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Recent studies have shown that spatial encoding in the hippocampus is not a simple function of individual
place cell activities, but is rather sculpted by the collective activity of neuronal populations. However, the
hippocampus is an anatomically and functionally heterogeneous structure, and it is not known how the fea-
tures of this population code vary across the different hippocampal subfields. By performing recordings of
large neuronal populations in dorsal and ventral CA1 as mice navigated a virtual environment, we showed
how the functional architecture of the hippocampus underpins a divergent representation of space along its
\Iongitudinal axis, with ventral CA1 generating coarser and less precise spatial maps than dorsal CA1. /
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Molecular, anatomic, and behavioral studies show that the hippocampus is structurally and functionally hetero-
geneous, with dorsal hippocampus implicated in mnemonic processes and spatial navigation and ventral hip-
pocampus involved in affective processes. By performing electrophysiological recordings of large neuronal
populations in dorsal and ventral CA1 in head-fixed mice navigating a virtual environment, we found that this
diversity resulted in different strategies for population coding of space. Populations of neurons in dorsal CA1
showed more complex patterns of activity, which resulted in a higher dimensionality of neural representations
that translated to more information being encoded, as compared ensembles in vCA1. Furthermore, a pairwise
maximum entropy model was better at predicting the structure of these global patterns of activity in ventral
CA1 as compared with dorsal CA1. Taken together, the different coding strategies we uncovered likely emerge
from anatomic and physiological differences along the longitudinal axis of hippocampus and that may, in turn,

underpin the divergent ethological roles of dorsal and ventral CA1.
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Introduction

The hippocampus is a functionally diverse brain region,
linked to an array of cognitive and emotional behaviors
(Klaver and Bucy, 1937; Scoville and Milner, 1957). In ro-
dents for example, this diversity is particularly pro-
nounced along the dorsal-ventral axis of CA1, with dorsal
CA1 implicated in episodic memory and spatial navigation
in contrast to ventral CA1, which has been linked to anxi-
ety and social cognition (Henke, 1990; Moser et al., 1995;
Moser and Moser, 1998; Kjelstrup et al., 2002; Fanselow
and Dong, 2010; Okuyama et al., 2016).

Functional diversity arises from differences at multiple
scales in CA1, including differences in gene expression
(Thompson et al., 2008; Cembrowski et al., 2016) to varia-
tions in intrinsic neuronal biophysical and morphologic
properties (Dougherty et al., 2012, 2013; Malik et al.,
2016) to diverse afferent and efferent anatomic connec-
tions (Swanson and Cowan, 1977; Cenquizca and
Swanson, 2007; Meira et al., 2018; Padmanabhan et al.,
2019). While these intrinsic and circuit-level differences
contribute to the array of diverse behaviors linked to dor-
sal and ventral hippocampus, they also underlie differen-
ces of a single representation along the dorsal-ventral
axis of the hippocampus. For example, place cells, neu-
rons that preferentially fire when an animal visits a partic-
ular region of its environment (O’Keefe and Dostrovsky,
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1971), are present throughout the dorsal-ventral axis of
CA1. The place fields became progressive larger along
this axis, with neurons in ventral CA1 providing less in-
formation about the animal’s position than those in dor-
sal CA1 (Jung et al., 1994; Ciocchi et al., 2015). As place
cells are considered a critical component of the cognitive
map, this suggests that the internal representation of
space coarsens in ventral CA1 relative to dorsal CA1.
However, multiple studies in dorsal hippocampus have
demonstrated that the fidelity of spatial coding is not a
simple function of place field size.

First, not all CA1 neurons are place cells. Numerous
spatial navigation studies have demonstrated that the
pool of place cells varies between environments, but that
in any given environment, a subset of dorsal CA1 neurons
do not show a place field (Wilson and McNaughton, 1993;
Rich et al., 2014). Moreover, while most studies of place
cells define a threshold of spatial information or sparsity
(Skaggs et al., 1993), there is not a sharp boundary be-
tween place and non-place cells; dorsal CA1 neurons
have variable amounts of spatial information and an ani-
mal’s position in space is likely encoded in combination
with other variables, such as time, and reward (Gauthier
and Tank, 2018; Haimerl et al., 2019; Stefanini et al.,
2020). Activity of place cells is determined not only by
the position of the animal, but also by correlations with
other neurons, including non-place cells; these contribu-
tions from the broader population were able to partially ex-
plain the trial-to-trial variability in place cell responses
(Meshulam et al., 2017). Neurons without clear place fields
can thus be highly valuable for spatial coding, and place
cells with high spatial information are not necessarily the
only useful neurons in the population for decoding position
(Stefanini et al., 2020).

Despite accumulating evidence that position informa-
tion in the hippocampus is collectively encoded by groups
of neurons, comparatively little is known about how this
population activity varies across the dorsal-ventral axis of
CA1 (Keinath et al., 2014). Does activity across the overall
population compensate for the larger single-cell place
fields in a way that maintains the precision of spatial rep-
resentations across dorsal and ventral CA1? Alternatively,
does the resolution of spatial coding in populations of
neurons become coarser in ventral CA1, as it does for the
place fields of individual neurons, suggesting divergent
computational strategies for encoding place?
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By recording from large neuronal populations from both
regions as animals navigated a virtual track, we found a
divergence in the population representation of space be-
tween dorsal and ventral CA1. Both at the single-neuron
level and the population level, activity in dorsal CA1 was
more informative about the animal’s position than that in
ventral CA1. This increased spatial information was
underpinned by more complex patterns of population ac-
tivity in dorsal CA1 that increased the dimensionality of
the neural code. To understand how these complex activ-
ity patterns may arise, we fit maximum entropy models to
the data, which revealed that population-wide patterns
could be predicted better using pairwise interactions be-
tween neurons in ventral CA1 as compared with dorsal
CA1. Taken together, these results suggest that differen-
ces in the functional interactions between neurons across
the longitudinal hippocampal axis result in differential
coding strategies and divergent representations of space
in dorsal and ventral CA1.

Materials and Methods

Mice

Four male C57BL6/J mice (RRID:IMSR_JAX:000664,
The Jackson Laboratory) were included in this study. All
mice were between 9 and 10 weeks of age at the time of
recording. Mice were group-housed until headframe im-
plantation, after which they were solo-housed. Mice were
housed in transparent cages on a 12/12 h light/dark cycle.
All recordings were performed in the light phase. Mice
were healthy and were not used for any previous proce-
dures. All procedures conformed to regulatory standards
and were approved in advance by the Institutional Animal
Care and Use Committee (IACUC) at the institution where
these experiments were performed.

Virtual reality setup

A virtual 1D 1.9-m track was created using the Virtual
Reality MATLAB Engine (VirMEn) toolbox based on a pre-
viously published design (Meshulam et al., 2017; Gauthier
and Tank, 2018). During the recording sessions, the posi-
tion of the running wheel was transmitted to the computer
by a two-bit rotational encoder attached to the axle. This
information was used to update the position of the animal
on the virtual track, which was also saved. The image was
projected onto a curved board and occupied ~180° of the
visual field. When mice reached the end of the track, their
virtual position was reset to the start of the track. The re-
cording rig was enclosed in a box to minimize ambient
light, odor, sound, and electromagnetic interference.

Head fixing

Animals were anesthetized using a 1-2% isoflurane
mixture and placed in a stereotactic surgical rig. The
scalp was resected and the craniotomy sites for dorsal
CA1 (coordinates relative to bregma: 2.5 mm caudal, 1.5
mm right) and ventral CA1 (coordinates relative to bregma:
3.15 mm caudal, 3.15 mm right). Subsequently, a metal
ground pin and custom 3D-printed headframe was affixed to
the skull using dental cement (Ortho-Jet Powder and Jet
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Liquid, Lang Dental Mfg. Co) and veterinary adhesive
(Vetbond, The 3M Company). Postoperative analgesia was
provided for 72 h with 0.1 mg/kg subcutaneous buprenor-
phine in accordance with approved protocols.

Run training

During the 7-d period immediately following head frame
implantation, animals were habituated to the virtual reality
environment (Warner and Padmanabhan, 2020). Mice
were head-fixed in the virtual environment and allowed to
run for 1 h each day. Run behavior was recorded during
this training period, but electrophysiological recordings
were not performed.

Electrophysiological recording

Animals were anesthetized using a 1-2% isoflurane
mixture and a craniotomy was performed over the right
dorsal and ventral CA1 hippocampal subfields. The crani-
otomy site was covered with a fast-curing silicone sealant
(Kwik-Cast, World Precision Instruments) and mice were al-
lowed to recover from anesthesia for 12-18 h in their home
cages. The next day, mice were transferred to the running
wheel and an open source microfabricated silicon electrode
array (Du et al., 2011; Yang et al., 2020) was targeted to either
dCA1 or vCA1. The 128DN probe configuration was used,
which comprised 128 recording channels spread across
four shanks spaced 150 um apart. Extracellular voltage
recordings were collected at 30 kHz in the 0.1- to 3500-
Hz frequency band. Recordings were performed for at
least 1 h at each recording site (for some animals, re-
cordings were done at multiple regions of interest within
dCA1 or vCA1). Afterwards, the electrode was removed
and targeted to the other hippocampal subfield and the
process was repeated (in half of the animals, dCA1 re-
cordings were performed first, while in the other half,
vCA1 recordings were performed first). The running be-
havior of the mouse and the position in the virtual track
was also recorded simultaneously.

Recording sites

Stereotactic coordinates for the recording sites were
based on the Paxinos and Franklin atlas (Paxinos and
Franklin, 2013): dorsal CA1 coordinates: 2.5 mm caudal,
1.5 mm right, 1 mm ventral; ventral CA1 coordinates: 3.15
mm caudal, 3.15 mm right, 4.25 mm ventral. While there
is general consensus on the location of dorsal CA1, varia-
tion exists in the literature with respect to the boundaries
of ventral CA1. This is often because different labs use dif-
ferent metrics (molecular, cellular, spatial, etc.) to delin-
eate this region (Jung et al., 1994; Kjelstrup et al., 2008;
Royer et al., 2010; Keinath et al., 2014; Ciocchi et al.,
2015; Okuyama et al., 2016; Jimenez et al., 2018; Schmid
et al., 2019). We targeted our ventral CA1 recording sites
closer to the ventral boundary of CA1 associated with the
stereotaxic coordinates above.

Spike sorting
All computational analyses were performed in MATLAB
R2019A (RRID: SCR_001622) on computers running
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Windows 10. The open source automated spike sorting
toolbox Kilosort (RRID: SCR_016422; Pachitariu et al.,
2016) was used to preprocess the electrophysiology re-
cordings and identify the spike times of single units. The
raw electrophysiology signal was high passed at 500 Hz,
the median signal from all channels was subtracted from
each channel, and correlated noise across channels was
removed. subsequently, a set of template waveforms and
spike times was generated and updated in an iterative
manner to reconstruct the original data set. The wave-
forms and spike times at the end of this optimization pro-
cess constituted putative single units. These were than
manually curated using Phy (Rossant et al., 2016). Units
were preserved, eliminated, or merged on the basis of
their mean waveforms across multiple channels, ampli-
tudes and inter-spike interval distributions. Units without
clear refractory periods were excluded.

Run behavior analysis

The two-bit wheel position information, recorded at 30 kHz,
was converted to a velocity using a window of size 150 ms
with 10-ms time steps. Intervals during which the running ve-
locity was >5cm/s were used for subsequent calculations
(firing rates, correlations, entropy, spatial information, maxi-
mum entropy modeling, etc.). Only recording sessions during
which the animal completed at least five full runs along the
virtual track were included in the analyses.

Single-cell spatial information

The vector of each animal’s position on the track was
sorted into 111 bins, each of size ~1.7 cm. For each unit,
the mean firing rate in each bin was calculated and occu-
pancy normalized. The resulting raw firing rate map was
smoothed using a five-bin-width square wave and then
normalized such that the maximum and minimum for
each unit was 1 and 0, respectively. The spatial informa-
tion of each unit was then calculated with the following
formula (Skaggs et al., 1993):

E A
Isingle—unit = *pxl\x|092 )\7 .
X X

In this equation, pyx denotes the probability that the ani-
mal is occupying spatial bin x, A, denotes the firing rate in
bin x, and A denotes the mean firing rate across all bins. A
complementary metric, sparsity, indicates the proportion
of spatial bins over which a neuron is active (Skaggs et al.,
1996):

Place field size and position

The center of a neuron’s place field was defined to the
spatial bin in which the neuron’s firing rate was highest.
The width of a place field was defined as the number of
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spatial bins around the place field center for which the
neuron’s firing rate was at least 1.5 SDs above the mean.
To ensure that the findings on place field size were not
simply because of our choice of parameters, we per-
formed three additional sets of analyses while varying
these parameters.

First, we calculated place field size with only the subset
of neurons with spatial information higher than expected
by chance. We generated null distributions for spatial in-
formation using either a circular permutation method, in
which the entire spike train of a given neuron was shifted
by a random interval, or a random temporal shuffling of
spikes. 1000 shuffled spike trains were generated for
each neuron. Neurons that exceeded the 85th or the
95th percentiles were preserved for place field size cal-
culations (Langston et al.,, 2010; Mao et al., 2017).
Second, rather than smoothing the firing rate maps with
a square wave, we recalculated place field sizes using
Gaussian kernels of three different SDs: 0.1, 1, and 10
bins (Kjelstrup et al., 2008). Third, we determined the
position of the place field center using the circular cen-
ter of mass (Mehta et al., 1997; Meshulam et al., 2017),
rather than the peak firing rate.

Firing rate correlations and network representations

A continuous firing rate trace of each neuron was gener-
ated by calculating the number of spikes in each 50-ms
interval of recording. The correlation coefficient between
the firing rate traces of every pair of units in each animal
was calculated. To convert the resulting correlation matri-
ces to a graph, they were thresholded, such that the cor-
relations that exceeded the threshold were preserved as
an edge between the nodes representing that pair of neu-
rons. The threshold was varied from 0 to 0.385 to cover
the range of positive correlation strengths observed. For
the network visualizations and pattern illustrations, the
physical location of the units was approximated by the lo-
cation of the electrode contact on which the largest mean
spike waveform of each unit was detected.

Principal components analysis (PCA)

The continuous firing rate traces used to calculate the
correlations were also used to construct a covariance ma-
trix. The eigenvectors of this matrix denoted the principal
components, the axes along which the firing rates of the neu-
ronal population showed the largest variance, and the eigen-
values denoted the variance along each principal component.
For the scatter plots of low-dimensional population activity in
Figure 5A,B, the firing rate traces were smoothed using a slid-
ing Gaussian function with a SD of 1 s.

Because the number of neurons, and thus, the number
of principal components, varied between recording ses-
sions, the explained variance plots could not be directly
compared across recording sessions. Instead, the ex-
plained variance was plotted against the fraction of the
total principal components in each recording. The area
under this curve was calculated directly. To approximate
the fraction of principal components that explained 80%
of the variance, a nonlinear least-squares curve was
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generated for each plot using the trust-region-reflective
algorithm (Coleman and Li, 1996).

Population entropy and information

The population spike rasters were placed into 10-ms
bins and binarized such that the bin would be assigned a
value of 0 if no spikes occurred in that 10-ms interval and
a value of 1 if one or more spikes occurred. For these
analyses, only recording sessions with >18 units were in-
cluded. The combination of 0 and 1 from multiple units in
the population in a given time bin constituted a pattern
(de Ruyter van Steveninck et al., 1997; Schneidman et al.,
2006; Chockanathan et al., 2020). The number of units
used in this subsample was varied from 4 units (in which
case there were 2* = 16 possible binary patterns) to 24
units (224 = 16777216 possible patterns). The total en-
tropy of the population was calculated from the equation,
in which px denotes the probability of the k™ pattern:

Hiotar = g —Pxl0g,Pk-

k

The total entropy describes the overall diversity of ob-
served population patterns. However, the distribution of
population patterns varied as a function of the animal’s
position on the track. These conditional pattern probabil-
ities (px|x) were used to calculate the entropy as a func-
tion of animal’s position (the spatial bins used here were
the same as those used to calculate the single-cell spatial
information):

He= ) (-puxiog, (pilx)

The average of all of these conditional entropies,
weighted by the occupancy probability for each spatial
bin, constitutes the noise entropy:

Hnoise = E prx-

The spatial information of the population was calculated
by the difference between the total entropy and the noise
entropy:

Ipopulation =H total — H noise -

Maximum entropy modeling

Maximum entropy models were fit to the data using the
maxent_toolbox (Maoz and Schneidman, 2017). First,
spike trains were binarized using 10-ms non-overlapping
bins, as in the entropy analysis. Second, subpopulations
of n=4-18 units were randomly generated. Only record-
ing sessions with >18 units were included in these analy-
ses. Third, for every neuron, a local field term h; was
calculated. This term denotes the activity of that unit.
Fourth, for every pair of units in the subsample, a pairwise
interaction term J; was calculated. This term describes
the level of functional coupling between pairs of units.
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Subsequently, the probabilities of population patterns
were predicted using only these h; and J; terms:

1 E h,-a','Jr% E Jjoio;
e ! .
V4

Ppredicted(0'1,0'2...0'n) = 7

In this equation, o indicates the binary state of the i
unit and Z indicates the partition function used to normal-
ize the probability distribution. Thus, the model attempts
to predict the activity patterns of many-neuron popula-
tions without taking into account any higher-order interac-
tions beyond pairwise couplings. The predicted pattern
probabilities were then compared with the corresponding
empirical probabilities and the prediction error was quan-
tified using the Kullback-Liebler divergence (KLD).

Quantification and statistical analysis

For all hypothesis testing, two-sample Wilcoxon rank
sum tests were performed, as the data were not assumed
to be normally distributed. The « value was set at 0.05,
and Bonferroni corrections were applied when multiple
comparisons were performed. Details of statistical param-
eters (sample sizes used for statistical comparison, mean-
ing of error bars, p values) are reported in the figure
legends or in the relevant section of the main text.

Results

Head-fixed dorsal and ventral CA1 population
recordings in virtual reality

To compare the features of neuronal population activity
across the dorsal-ventral axis of CA1 hippocampus, we
performed electrophysiological extracellular recordings in
awake head-fixed mice on a running wheel in a virtual en-
vironment. Four male C57BL6/J mice of 9-10 weeks of
age were head-fixed and trained to run through a virtual
1D virtual track (Fig. 1A-C; for details, see Materials and
Methods; Gauthier and Tank, 2018). All locomotion was
self-motivated; the wheel was non-motorized and no re-
ward was provided. Over the 7-d period, mice learned to
complete multiple runs on the track (mean + standard de-
viation: 37 =22 laps per recording session; Fig. 1D,E).
The mice were then anesthetized and a craniotomy was
performed over dorsal and ventral CA1. After a 12- to 18-
h recovery period, the animals were again placed on the
run-wheel. A high-density 128-channel silicon electrode
array was lowered to either dorsal or ventral CA1 (Fig. 1F,
G). There were no significant behavioral differences in
running, including number of laps run, fraction of time
spent running, and mean running velocity, between dorsal
CA1 and ventral CA1 recording sessions (Extended Data
Fig. 1-1).

For both dorsal and ventral CA1, individual action po-
tentials, or spikes, were observed in the broadband volt-
age traces (Fig. 2A,/). Template matching with Kilosort
(Pachitariu et al., 2016) was used to cluster the spike
waveforms and identify putative units across multiple
neighboring channels. The resulting units were then cura-
ted using Phy (Rossant et al., 2016), only those with
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Figure 1. Head-fixed recordings of neuronal populations in virtual reality. A, Timeline of experimental procedures. B, Schematic of
recording setup with virtual environment. C, top, Sample frame of virtual environment, shown from the perspective of the mouse.
Bottom, Schematic of 1.9-m virtual track. D, Sample of animal trajectory through virtual track. When mice reached end of track (red
circles), they were transported to the start of the track (blue circles). E, Superimposed trajectories of all laps completed in one repre-
sentative recording session. F, Histologic section showing the placement of recording electrodes in dorsal CA1. Red asterisks de-
note the tips of the electrode tracks. Each panel shows a section from a different animal. Scale bars: 400 um. G, Histologic section
showing the placement of recording electrodes in ventral CA1. Red asterisks denote the tips of the electrode tracks. Each panel
shows a section from a different animal. Scale bars: 400 pm.
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Figure 2. Spike sorting to isolate single-unit activity. A, I, top, Sample trace of wide-band (0.1-3500 Hz) electrophysiological record-
ing in dorsal CA1 (A) and ventral CA1 (I). Spike waveforms from different units are highlighted in different colors. Bottom, Raster plot
denoting spike times for each unit. B, J, Mean waveform of each unit in A, I across all 32 channels on a single shank of the elec-
trode array. C, F, K, N, Autocorrelograms for units in A, I, showing clear refractory periods. D, E, L, M, Cross-correlograms for units
in A, I, showing no refractory period. G, O, Mean waveform of all units from a single dorsal CA1 (G) or ventral CA1 (O) recording ses-
sion with each color denoting a single unit. For each unit, waveforms are shown on the channel with the largest amplitude spike as
well as three neighboring channels. H, P, top, Sample of dorsal CA1 (H) and ventral CA1 (P) population activity. The color of the ras-
ter plot row corresponds to the unit waveforms in G, O. Middle, Simultaneous running velocity of animal. Bottom, Simultaneous po-

sition of animal on virtual track.

asymmetric, spike-like waveforms (Fig. 2B,J), as well as a
clear refractory period in their autocorrelograms (Fig. 2C,
F.K,N) were included in analysis. Units were merged
based on the similarity of their waveforms and the fea-
tures of their cross-correlograms (Fig. 2D,E,L,M) were
merged. This process yielded between 42 and 80 units
per recording in dorsal CA1 and between 43 and 62
units per recording in ventral CA1 (Fig. 2G,0). There
was no significant difference in the number of units re-
corded during the dorsal and ventral CA1 recording
sessions (Extended Data Fig. 2-1). The resulting neuro-
nal populations revealed complex patterns of activity in
both regions as the animals navigated the virtual space
(Fig. 2H,P).
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Coarsening of single-neuron spatial representations
along dorsal-ventral axis of CA1

Previous studies using rodents in an open field have
shown that the neuronal representation of space varies
along the dorsal-ventral axis of the hippocampus, with
ventral CA1 neurons showing more diffuse place fields
and lower spatial information than dorsal CA1 neurons
(Jung et al., 1994; Kjelstrup et al., 2008; Keinath et al.,
2014; Ciocchi et al., 2015). To test whether this held true
in a virtual environment with head-fixed animals, we first
visualized the activity of each neuron as a function of the
animal’s position along the virtual track (Fig. 3A,D). In
both dorsal and ventral CA1 neurons, we observed place
fields that tiled the length of the track (Fig. 3B,E).
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Figure 3. Ventral CA1 neurons have lower spatial information than dorsal CA1 neurons. A, D, Map of single-neuron activity as
a function of animal position in virtual track for a representative recording session in dorsal CA1 (A) and ventral CA1 (D).
Each row denotes a single unit. B, E, Location in virtual track of peak firing rate for each unit in A, D. C, F, Spatial information
of each unit in A, D. G, Dorsal CA1 neurons had larger spatial information than ventral CA1 neurons (mean =* std:
dCA1=0.113 = 0.007 bits, vCA1=0.104 = 0.005 bits, p=0.04, two-sided Wilcoxon rank-sum test, ngcas = 7 recording ses-
sions, nycat = 6 recording sessions). Inset shows magnification. Each point denotes a recording session. H, Place field sizes
were not significantly different for dorsal and ventral CA1 neurons (mean = std: dCA1=9.4+2.0cm, vCA1=11.9 £6.3¢cm,
p =0.84, two-sided Wilcoxon rank-sum test, nqca1 = 7 recording sessions, nycai = 6 recording sessions). Each point denotes
a recording session. I, Dorsal CA1 neurons had sparser activity than ventral CA1 neurons (mean = std: dCA1=0.74 =0.02,
vCA1=0.78 =0.01, p=0.002, two-sided Wilcoxon rank-sum test, ngca1 = 7 recording sessions, nyca1 = 6 recording ses-
sions). Inset shows magnification. Each point denotes a recording session. J, Average firing rates were not significantly dif-
ferent for dorsal and ventral CA1 neurons (mean = std: dCA1=7.84 +1.74Hz, vCA1=6.45*2.29Hz, p=0.30, two-sided
Wilcoxon rank-sum test, ngca1 = 7 recording sessions, nyca; = 6 recording sessions). Each point denotes a recording ses-
sion. K, Peak firing rates were not significantly different for dorsal and ventral CA1 neurons (mean = std:
dCA1=11.57 +2.83Hz, vCA1=8.89 = 3.04 Hz, p=0.10, two-sided Wilcoxon rank-sum test, nqca; = 7 recording sessions,
nvca1 = 6 recording sessions). Each point denotes a recording session.
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CA1 (mean * std: dCA1=0.018* 0.049, vCA1=0.018 = 0.038,
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continued

p=0.06, two-sided Wilcoxon rank-sum test, ngcas = 861 pairs of
units, nycat = 903 pairs of units). However, the variance of the cor-
relation distribution was larger in dorsal CA1 than in ventral CA1
(variance: dCA1=2.4x 103 vCA1=14x10"3 p<1075, two-
sided F test for variance, ngcas = 861 pairs of units, nycas = 903
pairs of units). D, Average correlation coefficients were not signifi-
cantly different for dorsal and ventral CA1 neurons (mean = std:
dCA1=0.027 = 0.016, vCA1=0.021 =0.010, p=0.53, two-sided
Wilcoxon rank-sum test, nyca1 = 7 recording sessions, nyca1 = 6 re-
cording sessions). Each point denotes a recording session. E, F,
Network representation of correlations for a representative dorsal
CA1 (E) and ventral CA1 (F) recording session. Points denote the
approximate physical position of individual neurons (jitter added to
minimize overlapping neurons) and gray lines denote suprathres-
hold correlations between pairs of neurons. Scale bars: 100 um
(horizontal and vertical directions). G, Distribution of network degree
(number of incident edges) for the representative example networks
in E, F. H, Mean degree of networks in dorsal CA1 was higher than
that of ventral CA1 networks across a range of network thresholds
linearly increasing from 0 to 0.385 (for each threshold: p < 0.005,
two-sided Wilcoxon rank-sum test, ngcas = 335 units, nycat = 228
units). Error bars denote SEM. I, Mean probability of population pat-
terns grouped by number of coactive units, generated using 1000
18-unit subsamples in each recording session. Asterisks denote
significant difference between dorsal and ventral CA1 probabilities
(for each pattern type: p<107°, two-sided Wilcoxon rank-sum
test, ngca1 = 6000 samples from 6 recording sessions in 3 animals,
Nycat1 = 4000 samples from 4 recording sessions in 2 animals).

We quantified these activity patterns by calculating the
spatial information (Fig. 3C,F; Skaggs et al., 1993), a mea-
sure of how the neuron’s firing rate predicted the animal’s
location. Ventral CA1 neurons had a lower information
content than dorsal CA1 neurons (Fig. 3G), consistent
with previous studies on freely behaving animals in open-
field environments (Jung et al., 1994). Surprisingly, we
found that the decreased information content in ventral
CA1 neurons was not because of larger place fields, as
the place field size was not significantly different between
the two regions (Fig. 3H). Instead, this reduction in spatial
information in ventral CA1 was because of a higher level
of spontaneous firing at track positions not associated
with the place field. This was quantified by the sparsity
metric (Skaggs et al., 1996), which showed that ventral
CA1 neurons were active over a larger fraction of the track
than dorsal CA1 neurons (Fig. 3/). Importantly, the differ-
ence in spatial information between the two regions could
not be explained by differences in either the average firing
rates or the peak firing rates, which were not significantly
different between ventral and dorsal CA1 neurons (Fig.
3J,K). Additionally, the relationship between mean firing
rates and spatial information was not significantly differ-
ent for the two regions (Extended Data Fig. 3-1).

This finding of similar place field sizes in dorsal and ven-
tral CA1 was surprising, and we wanted to ensure that it
was not simply because of our choice of analysis parame-
ters. Thus, we recalculated place field sizes while varying
our analyses methods. First, we restricted our analysis to
only those neurons with high spatial information (Langston
et al., 2010; Mao et al., 2017; Extended Data Fig. 3-2).
Second, we used a Gaussian kernel rather than a square
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wave to smooth the firing rate maps (Kjelstrup et al., 2008;
Extended Data Fig. 3-3). Third, we determined place field
centers using a circular center of mass (Mehta et al., 1997;
Meshulam et al., 2017; Extended Data Fig. 3-4). Finally, we
compared place field size and spatial information between
the two regions at the single-neuron level (Extended Data
Fig. 3-5). In all of these cases, the original result held true;
place field size was not significantly different between dorsal
and ventral CA1. We also mapped the location of place
fields along the virtual track and found that there was no sig-
nificant enrichment or depletion of place fields at any loca-
tion (Extended Data Fig. 3-6).

Taken together, these results suggest a coarsening of
spatial representations from dorsal to ventral CA1 at the
level of single neurons in virtual environments arose from
differences in the activity of neurons when the animal was
outside of their place fields. Consequently, the reduc-
tion of spatial information across the dorsal-ventral axis
of CA1 appeared to be a universality principle of neuro-
nal coding, the properties by which this coarsening of
information occurred was different in real and virtual
environments.

Preserved pairwise correlations but weakened
functional network structure in ventral CA1

The differences in single-neuron spatial encoding
shown in Figure 3 are consistent with previous literature
showing the heterogeneity of neuronal coding properties
across the dorsal-ventral axis of CA1 (Jung et al., 1994;
Ciocchi et al., 2015; Okuyama et al., 2016; Jimenez et al.,
2018). However, these single-cell responses are embed-
ded in a much larger population-level response, wherein
functional interactions between individual neurons shape
the collective activity of the CA1 population in ways that
are critical for the encoding of position (Meshulam et al.,
2017). We next wished to study how these functional in-
teractions affected neuronal activity patterns in dorsal
and ventral CA1 (Fig. 4A,B).

Although we found no significant differences in the
mean pairwise correlations for dorsal and ventral CA1
(Fig. 4C,D), these averages masked the differences in the
structure of correlations, as evidenced by the increased
variance in dorsal CA1 correlations (Fig. 4C). To overcome
this limitation, we represented the interactions between
neurons not as mean values, but as network graphs, in
which nodes denoted individual neurons and edges de-
noted a strong correlation between a pair of neurons (Fig.
4EF). To understand how correlations were distributed
across the population, we calculated the degree, or num-
ber of incident edges, for each node (Fig. 4G). Nodes in
dorsal CA1 networks had significantly larger degrees than
those in ventral CA1 networks, indicating that dorsal CA1
was more likely to contain highly connected “hub” neu-
rons than ventral CA1. Importantly, regardless of the cor-
relation threshold used to determine the presence of a
network edge, the mean network degree of dorsal CA1
was larger than that of ventral CA1 (Fig. 4H). We next
wished to examine whether this increased network con-
nectedness led to an increased likelihood of coactive neu-
rons in dorsal CA1, relative to ventral CA1. To do this, we
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took 18-unit random subsamples of each recorded popu-
lation and plotted the number of coactive units in each
10-ms bin of the recording and found that dorsal CA1
populations were more likely to be highly coactive than
those in ventral CA1 (Fig. 4/). Using this graph approach,
we thus identified a novel difference in structure of corre-
lations across neurons in the two regions, one that re-
sulted in a more-connected network and more coactive
neuronal population in dorsal CA1.

Decreased dimensionality in ventral CA1 population
activity

These data are consistent with previous studies that
suggest that essential features of hippocampal represen-
tations of space are encoded in the joint activity of neu-
rons and that these activity patterns cannot be easily
summarized in single-neuron metrics such as place field
size (Meshulam et al., 2017; Stefanini et al., 2020). To bet-
ter understand how covariations between pairs of neu-
rons shaped the dynamics of the broader populations, we
used PCA (Luczak et al., 2009; Yu et al., 2009) to visualize
low-dimensional representations of population activity in
dorsal CA1 (53-neuron population) and ventral CA1 (48-
neuron population; Fig. 5A). Each point in this space is the
low-dimensional representation of the mean firing rate of
every neuron in the population within a given time bin,
which we defined as a state. This revealed complex tra-
jectories corresponding to the evolution of population ac-
tivity as the animal traversed the track. In both the dorsal
and ventral CA1 examples, the population states occu-
pied a different part of the space when the animal was
running (indicated by the colored points) than when it was
stationary (indicated by the gray points), consistent with
the idea that behavior shapes neural activity (Vanderwolf,
1969; O’Keefe, 1976; O’Keefe and Recce, 1993; Skaggs
et al., 1996; Foster and Wilson, 2006; Niell and Stryker,
2010; Dragoi and Tonegawa, 2011; Buzsaki, 2015; Villette
et al., 2015; Vinck et al., 2015; Kay et al., 2016; Dadarlat
and Stryker, 2017; Dipoppa et al., 2018; Kay and Frank,
2019; Chockanathan et al., 2020, 2021).

Although we observed complex trajectories of population
activity in both dorsal and ventral CA1 in the same virtual en-
vironment (Fig. 5B), the fraction of principal components re-
quired to explain 80% of the variance in the data were larger
for dorsal than ventral CA1 (Fig. 5C; Extended Data Fig. 5-
1). Additionally, the fraction of the total variance explained
by the top 25% of principal components, as well as the area
under the variance explained curve, was larger for ventral
CA1 (Fig. 5D,E). The population activity in ventral CA1 had
fewer states, and therefore could be more easily summar-
ized by a small number of variables than that of dorsal CA1.
Taken together with previous results, this suggested that
the ensemble activity of dorsal CA1 resided in a higher di-
mensional space than that of ventral CA1.

Decreased diversity and total entropy of population
activity patterns in ventral CA1

The results of Figures 4, 5 indicate that the dimensional-
ity of neural activity, and therefore the complexity of
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Figure 5. Dimensionality of population activity is reduced in ventral CA1. A, Projections of population firing rates onto low-dimen-
sional space defined by first three principal components for a representative dorsal CA1 (left) and ventral CA1 (right) recording ses-
sion. B, Cumulative explained variance as a function of fraction of total principal components ordered by their corresponding
eigenvalues. Shaded regions denote SEM. Inset, Explained variance curves for single recording sessions. C, A larger fraction
of principal components was required to explain 80% of the variance in dorsal CA1 population than in ventral CA1 populations
(mean * std: dCA1=0.422 = 0.040, vCA1=0.344 = 0.046, p =0.035, two-sided Wilcoxon rank-sum test, ngca1 = 7 recording ses-
sions, nycat = 6 recording sessions). Inset shows magnification. Each point denotes a recording session. D, The first 25% of princi-
pal components explain a larger fraction of the variance in ventral CA1 than in dorsal CA1 (mean * std: dCA1=0.632 = 0.040,
vCA1=0.697 + 0.050, p =0.035, two-sided Wilcoxon rank-sum test, nycas = 7 recording sessions, ny,ca1 = 6 recording sessions).
Inset shows magnification. Each point denotes a recording session. E, The area under the variance explained curve was larger for
ventral CA1 populations than for dorsal CA1 populations (mean = std: dCA1=0.759 + 0.027, vCA1=0.795 = 0.024, p =0.035, two-
sided Wilcoxon rank-sum test, ngcas = 7 recording sessions, ny,ca = 6 recording sessions). Inset shows magnification. Each point
denotes a recording session.

ensemble activity was larger in dorsal CA1 than ventral
CA1. To understand what features of this activity con-
ferred this increased complexity, we dissected the statis-
tical properties of the population firing patterns in each
region. To do this, we first defined a pattern of ensemble

dorsal CA1 than in ventral CA1, indicating a more diverse
set of patterns. This was consistent with our previous
finding that the patterns that occurred in dorsal CA1 had
more coactive neurons than those in ventral CA1 (Figs. 4/,
6C,E). We quantified the diversity of patterns by subsam-

activity as a vector of neurons where an active cell was
denoted with a 1 and an inactive cell denoted with a 0. In
a given 10-ms window, then a pattern or state of activity
was defined as a vectors of 1 and 0 s (Fig. 6A; Luczak et
al., 2009; Miller et al., 2014; de Ruyter van Steveninck et
al.,, 1997; Schneidman et al., 2006). We then compared
the probability distributions of patterns from 18-neuron
populations (made by subsampling from all recorded cells
in a given recording session) in dorsal and ventral CA1
(Fig. 6B,D). As illustrated by these representative exam-
ples, the pattern probability distribution was broader in
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pling the population in each region using the entropy
framework from statistical mechanics (see Materials and
Methods). The higher diversity of patterns in dorsal CA1
was reflected in its increased total entropy, relative to ven-
tral CA1 (Fig. 6F).

Population activity in ventral CA1 is better explained
by pairwise interactions than in dorsal CA1

The number of patterns explored by populations in ei-
ther dorsal or ventral CA1 and the dimensionality of the
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Figure 6. More diverse and complex population patterns in dorsal CA1. A, Schematic for calculating pattern probabilities. Left, The
spike rasters for each unit were binned using 10-ms non-overlapping windows and assigned a value of 0 if no spikes were present
and a value of 1 if one or more spikes were present. Center, The combination of these binary states across all neurons in the sub-
sample in a given window was denoted as a pattern. Right, Histogram of pattern probabilities. B, D, Distribution of pattern probabil-
ities for a single 18-unit subsample of a dorsal CA1 (B) and ventral CA1 (D) recording session. Yellow bar denotes the median
probability pattern depicted in C, E. C, E, Visualization of a single representative pattern from dorsal CA1 (C) and ventral CA1 (E).
Points denote the approximate physical position of individual units. Closed circles denote active units (1), open circles denote inac-
tive units (0), and gray circles denote units not included in the current 18-unit subsample. F, Total entropy of dorsal CA1 populations
is higher than that of ventral CA1 populations (o < 107, two-sided Wilcoxon rank-sum test, ngca1 = 6000 subsamples from 6 re-
cording sessions in 3 animals, n,ca; = 4000 subsamples from 4 recording sessions in 2 animals). Subsample size of 18 units.
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Figure 7. Pairwise maximum entropy models predict population patterns better in ventral CA1 than in dorsal CA1. A, Schematic of
maximum entropy models. Every neuron is assigned an activity term h; and every pair of neurons was assigned an interaction term
Jji. Both terms were fit from the empirical spiking data. The models were then used to estimate the probability of every population
pattern solely on the basis of these terms. The predicted pattern probabilities were then compared with the respective empirical
probabilities. B, C, Empirical pattern probabilities and maximum entropy model predicted pattern probabilities for a representative
18-unit subsample of a dorsal CA1 (B) and ventral CA1 (C) recording session. Each point denotes a single pattern and gray line de-
notes unity. D, Distributions of KLD generated from 1000 random samples of 18-unit subpopulations in a representative dorsal and
ventral CA1 recording session. E, KLD was larger for dorsal CA1 populations than ventral CA1 populations across a range of subpo-
pulation sizes from 4 to 24 units. Asterisks denote significant difference between dorsal and ventral CA1 populations (for each pat-
tern length: p < 107%, two-sided Wilcoxon rank-sum test, ngcaq = 600 samples from 6 recording sessions in 3 animals, nyca; = 400
samples from 4 recording sessions in 2 animals). Error bars denote SEM. F, Pattern probability prediction error of maximum entropy
model, grouped by number of coactive units, generated using 1000 18-unit subsamples in each recording session. Asterisks denote
significant differences between dorsal and ventral CA1 prediction errors (for each pattern type: p < 107°, two-sided Wilcoxon rank-
sum test, ngca1 = 6000 samples from 6 recording sessions in 3 animals, n,ca1 = 4000 samples from 4 recording sessions in 2
animals).

neural code each reflect an underlying feature of CA1. A
property such as functional connectivity, which reflects
how neurons interact with one another, should constrain
the states that are occupied by the populations as well as
the dimensionality of the neural code. We wished to know
whether we could predict the frequency of activity pat-
terns observed in groups of neurons by simply looking at
the functional interactions between pairs of neurons.

September/October 2021, 8(5) ENEURO.0211-21.2021

Another way of studying this is to ask to what extent the
global structure of the network can be completely defined
by these pairwise interactions.

We approached this using the maximum entropy
model, which explains the probability of all observed firing
patterns of large populations of neurons with as little
structure as possible (Fig. 7A). If, for example, pairwise in-
teractions were sufficient to explain the global structure of
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population activity, then a second order maximum en-
tropy model would be able to predict population activity
patterns based only on the firing rates of single neurons,
reflected in the h; terms, and on the functional interactions
between pairs of neurons, reflected in the J; terms
(Schneidman et al., 2006; Shlens et al., 2006; Meshulam
et al., 2017; Chockanathan et al., 2020). When we com-
pared the predicted and empirical distributions as a scat-
ter plot for a representative 18-neuron subsample (Fig.
7B,C), the maximum entropy model for the dorsal CA1
population showed many more points further away from
the unity line than ventral CA1, indicating a higher error in
prediction. Using the KLD a measure of the goodness of
fit, we found that, across all pattern lengths we consid-
ered, the KLD was significantly larger for dorsal CA1 than
ventral CA1 (Fig. 7D,E). Pairwise interactions were better
able to predict the state of the overall population in ventral
CA1 than dorsal CA1, suggesting that pairwise correla-
tions had significantly less explanatory power in dorsal
CA1 as compared with ventral CA1. This was despite the
fact that the values of the h; and J; parameters were not
significantly different for the two regions (Extended Data
Fig. 7-1), consistent with our previous observation that
neither the mean firing rates nor the mean pairwise corre-
lations were significantly different for dorsal and ventral
CA1 (Figs. 3J, 4D). Thus, while Figures 5, 6 show how the
population activity in dorsal CA1 is more complex and di-
verse than that of ventral CA1, the results of our maximum
entropy models demonstrate that this increased dimen-
sionality cannot be explained simply by changes the
structure of firing rates and pairwise interactions.

Instead, these data suggested that, in dorsal CA1,
groups of neurons were co-active more often than would
be predicted by their pairwise interactions. Indeed, when
we then separated the patterns by the number of coac-
tive units and analyzed the prediction error in each pat-
tern class (Fig. 7F), we found that the prediction errors
in dorsal CA1 were larger than those in ventral CA1.
Importantly, this gap was especially pronounced for pat-
terns with high numbers of coactive units, suggesting
that such highly synchronous patterns occurred far more
frequently than would be predicted from pairwise func-
tional coupling. Consistent with this idea, other groups
have shown that the coactivation of these groups of neu-
rons arise from higher order interactions (Ohiorhenuan et
al., 2010). Our data suggest that these higher order inter-
actions contribute significantly to shape ensemble activ-
ity in dorsal CA1 but are relatively weak or absent in
ventral CA1. Such high order interactions may arise from
the increased number of hubs we observed in the func-
tional network structure, thereby driving the increased
dimensionality of dorsal CA1 population codes of space.

Decreased population-level spatial information in
ventral CA1

Our data thus far reveal an underlying link between the
functional organization of activity and the statistical impli-
cations for that activity in terms of the dimensionality of
neuronal codes along the dorsal-ventral axis of CA1.
We finally wished to determine what these differences
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in the statistics of population codes might mean for the
representation of space throughout the hippocampus.
Previous work has demonstrated that the activity of dorsal
CA1 populations can be used to encode and decode the
position of an animal in an environment (Wilson and
McNaughton, 1993; Ziv et al., 2013). While individual ventral
CA1 neurons have lower spatial information, comparatively
little is known about how this affects the activity of popula-
tions (Keinath et al., 2014), the efficiency of this population
activity on encoding information about an animals position,
and what, if anything, these different strategies reveal about
the functional heterogeneity of the hippocampus. To ad-
dress this gap, we used an information theoretic approach
(de Ruyter van Steveninck et al., 1997) to calculate the spa-
tial information of population patterns and compare these
quantities between dorsal and ventral CA1.

For a neural population to represent multiple spatial po-
sitions in a cognitive map, the activity patterns must be di-
verse as the animal navigates its environment. For the
map to be reliable, patterns must correspond, reproduci-
bly, to the position of the animal. Two components shape
the spatial information content of populations: (1) the total
entropy, which reflects the total number of population
patterns observed over all regions of space; and (2) the
noise entropy, which reflects the population patterns ob-
served in a specific region of space (for details, see
Materials and Methods). The difference between these
two quantities is the information of the population, which
reflects the degree to which the occurrence of a particular
pattern can be used to infer the animal’s spatial position.

We generated pattern probability distributions condi-
tioned on the animal’s position (Fig. 8A) and quantified
their diversity using entropy. A high entropy denoted a
broad, flat probability distribution in which many patterns
occurred with roughly equal probabilities while low en-
tropy denoted a narrow distribution dominated by a small
number of patterns.

We found that population spatial information was higher
in dorsal CA1 than in ventral CA1 (Fig. 8F,G), suggesting
that the asymmetric representation of space found at the
single unit level (Fig. 3H) is preserved in populations. This
increased information in dorsal CA1 was underpinned by
a larger total entropy, suggesting that the overall number
and diversity of observed patterns was larger in dorsal
CA1 (Fig. 8B,C), consistent with our previous results (Figs.
4-6). Interestingly, however, we found that the noise
entropy was also larger in dorsal than ventral CA1, sug-
gesting that the diversity of patterns was larger in dorsal
CA1 even within a single region of space (Fig. 8D,E).
Additionally, we calculated the entropy conditioned on
the animal’s behavioral state and found that while entropy
increased with running in dorsal CA1, it decreased slightly
with running in ventral CA1 (Extended Data Fig. 8-1).

The findings of increased dimensionality shown in
Figures 5, 6 indicated that dorsal CA1 has a larger number
of population patterns. The results in Figure 8 show that
dorsal CA1 uses this increased neural “vocabulary” to
represent space more effectively than ventral CA1. Taken
together, our results provide additional evidence for the
model of a functionally heterogeneous hippocampus,
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Figure 8. Dorsal CA1 populations collectively encode more spatial information than ventral CA1 populations. A, Schematic for cal-
culating spatial information of CA1 populations. The conditional pattern probability distributions (yellow, green, and purple) were
generated from the population patterns that were observed when the animal was at a particular position on the virtual track. The
overall pattern probability distribution (gray) was generated by pooling the probabilities of all observed patterns, regardless of the

animal’s position. The entropy formula, — p(logop) was then applied to each of the distributions. The total entropy was calcu-

lated from the overall distribution, while the noise entropy was calculated from conditional distributions, weighted by the amount of
time the mouse spent at each position. The information was the difference between the total entropy and the information entropy.
B, Distributions of total entropy generated from 1000 random samples of 18-unit subpopulations in a representative dorsal and ven-
tral CA1 recording session. C, Total entropy was significantly larger for dorsal CA1 populations than ventral CA1 populations across
a range of subpopulation sizes from 4 to 24 units. Asterisks denote significant difference between dorsal and ventral CA1 popula-
tions (for each pattern length: p <107°, two-sided Wilcoxon rank-sum test, ngcas = 600 samples from 6 recording sessions in 3 ani-
mals, nycas = 400 samples from 4 recording sessions in 2 animals). Error bars denote SEM. D, Distributions of noise entropy
generated from 1000 random samples of 18-unit subpopulations in a representative dorsal and ventral CA1 recording session. E,
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continued

Noise entropy was significantly larger for dorsal CA1 populations than ventral CA1 populations across a range of population sizes
from 4 to 24 units. Asterisks denote significant difference between dorsal and ventral CA1 populations (for each pattern length:
p <1078, two-sided Wilcoxon rank-sum test, ngcas = 600 samples from 6 recording sessions in 3 animals, nyca; = 400 samples
from 4 recording sessions in 2 animals). Error bars denote SEM. F, Distributions of spatial information generated from 1000 random
samples of 18-unit subpopulations in a representative dorsal and ventral CA1 recording session. G, Spatial information was signifi-
cantly larger for dorsal CA1 populations than ventral CA1 populations across a range of population sizes from 4 to 24 units.
Asterisks denote significant difference between dorsal and ventral CA1 populations (for each pattern length: p <105, two-sided
Wilcoxon rank-sum test, ngca1 = 600 samples from 6 recording sessions in 3 animals, n,ca; = 400 samples from 4 recording ses-

sions in 2 animals). Error bars denote SEM.

with dorsal CA1 specializing in spatial cognition as com-
pared with ventral CA1.

Discussion

We recorded the activity of neuronal populations in dor-
sal and ventral CA1 and examined the manner in which
they collectively represented an animal’s position on a vir-
tual track. Not only did we recapitulate earlier findings
that individual neurons in ventral CA1 convey less infor-
mation about position than those in dorsal CA1 (Jung et
al., 1994), we also demonstrated that the collective activ-
ity of the population was differentially organized in the two
regions. Dorsal CA1 populations formed more connected
networks and showed more complex patterns of activity,
which manifested as a larger total entropy, relative to ven-
tral CA1 populations. This indication of increased dimen-
sionality in dorsal CA1 activity was further supported by
our finding that pairwise interactions were better able to
predict population-level firing patterns in ventral CA1 than
in dorsal CA1. Finally, by examining how the activity pat-
terns in each region were organized by the position of the
animal, we found that the population-level spatial infor-
mation was also higher in dorsal CA1 than ventral CA1.

It should be noted that all the mice included in this
study were males. Sex is a critical biological variable and
should be considered in study design (Shansky, 2019). In
a previous study of head-fixed wheel running similar to
the task used in this experiment, it was found that female
animals behaved differently on a run wheel, including how
they adapted and habituated to the wheel while being
head fixed (Warner and Padmanabhan, 2020). These sex
differences may be related to anxiogenic behaviors, and
could influence activity patterns in ventral CA1, as has
been previously shown (Ciocchi et al., 2015; Jimenez et
al., 2018). As such, this critical question goes beyond the
scope of this study but is the focus of future work.

Our results should be placed in the context of a key
prior study, which found that spatial coding across dorsal
and ventral CA1 was largely conserved at the population
level, although place fields of individual neurons were
larger and less informative in ventral than dorsal CA1
(Keinath et al., 2014). While that study performed record-
ings in real-world 2D open-field environments using
chronically implanted electrodes, in our study, we em-
ployed acute head-fixed recordings in a virtual 1D track.
Virtual environments approximate several features of real-
world navigation, including distal visual cues, optic flow,
and proprioceptive cues. However, the head-fixed virtual
reality setup in our study did not allow for motion cues
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from vestibular inputs or air flow. Additionally, real world
environments have spatial variations in olfactory, tactile,
and auditory properties that are largely absent in virtual
environments (Minderer et al., 2016). Although the degree
to which these different sensory inputs contribute to spa-
tial coding is still an area of active investigation, it is rea-
sonable to expect that virtual reality environments create
different demands on the spatial coding system than real-
world environments. Indeed, previous experiments of re-
cordings in both virtual and real environments have found
significant differences in place cell activity and theta fre-
quency modulation (Ravassard et al., 2013; Aghajan et al.,
2015). The methodological differences between our study
and Keinath et al. (2014) may therefore explain some of
the differences in our findings of place cell and population
activity across the hippocampal axis. Despite this, other
critical features of hippocampal function, such as the re-
ductions in the spatial information in single neurons and
the dimensionality differences in neuronal coding across
the dorsal ventral axis of the hippocampus, point to prin-
ciples of coding that are preserved in both real and virtual
environments.

Along the dorsal-ventral axis of the hippocampus, there
is a differentiation of functions that vary both in degree
(for example, larger place fields in ventral CA1 than in dor-
sal CA1) as well as in kind (dorsal hippocampus is impli-
cated in spatial memory, while ventral hippocampus is
involved in social cognition and affect). These myriad cog-
nitive and emotional roles are thought to arise from the
variations in genetic (Thompson et al., 2008; Cembrowski
et al., 2016), biophysical (Dougherty et al., 2012; Malik et
al., 2016), circuit (Swanson and Cowan, 1977; Cenquizca
and Swanson, 2007; Meira et al., 2018; Padmanabhan et
al., 2019), and computational infrastructure (Jung et al.,
1994; Kjelstrup et al., 2008; Ciocchi et al., 2015; Okuyama
et al., 2016; Jimenez et al., 2018) across the dorsal-ven-
tral axis of the hippocampus (Moser and Moser, 1998;
Fanselow and Dong, 2010). Our observation of de-
creased collective encoding of space in ventral CA1
mirrors broader topographic variations in spatial coding
throughout the hippocampal formation. For grid cells,
which have periodic spatial firing maps, the spacing
and size of the grid vertices increase from the dorsal to
the ventral boundaries of the medial entorhinal cortex
(MEC; Hafting et al., 2005; Stensola et al., 2012). A simi-
lar tuning gradient has been observed for head direction
cells in Layer Il of the MEC, with dorsal neurons exhibit-
ing sharper directional firing fields than ventral neurons
(Giocomo et al.,, 2014). As part of the canonical
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trisynaptic loop, CA1 receives indirect inputs from ento-
rhinal cortex as well as direct afferents from CAS3. This
circuit is organized in a lamellar fashion, such that dor-
sal or ventral entorhinal cortex preferentially projects to
dorsal or ventral CA3, respectively, which in turn prefer-
entially projects to dorsal or ventral CA1 (Andersen et
al., 1971, 2000; Sloviter and Lemo, 2012). Our data sug-
gest that, in addition to receiving differential inputs, the
differences in functional interactions between neurons
within dorsal and ventral CA1 may evidence the diverse
ways in which spatial representations are encoded in
the hippocampus.

This diversity may confer various computational bene-
fits that support flexible behavioral strategies across di-
verse ethological environments. For instance, if place
fields were fixed in size, then, as the territory an animal ex-
plores increased, more neurons would be required to
comprehensively represent this expanding space. Indeed,
previous studies in dorsal CA1 have demonstrated that as
environments are expanded, more place cells are re-
cruited and individual place cells show more numerous
and enlarged place fields (Fenton et al., 2008). An in-
crease in the size of the environment may require addi-
tional features such as hedonic value be represented in
the hippocampus, so as to organize and structure an in-
creasingly large environment. The larger place fields and
coarser representations of ventral CA1 may be better
suited for these parallel tasks. Studies of rodents engaged
in goal-directed spatial navigation tasks have found that
place fields cover goal-related regions more densely than
other regions (Hollup et al., 2001; Fyhn et al., 2002;
Dupret et al., 2010; Xu et al., 2019; Sato et al., 2020),
while another study identified a dedicated population of
neurons that are exclusively active when the animal visits
a rewarded region (Gauthier and Tank, 2018). The varia-
tion in spatial coding resolution between dorsal and ven-
tral CA1 could provide the flexibility to broadly map a
large environment and simultaneously represent salient
regions with very high precision (Keinath et al., 2014).
Future experiments that compare spatial representations
in dorsal and ventral CA1 while animals explore multiple
environments (real and virtual) that vary in size and sali-
ency would allow these hypotheses to be explicitly
tested.

While we have focused on the hippocampal representa-
tion of space as an animal navigates a virtual environ-
ment, neurons in CA1 encode an array of non-spatial
variables. In dorsal CA1, individual neurons have been
identified that respond to time (Manns et al., 2007;
Pastalkova et al., 2008; MacDonald et al., 2011), velocity
(Czurkod et al., 1999; Gois and Tort, 2018), head direction
(Acharya et al., 2016; Leutgeb et al., 2000; Stefanini et al.,
2020), and event sequences (Sun et al., 2020). Ventral
CA1 neurons also exhibit diverse tuning properties for af-
fective and social variables, including anxiety (Ciocchi et
al., 2015; Jimenez et al., 2018) and conspecific identity
(Okuyama et al., 2016; Deng et al., 2019; Rao et al., 2019).
Often, neurons in both regions fire in response to combi-
nations of multiple features (Ciocchi et al., 2015; Omer et
al.,, 2018; Haimerl et al., 2019; Stefanini et al., 2020).
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Experimental and computational studies, both in hippo-
campus and primary sensory regions, such as the visual
system and the main olfactory bulb, suggest that func-
tional heterogeneity and mixed selectivity can increase
the amount of information encoded by a population
(Warland et al., 1997; Shamir and Sompolinsky, 2006;
Padmanabhan and Urban, 2010; Tripathy et al., 2013;
Fusi et al., 2016; Bernardi et al., 2020). Previous studies
have demonstrated how this heterogeneity can improve
the precision of spatial coding (Stefanini et al., 2020).

The diversity of population patterns we found in dorsal
CA1 while the animal ran on the virtual track suggests that
the activity of groups of neurons is marshalled in a way
that is greater than the sum of their pairwise interacting
parts to represent space. In parallel, in ventral CA1, the
smaller number of patterns and lower spatial information
may free up its coding “bandwidth” to represent other
ethologically salient aspects of the world. We hypothesize
that by differentially coordinating the activity of dorsal and
ventral CA1 populations, the functional architecture of
hippocampus supports distinct coding strategies, em-
ploying the coding space of dorsal CA1 to represent the
animal’s position and leaving the capacity of ventral CA1
available for other emotive or affective behaviors.
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