (s) sequentially in a
pairwise manner between the possible pairs of processes rapidly
becomes increasingly inefficient as the number of processes
grows. Therefore, it is desired to re-formulate Eq. (11) in
matrix notation that allows for computing not only all pairwise
interactions at the same time, but the univariate scaling functions
of each process as well.

We start with the helper variables of Eq. (8) and define nch
and ns as the number of processes (channels) and the number of
scales s, respectively. In the pairwise case helper variables could
be represented as 1 × ns arrays for x(t) and y(t). Let us consider
a multivariate process x (t) with K elements

x (t) =


x1(t)
x2(t)

...

xK(t)


and its cumulatively summed version X(t)

X (t) =


X1(t)
X2(t)

...

XK(t)


In this case we can collapse the corresponding helper variables
onto nch × ns arrays as

sx
(
k, s
)
=

t + s−1∑
i = t

Xk (i), k = 1, . . . , K

sxi
(
k, s
)
=

t + s−1∑
i = t

iXk (i), k = 1, . . . , K (13)

and the second order term to a nch × nch matrix as

sx2(s) =
t + s−1∑

i = t

X (i) X (i)T
, (14)

where X (i)T is the transpose of X (i). sx2(s) is then broadcasted
to a nch × nch × ns array. Linear trend-fitting in each window
can be performed simultaneously for all signals by representing
them as vectors:

ms = −
6(−2

∑s
i = 1 iX (i) + (n + 1)

∑n
i = 1 X (i))

s
(
s2 − 1

)
= −

6(−2sxi(
..., s) + (n + 1) sx(

..., s))
s
(
s2 − 1

)
bs =

∑s
i = 1 X (i)

s
−

ms (s + 1)

2
(15)

=

sx
(

..., s
)

s
−

ms (s + 1)

2
,

where the symbol
... denotes values from all rows (channels) at

column (scale) s. Finally, one has to rewrite Eq. (11) by using Eqs.
(13–15) to obtain the real-time DCCA formula in matrix notation
as

f 2
DCCA(s) =

1
n
[sx2(s)− [mssxi(

..., s)T
+ [mssxi(

..., s)T
]
T
]

−[bssx(
..., s)T

+ [(bssx(
..., s)T)]T]] +

(s + 1)(2s + 1)

6
msmT

s

+
s + 1

2
[msb

T
s + [msb

T
s ]

T
] + bsb

T
s , (16)

which is the other important contribution of the presented work.
Given that f 2

DCCA (s) has to be obtained for every scale s, the
values are eventually stored in an arrays of size nch × nch × ns
for each sub-window of size smax (i.e., once a window of size
smax is filled). Storing these in separate arrays is required for the
circular elongation of the analysis window of size N. Finally, one
obtains F2

DCCA
(
i, j, s

)
, an array of size nch × nch × ns (with

i, j = 1, . . . , nch and s = 1, . . . , ns) after collecting f 2
DCCA (s)

from N datapoints, sum them up and divide them with an
appropriate constant, which similarly to the bivariate case only
depends on s and N and thus can be defined at initialization.

The obtained array F2
DCCA

(
i, j, s

)
has several important

properties. First, elements in the main diagonal (i.e., i j) are
apparently values of the DFA scaling functions of each individual
process, namely F2

DCCA (i, i, s) = F2
DFA,i(s) of process i. On

the other hand, non-diagonal cells store the FDCCA values of
the corresponding processes. Second, one can simply obtain the
DFA scaling exponent α in real time, as from Eq. (16) it can
be seen that elements in the main diagonal are always positive,
therefore one can take the square root, perform the logarithmic
transformation and obtain α via least squares regression on
log(s). On the contrary, one cannot take the square root of
non-diagonal elements, as their values are not guaranteed to
be non-negative, and thus a real-time assessment of the DCCA
scaling exponent λ is not possible with this algorithm. However,
given that both F2

DCCA
(
i, j, s

)
and F2

DFA,i(s) are obtained for all
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i, j and s in real-time, one can simply transform the F2
DCCA

(
i, j, s

)
array into a ρDCCA

(
i, j, s

)
array according to Eq. (7).

In silico Experiments
Simulated Datasets
In order to evaluate the performance of our real-time algorithm
we generated time series pairs with known long-range cross-
correlations using the mixed-correlated autoregressive
fractionally integrated moving average (mc-ARFIMA)
framework of Kristoufek (2013). A single ARFIMA process
with parameter d is defined as

xt =

∞∑
n = 1

an(d)xt−n + εt, (17)

where n is the time scale, d ∈ (0; 0.5), εt are independent and
identically distributed Gaussian random variables with zero
mean and unit variance, and the weights an(d) are defined as
an
(
d
)
=

d0(n−d)
0(1−d)0(n + 1)

where 0 denotes the Gamma function
(Podobnik et al., 2008). Importantly, an ARFIMA process
expresses long-range autocorrelations with a scaling exponent
equal to α = 0.5 + d. The mc-ARFIMA framework consists
of a pair of time series xt and yt , each being a linear combination
of two independent simple ARFIMA processes so that:

xt = w1

∞∑
n = 1

an
(
d1
)

x1,t−n + ε1,t

+ w2

∞∑
n = 1

an
(
d2
)

x2,t−n + ε2,t

yt = w3

∞∑
n = 1

an
(
d3
)

y1,t−n + ε3,t (18)

+ w4

∞∑
n = 1

an
(
d4
)

y2,t−n + ε4,t,

where〈
εi,t
〉
= 0 for i = 1, 2, 3, 4〈

ε2
i,t
〉
= σ2

εi
for i = 1, 2, 3, 4〈

εi,tεj,t−n
〉
= 0 for n 6= 0 and i, j = 1, 2, 3, 4〈

εi,tεj,t
〉
= ρij for i, j = 1, 2, 3, 4 and i 6= j, (i.e., ρij captures

the covariance of the noise terms).
It can be shown that with appropriate parameter settings

xt and yt expresses true long-range cross correlations with
λ =

d2 + d3 + 1
2 (Kristoufek, 2013). Unless it is stated

otherwise, time series were simulated with parameter settings
w1 = w4 = 0.2, w2 = w3 = 1, d1 = d4 = 0.4,
d2 = d3 = 0.3, and σ2

εi
= 1 for i = 1, 2, 3, 4 and

ρ2,3 = 0.9 (with ρij = 0 for all other values of i, j) to emphasize
long-term cross persistence, following the recommendations of
Kristoufek (2013).

Execution Time
Time series pairs were simulated with varying length N ranging
from 28 to 217. To ensure statistical stability, 1,000 realizations of

mc-ARFIMA processes were generated at every length, and the
execution times were stored. For the sake of simplicity, we set the
analysis window W equal to the signal length N in the real-time
analysis. The scales (window sizes) were varied according to the
signal length. Further details of the runtime analysis are shown in
Table 1.

Precision
Precision of the online algorithm was tested via the detrended
cross-correlation coefficient DCCC at three different signal
lengths N = 28, 210, and 212. Parameters d1 and d4 were
collectively set to 0.45, while d2 and d3 (controlling λ) were
varied from 0.05 to 0.45 in 0.05 increments. For every case 100
realizations of mc-ARFIMA processes were generated. In the
online analysis W was again set equal to the signal length N and
the analysis scales were set as shown in Table 1. The error of the
online algorithm compared to the baseline offline algorithm was
captured as the mean squared error (MSE) computed over the
analysis scales, according to

MSE(N) =
1
ns

smax∑
s = smin

(
ρDCCA,offline (s)− ρDCCA,online (s)

)2
,

(19)
where ns denotes the number of scales at signal length N, and
ρDCCA,offline (s) and ρDCCA,online (s) denotes the DCCC values
at scales s obtained with the offline and online algorithms,
respectively. In the case of ρDCCA,offline (s), FDFAx(s), and FDFAy(s)
[see Eq. (7)] were obtained with offline implementation of DFA.

Pairwise Versus Matrix Implementation
In case of two time series although the matrix notation
formula provides a straightforward way to obtain the bivariate
scaling function, it has higher memory requirements. As the
number of parallel time series n becomes larger, the memory
requirement grows with n2, increasing execution time, however
the number of operations remains the same. In comparison,
if one computes the bivariate scaling function in a pairwise
fashion the memory usage remains unaltered, while the number
of operations grows with n2. Consequently, the execution time
is expected to increase with the number of processes to analyze
in a slower tendency in case of the matrix when compared
to the pairwise implementation. Therefore, we investigated the
effect of the number of processes n on the execution time at
three different signal lengths N = 28, 210, and 212. Given that
the obtained matrix of scaling functions f 2

DCCA (s) is symmetric
along the main diagonal (i.e., f 2

DCCA(s)i,j = f 2
DCCA(s)j,i), in

the pairwise implementation ρDCCA (s) of processes i and j was
computed only once. The number of processes were increased
from n = 2 to n = 20, with 100 realizations of mc-ARFIMA
processes in each case.

Effect of Additive Noise and Spike Artifacts
Even though the robustness of offline DFA and DCCA
implementations against noise components have been assessed
by previous studies (Ludescher et al., 2011; Delignieres and
Marmelat, 2014; Nagy et al., 2017), it is imperative that we
also briefly assess the performance of the proposed online
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algorithm under such conditions. Here we consider two general
scenarios: (i) the presence of additive white noise and (ii) the
presence of spike-like artifacts common in physiological and
other empirical signals. In all the following cases, mc-ARFIMA
time series pairs of length N = 212 were generated with d2
and d3 varying between 0.05 and 0.45 in 0.05 increments. For
all parameter settings n = 100 time series pairs were simulated,
and the performance of the algorithm was assessed via the MSE
similarly to Eq. (19), only in these cases the differences were
computed between ρDCCA obtained from the raw (noise-free) and
contaminated versions of the same time series pairs. The level of
additive white noise contamination was set by the signal-to-noise
ratio (SNR), with SNR defined as the ratio of the variance of the
original signal and the variance of the added noise component.
We considered three different levels of contamination with SNR
of 100, 10, and 1. In the second scenario we considered three
different cases of contamination by spike-like components: only
one of the signals contains artifacts (Type A), both signals contain
independent artifacts (Type B), and both signals contain the
same artifact components (Type C). In each case, 10 randomly
positioned, non-overlapping, Hanning-type spike components of
width 20 datapoints were added to the given time series. The
amplitude of the spikes was set to be four times the variance of
the original time series.

Application to Empirical Data
To illustrate the real-world applicability of our algorithm, we
analyzed EEG recordings obtained in eyes open (EO) and eyes
closed (EC) conditions. The matrix implementation of our online
algorithm was utilized to obtain the DCCC values between
cortical region pairs and the DFA scaling exponents of individual
cortical regions. A classifier was then trained to automatically
distinguish between EO and EC conditions based on DCCC and
α values, as to illustrate the potential future utility of real-time
DCCA analysis in automated mental state monitoring.

Dataset
As a demonstration, we analyzed electroencephalographic
recordings of young, healthy volunteers. A total of 25 participants
were recruited who underwent 6 min of continuous EEG
monitoring in resting condition with the first and second 3-
min epochs in EC and EO states, respectively. Measurements
were carried out in a dark room and participants were seated
in a comfortable armchair in front of a computer screen. During
the EO period, participants were instructed to focus their vision
on a presented fixation cross to reduce eye movements. During
both conditions subjects were asked to relax, disengage in
their minds, and refrain from movement as much as possible.
Three participants were later excluded for bad signal quality,
resulting in a final number of 22 participants (12 female, aged
23.9 ± 2.3 years, 20 right-handed). All participants provided
written informed concept prior to the measurement and the study
was approved by the Regional and Institutional Committee of
Science and Research Ethics of Semmelweis University (approval
number: 2020/6) in accordance with the Declaration of Helsinki.

Recordings were carried out using an Emotive Epoc + v1.1
wireless EEG device (Emotiv Systems Inc., San Francisco, CA,
United States) with the corresponding EmotivPRO software.
Neural activity was recorder from 14 cortical regions according
to the international 10–20 standard montage (AF3, AF4, F3, F4,
F7, F8, FC5, FC6, T7, T8, P7, P8, O1, and O2). Impedances
were kept under 20 k� and the data was digitalized at a 256 Hz
temporal resolution.

Data Analysis
Data was internally filtered by the Emotiv EPOC + device
between 0.2 and 45 Hz with a built-in 5th order digital Sync filter,
with additional digital notch filtering at 50 and 60 Hz. Although
the analysis was carried out offline, in order to mimic an online
analysis framework, we did not apply any additional artifact
removal techniques apart from visually inspecting the obtained
datasets (which resulted in the exclusion of the data from three
subjects, as mentioned previously). The analysis window W was
set to W = 512 datapoints (2 s) with scales ranging from
smin = 23 to smax = 27 (w = 5). Thus, a new estimate of
DCCC was obtained at every 2 s. Additionally, given that FDFA (s)
was also obtained, we computed the DFA scaling exponents for all
channels as well and included them as features for classification
(see section “Classification”).

Classification
The classification pipeline was implemented in Python 3.7.4
(Jupyter Notebook developing environment), using functions
of the scikit-learn package (version 0.24.2). We used a
Linear classifier with Stochastic Gradient Descent training
(SGDClassifier) with elastic net (Zou and Hastie, 2005) penalty
to facilitate sparsity of features. In the training procedure we
performed a subject based random train-test split of the data
(i.e., all samples from the same subject was assigned either to
the train or test sets, exclusively) to an approximate 25–75 ratio
(5 test and 17 train subjects). A grid search with five-fold cross-
validation was carried out using data only from the training set
to identify the best hyperparameters of the model, alpha and
the l1_ratio. Then, the final model was initialized with the best
hyperparameter settings (alpha = 0.01, l1_ratio = 0.3), trained on
the entire training set and evaluated on the previously untouched
test set. The features used for classification consisted of DCCC
coefficients of all channel pairs obtained at all five scales, as well
as channel-wise DFA scaling exponents. Model performance was
identified standard metrics such as accuracy, precision, and recall
(sensitivity) and F1-score (Fawcett, 2006).

Computational Environment
The online algorithms were developed in Matlab (The
Mathworks, Natick, MA, United States). In silico simulations,
tests and analysis of EEG data were carried out on a personal
computer with an Intel Core i7-6600U CPU 2.60 GHz
processor using Matlab. The classification framework was
developed and implemented in Python. Implementations of
the algorithm will be made available soon at the repository at
https://github.com/samuelracz/rsDCCA.
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RESULTS

Execution Time
Table 1 summarizes the results regarding runtime of the online
and offline algorithms for DCCA. Execution times were for
the real-time algorithm were approximately three orders of
magnitude smaller than those of the offline method. For both
pipelines we found execution time to be a linear function of the
window size N, although with substantially different constants
(9.79 × 10−5 vs. 5.54 × 10−7).

Precision
The precision of both the pairwise and matrix formulas
were tested against baseline values obtained with the offline
implementation. The 10-based logarithm of the MSE of DCCC
is shown on Figure 2 for three different signal lengths, where
the upper and lower panels show MSE of the pairwise the
matrix implementations, respectively. As seen, errors range below
10−22, thus it can be concluded that the online algorithms return
practically the same estimates as the offline implementation.
Notably, two tendencies are apparent; first, MSE slightly
increases with signal length and second, MSE increases as
the parameter d of either (and/or both) time series increases.
MSE of the pairwise and matrix implementations were nearly
equal to each other.

Pairwise Versus Matrix Implementation
Runtime was evaluated in case of multiple time series when
computing all pairwise estimates with the matrix formula
and with applying the pairwise formula sequentially. Figure 3
shows the analysis carried out at three different signal lengths.
As expected, execution time grew according to n2 for the
sequential pairwise pipeline, while it increased roughly linearly
with the matrix pipeline (in the investigated range). At low
channel numbers the pairwise algorithm proved more cost-
effective. Execution times were roughly the same for the two
implementations in case of 7, 8 and eight time series for N = 28,
210, and 212 respectively, while over these the matrix algorithm
performed better.

TABLE 1 | Execution times for the offline and online implementations of detrended
cross-correlation analysis (DCCA).

N Offline (s) Online (s) smin smax w

28 0.1252 0.0004 22 26 5

29 0.2277 0.0005 22 27 6

210 0.4308 0.0009 22 28 7

211 0.3974 0.0015 23 29 7

212 0.8930 0.0029 23 210 8

213 1.4896 0.0053 23 210 8

214 1.5242 0.0099 24 211 8

215 3.0784 0.0199 24 211 8

216 6.2421 0.0369 24 212 9

217 13.3261 0.0729 24 212 9

Runtimes were averaged over 1,000 runs and presented in seconds. The analysis
window size W was set equal to signal length N, smin and smax denote the minimal
and maximal scales, and w denotes the number of window sizes.

Effect of Noise
The algorithm proved robust against the presence of additive
white noise (Figure 4, upper panel), with MSE values in the range
of 10−5 and 10−3 except for the case of SNR = 1. As expected,
performance decreased with decreasing SNR. Spike artifacts had
a slightly more pronounced effect, especially with d2 and d3 close
to zero (Figure 4, lower panel). Type A spikes had a moderate
effect on ρDCCA (MSE below 0.06) when d3 < 0.2, however
MSE reduced to practically zero with increasing d3. Note that
the asymmetry is due to the fact that spikes were always added
to the first time series (with parameter d2). Spike artifacts had
the most prominent effect in case Type B (i.e., independent spike
artifacts in both signals), especially at small d2 and d3 values.
The effect diminished with increasing d2 and d3. Finally, Type
C spikes (synchronized spikes in both signals) had the less effect,
with MSE over 0.025 only when both d2 and d3 were below 0.1.

Experimental Electroencephalography
Data
Details of classifier performance are shown in Table 2. The
classifier exceeded 80% accuracy on the training set, while it
almost reached 78% on the test set. This implies that the fitted
model was biased, however it could also be characterized with a
low variance, with the test accuracy not being substantially worse
than that on the training set.

Figure 5 shows the channel layout for the EEG system (panel
A) and the grand average of DFA scaling exponents in the two
conditions (panel B). The α values appear higher in EO than
in EC condition, as well as a weak topological organization can
be observed with higher scaling exponents over frontal regions
when compared to occipital regions in both states. Figure 6 shows
the grand average of DCCC matrices obtained in the two states,
at the various scales. It can be seen that on the shorter scales
there are two clear clusters corresponding to the left and right
frontal cortex that are also strongly connected to each other,
while fronto-occipital connections are generally weaker, with
DCCC often close to zero. This topology becomes less prominent
on larger scales, where both connectivity of the frontal regions
decreases while at the same time fronto-occipital connections
become slightly stronger. A smaller occipital module can also
be seen, which shows lateralization to the right hemisphere. The
same topological organization can be found both in EC and
EO states, although at shorter scales fronto-occipital connections
appear stronger in EO when compared to EC.

DISCUSSION

In this work we introduced two real-time implementations for
obtaining the bivariate DCCA scaling function of long-term
coupled time series. The first formula is a direct generalization
of the online formula for obtaining the DFA scaling function
presented by Hartmann et al. (2013) to the bivariate domain.
More importantly, we showed that this formula can also be
expressed in matrix operations, making it feasible to carry out the
bivariate scaling function estimation for more than two processes
efficiently. Incidentally this algorithm also returns the univariate
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FIGURE 2 | Precision of the online algorithms compared to the offline implementation. The top row shows the logarithm of mean squared error when compared
between the offline and the pairwise online implementation, while the bottom row shows the same in case of the matrix notation formula. Columns show the results
obtained at different signal lengths. MSE, mean squared error; N, signal length.

FIGURE 3 | Comparison of the execution times of the pairwise and matrix implementations of the real-time algorithm. The three panels show results obtained from
different signal lengths. N, signal length.

DFA scaling functions of the individual processes, thus it can be
easily extended to return not only the scaling functions for DCCA
but also detrended cross-correlation coefficients.

Most importantly, as rightfully stressed in Hartmann et al.
(2013) the presented method is unique as it is by design
analyses an incoming stream of data datapoint-by-datapoint,
thus allowing for true real-time utility, in contrast to real-
time-like applications of offline methods that only built on
the relatively short dynamics of data compared to available
computational power (i.e., the desired estimates can be computed
with an offline algorithm well before the next unit of data
is received). Real-time analysis of data is required in many
physiological applications, such as monitoring mental workload
(Myrden and Chau, 2017; Shafiei et al., 2020), depth of anesthesia
(Ha et al., 2018; Park et al., 2020), automated tracking of

sleep stages (Michielli et al., 2019), or brain computer interface
applications (Banville and Falk, 2016). Specifically, bivariate (or
multivariate) analysis of neural recordings is the central concept
of functional connectivity (FC) studies (Bastos and Schoffelen,
2016). Although initially FC analyses were carried out primarily
in a static manner (i.e., utilizing the recorded neurophysiological
signals in their entirety to establish the existence and strength of
a functional connection between the investigated brain regions)
the notion of dynamic functional connectivity (DFC) – namely
to consider the time-varying nature of functional connections
in the brain – gained considerable attention lately (Preti et al.,
2017). Accordingly, there is a palpable need for methods that
can be efficiently used in real-time estimation of FC patterns
(Garcia-Prieto et al., 2017). Our algorithm might prove essential
in this emerging field not only for its online nature, but also its
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FIGURE 4 | Effect of additive white noise and spike artifacts. The upper row shows the mean squared error between clean and white noise-contaminated time series
at three different levels of signal-to-noise ratio. The bottom row shows the mean squared error for time series before and after addition of spike-like artifacts. Three
cases are shown; in Type A (left) only one of the time series contains artifacts, in Type B (middle) both time series contain artifacts although independent of each
other, while in Type C (right) both time series contain the same artifacts. MSE, mean squared error; SNR, signal-to-noise ratio.

ability to handle non-stationarity in data – a common feature of
EEG recordings –, given that DCCA was originally introduced
to capture long-range cross-correlations in non-stationary
signals (Podobnik and Stanley, 2008). Furthermore, the DCCA
algorithm proved moderately robust against the presence of noise
or artifacts common in neurophysiological signals, see Figure 4.
Nevertheless, applicability of our presented algorithm is not
limited to neuroscience or physiological data in general; indeed,
the most common application of DCCA and DCCC analysis is
to assess long-range coupling in financial time series (Cao et al.,
2014; Zebende and Da Silva, 2018) representing concerted actions
in the market. Financial data analysis is therefore yet another
discipline of science where real-time applications are common
and desirable (Wang et al., 2010; Monteforte and Moretti, 2013),
and where our online DCCC algorithm might prove valuable.

In this work we focused specifically on the assessment
of the scaling function f 2

DCCA (s) itself, as being the most
computationally expensive part of the analysis of long-term
correlations. Nevertheless, in most cases the goal of such analyses

TABLE 2 | Performance of the classifier.

Training set Test set

Accuracy 80.64% 77.99%

Precision 78.20% 74.28%

Recall 84.88% 85.53%

F1-score 81.41% 79.51%

is to obtain the bivariate scaling exponent λ. It has been proposed
by Podobnik and Stanley (2008) that fDCCA(s) scales as sλ,
or equivalently, f 2

DCCA
(
s, j
)

scales as s2λ (Kristoufek, 2017).
The scaling exponent is routinely estimated by ordinary linear
regression following log transformation of fDCCA(s) and s, given
that log(fDCCA (s)) ∝ λ · log(s) and thus the scaling exponent is
simply the slope of the fitted linear function. Although estimating
λ this way is intuitive and simple, it can prove difficult in practice:
given that f 2

DCCA (s) is obtained as the detrended covariance of
the corresponding processes [see Eq. (3)], this quantity can be
negative, thus preventing taking its square root [as in Eq. (5)]
or performing the log transformation. These steps can only be
ensured by modifying the DCCA formula and taking the absolute
value of detrended covariance as in Mukli et al. (2018). However,
this modification in turn would no longer allow for the data to
be processed datapoint-by-datapoint (as the absolute value of
the covariance is not equal to the covariance of absolute values),
thus preventing the real-time derivation of λ. Nevertheless, the
fact that our matrix notation formula provides the DFA scaling
functions of the individual processes in the main diagonal has two
consequences: (i) real-time tracking of univariate DFA scaling
exponents of all processes is possible in a parallel manner, as
well as (ii) one can easily convert f 2

DCCA (s) of any pair of signals
to ρDCCA (s) in real time by dividing it by the product of the
univariate scaling functions of the corresponding signals.

Here we present online formulas for DCCA analysis,
however several other techniques are available for capturing
long-range coupling, such as the detrended moving-average
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FIGURE 5 | Electrode localizations and DFA scaling exponents. Panel (A) shows the channel layout of the Emotiv Epoc + wireless EEG device and the
corresponding cortical regions. Panel (B) shows the obtained regional DFA scaling exponents in eyes-closed (blue) and eyes-open (orange) conditions. The obtained
exponents appear similar in the two states, with a weak tendency of higher values in the EO condition. DFA, detrended fluctuation analysis; EEG,
electroencephalography; EC, eyes-closed; EO, eyes-open.

FIGURE 6 | Grand-average matrices of detrended cross-correlation coefficients. The columns show the matrices for various scales, with the top and bottom rows
presenting results in eyes closed and eyes open conditions, respectively. s, scale.

cross-correlation analysis (DMCA) (Arianos and Carbone, 2009;
He and Chen, 2011) and the height cross-correlation analysis
(HXA) (Kristoufek, 2011), or frequency domain methods
(Kristoufek, 2014b). In a simulation study it has been found that
among multiple estimators, the DCCA method has the most bias,
which becomes even more substantial with larger signal lengths
(Kristoufek, 2017). Note that for shorter signal lengths, which
are the focus of most real-time applications in general, DCCA
performed comparably if not better than the DMCA and HXA
regarding bias (Kristoufek, 2017). Given that DCCA is the direct
generalization of the univariate DFA to the bivariate domain
(Podobnik and Stanley, 2008), the online (pairwise) formula was
similarly developed from the online implementation of DFA
by Hartmann et al. (2013). Developments of plausible online
implementations for DMCA and HXA might be also of interest
for future research given the aforementioned considerations,
however this is beyond the scope of the current study.

In silico Evaluation
As expected, the online algorithms substantially overperformed
the offline implementation of DCCA with execution times being
approximately three orders of magnitude smaller than in the
offline case. Importantly, this did not come at the expense of
losing precision, MSE of the online implementations were below
the range of 10−20 when compared with the offline method.

When evaluating precision, we observed that MSE depended
slightly on the signal length. This is most likely due to the
different window sizes used during the analyses (see Table 1),
as with longer time series lengths we obtained ρDCCA (s) for
larger scales as well (with smax = 28 and 210). In line with
the increase in bias of DCCA at larger time series lengths
observed by Kristoufek (2017), we found that the squared error
at larger scales were slightly higher when compared to those
at smaller scales, and since MSE was computed as the average
taken over all scales, this might explain the slight increase in
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MSE with growing signal length. We also saw an increase in
MSE with increasing d2 and/or d3 parameters of the generating
mc-ARFIMA models. This phenomenon might be related to the
framework used for simulating time series. Accordingly, although
the mc-ARFIMA method constitutes a sophisticated and versatile
way of generating long-range cross correlated time series in
theory (Kristoufek, 2013), its implementation is subject to finite
size effects and numerical instabilities. This becomes evident
when considering Eqs. (17) and (18), as the sum runs from
n = 1 to ∞, as well as precision of weights an(d) deteriorate
with the increase of n due to the Gamma function. It appears
that the mc-ARFIMA framework introduces numerical effects
that affect the offline and online formulas in a different manner,
and the complete resolve of this issue requires further research.
Nevertheless, the additional bias observed in this regard was
practically negligible and thus it does not devaluate the online
implementations of DCCA and DCCC.

Comparing the execution times at varying number of parallel
processes produced unsurprising results: in case of a small
number of time series pairs a sequential execution of pairwise
computations was more efficient than using the matrix formula,
due to the larger physical memory requirements of the latter.
On the other hand, increasing the number of time series
involved affected the runtime only in a linear, while in a
quadratic manner for the matrix and pairwise implementations,
respectively. Although in our cases the turning points (when the
matrix implementation becomes more favorable) were identified
approximately at eight parallel time series, these results cannot be
generalized to all processes. We only investigated signal lengths in
the range 28–212 with pre-specified scale settings. Nevertheless,
the analysis window and scales of interest should be set in line
with the actual/desired application and characteristics of the
given signals at hand. Therefore, we suggest that one should
first run both algorithms with the appropriate settings on a
representative test (toy) dataset and then decide on the two
implementations (matrix or sequential pairwise) in light of the
obtained results.

The online algorithm also proved to be robust against the
presence of additive white noise in case of reasonable SNRs.
Apparently, the effect of noise was stronger when parameters d2
and d3 were set close to zero. Notably, with d 0 an ARFIMA
process produces time series with α = 0.5 + d = 0.5, which
is equivalent to white noise (Eke et al., 2002). Therefore, this
could explain why in such cases even a lesser amount of noise
could disturb the weak long-term correlated structure to a greater
extent. Nevertheless, the resulting error is still beyond the error
boundaries of the DCCA method itself at acceptable levels of SNR
(Kristoufek, 2014a). Spike-like artifacts had a more severe effect
on ρDCCA estimates, even though the resulting errors remained
reasonably small when d2 and d3 were not too close to zero.
This pattern might be explained along similar lines as in case of
white noise. The performance only dropped more prominently,
when both signals were contaminated by independent spike-like
artifacts, which is an apparent shortcoming of the method,
even though such a scenario renders online data analysis
difficult in general. Surprisingly, the algorithm performed the
best in the presence of synchronous spikes, which are the

most common in case of neurophysiological signals (such as
spikes introduced to EEG due to eye blinks or the electric
activity of the heart). Nevertheless, these results highlight the
importance of appropriate pre-processing when one analyzes
empirical data, regardless of its origin. Even though this is an
immensely difficult task in case of online data analysis, given the
importance of the issue new methods are developed continuously
(Venkata Phanikrishna et al., 2021).

Experimental Data
For our demonstration we deliberately choose a simple
experimental paradigm as to evaluate plausible future utility of
real-time DCCC analysis in mental state monitoring. In our
analysis we only used the previously described DFA/DCCC
features and did not apply any explicit feature selection
techniques except for opting with the elastic net penalty, which
facilitates sparsity of the feature space (Zou and Hastie, 2005).
Our classifier reached a reasonable performance, which most
likely could be further improved by the inclusion of traditional
features such as band-limited spectral power (Banville et al.,
2017). Furthermore, it can be expected that better classification
performance could be achieved by an EEG system with better
spatial and temporal resolution. Since we used online data for
demonstrative purposes, in this analysis we did not apply any
elaborate pre-processing of EEG except for band-pass filtering
and visual inspection. Therefore, it is likely that some artifactual
components remained in the analyzed data, such as eye blinks
in the EO condition. Based on our simulation results it can
be assumed, however, that such artifacts likely had minimal
effect on the performance, also considering that most time
series had a DFA scaling exponent higher than 0.5 (mostly in
the range of 1 and 1.3). Nevertheless, with more sophisticated
data cleansing methods one can expect a better classification
performance (Venkata Phanikrishna et al., 2021). We also carried
out a post-hoc cross validation where the training and testing
procedure was carried out with 100 different random train-test
splits (subject-based) and found that the average accuracy was
found as 69.72 ± 5.08%, which was considerably lower than
the initial 77.99%. A one-sample t-test could not reject the null
hypothesis that the population of accuracies obtained from the
100 cross-validation runs came from a distribution with mean
77.99% (p = 0.0508). Nevertheless, this drop could be attributed
to the fact that hyperparameters were not adjusted at every train-
test split via grid search, but the originally identified settings were
used for each initialization.

Our results indicate that long-range connectivity is different
in EC versus EO conditions, and this difference mainly affects
connections linking the occipital and frontal cortices (see
Figure 4). This is not necessarily surprising, as with EO
condition one would expect processing of visual input, which
is in part involves occipito-frontal projections. These results
are also partly in line with those indicating that long-term
dynamics of functional brain connectivity might change when
transitioning from an eyes-closed to eyes-open state (Racz
et al., 2018b; Stylianou et al., 2021). The current results serve
as another indicator that long-range and fractal aspects of
functional connectivity carry physiological relevance regarding
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the organization of the brain. It has been shown recently that
functional brain connectivity shows long-range correlations even
when investigated at the global level (Racz et al., 2018a), nodal
level (Racz et al., 2019) or in case of individual connections
(Stylianou et al., 2020), and that these properties might
change due to cognitive stimulation (Stylianou et al., 2021) or
pathological conditions such as schizophrenia (Racz et al., 2020).
In that regard, our DCCC algorithm could provide further means
for dynamic fractal connectivity analysis and thus enhance the
currently evolving field of fractal connectivity studies.

Although FC approaches are quite widely used for assessing
various cognitive processes and mental states, connectivity-
related features are not commonly used in most brain computer
interface (BCI) applications (Banville and Falk, 2016), most likely
due to their high computational cost. Furthermore, many studies
utilizing FC features mostly resort to simple linear covariance
or cross-correlation (Rutkowski et al., 2011), which only provide
FC estimates on a pre-defined scale and are susceptible to
local non-stationarities that are common in EEG data. Real-
time acquisition of DCCC resolves both issues by estimating
covariance on multiple time scales, as well as dealing with
local non-stationarities by local online detrending. Therefore, we
believe our online DCCC algorithm might become a valuable
asset for future real-time applications based on EEG and other
neurophysiological data.

Limitations
Finally, we have to address the limitations of the current method.
The most obvious shortcoming of the presented algorithms is
their inability to provide a real-time estimate on the cross-
spectral exponent λ, as mentioned previously. Unfortunately, this
is an inherent limitation of the method that cannot be resolved
under the currently presented framework and requires further
development. Another drawback of the proposed algorithm is
that although computation is carried out in a datapoint-by-
datapoint fashion, estimates on ρDCCA (s) are only provided after
every smax datapoints, which limits the field of applicability
of the current algorithm. Although the frequency of receiving
new estimates can be increased by reducing smax, this comes
at a price of also reducing the scaling range/analysis window.
A straightforward way to resolve this issue would be to modify
the algorithm from the non-overlapping window scheme to that
shown in Eq. (4), however this would come at the price of
an increase in memory usage by a factor of smax. Additionally,
in case of scale-free analysis of empirical signals it is often of
concern if the obtained measures indeed reflect an underlying
characteristic of the investigated system, or just merely reflect
numerical/background noise (Mukli et al., 2015). In order to
resolve this issue, surrogate data testing is often performed
to complement such analyses (Ivanov et al., 1999; Kantelhardt
et al., 2002; Racz et al., 2020; Stylianou et al., 2021), however
generating surrogates requires the signals in their entirety and
thus not a valid solution in case of online analysis. In case of
DCCC, one can also adopt the framework proposed by Podobnik
et al. (2011) to construct confidence intervals and thus gain
insight on the significance of the obtained coefficients. However,
given that our main goal here was to provide online formulas

for obtaining the DCCCs themselves, we did not include this
step and thus it requires future work. Nevertheless, in case of
real-world applications post-hoc offline surrogate testing of the
obtained data might be of desire in order to avoid arriving at
false conclusions.

CONCLUSION

Here we introduced two real-time formulas for obtaining
the DCCA scaling function in real-time. Our formulas vastly
overperformed the offline implementation of DCCA in execution
time, while maintaining the same precision. Furthermore, we
derived a formula for the DCCA scaling function that is
expressed in matrix operations, thus allowing for efficient
simultaneous assessment of DCCC from multiple signal pairs.
We demonstrated on experimental EEG data that real-time
DCCC analysis can be utilized to track mental state of the
subjects. Our real-time algorithm may serve as a valuable tool
for online neurophysiological data analysis – such as in case
of BCI studies –, however its application is not restricted for
physiological data but other disciplines as well, where monitoring
the dynamics of long-range interactions might be of interest (e.g.,
financial data analysis).
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