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Kaposi’s sarcoma-associated herpesvirus (KSHV) represents the etiological agent for
several human malignancies, including Kaposi’s sarcoma (KS), primary effusion
lymphoma (PEL), and multicentric Castleman’s disease (MCD), which are mostly seen
in immunocompromised patients. In fact, KSHV has developed many strategies to hijack
host immune response, including the regulation of inflammatory cytokine production.
Interleukin-1 (IL-1) family represents a major mediator for inflammation and plays an
important role in both innate and adaptive immunity. Furthermore, a broadening list of
diseases has revealed the pathologic role of IL-1 mediated inflammation. In the current
mini-review, we have summarized recent findings about how this oncogenic virus is able
to manipulate the activities of IL-1 signaling pathway to facilitate disease progression. We
also discuss the therapeutic potential of IL-1 blockade against KSHV-related diseases and
several unsolved questions in this interesting field.

Keywords: Kaposi’s sarcoma-associated herpesvirus, Kaposi’s sarcoma, primary effusion lymphoma, multicentric
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INTRODUCTION

Kaposi’s sarcoma-associated herpesvirus (KSHV) infection causes several human cancers including
Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman’s disease
(MCD) (Broussard and Damania, 2019). These KSHV-associated malignancies develop mainly in
immunocompromised patients, especially those infected with human immunodeficiency viruses
(HIVs) (Vangipuram and Tyring, 2019). Further, the morbidity rate of patients with KSHV-
associated diseases is much higher in patients with compromised immune systems compared to
those with competent immune systems (Mesri et al., 2010).

KSHV has two alternating life-cycle programs following primary infection of host cells, the latent
and lytic phases, which are characterized by different patterns of viral gene expression (Mesri et al.,
2010). During latency, viral genomes persist as circular episomes with no progeny virion production
and only a limited number of latency-associated genes expressed, including latency-associated
nuclear antigen (LANA), viral Fas-associated protein with death domain (FADD)–like interleukin-
1b-converting enzyme (FLICE)-like inhibitory protein (vFLIP), viral cyclin (vCyclin), as well as
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some viral microRNAs (Uppal et al., 2014). Once entering the
lytic phase, which is caused by various stimuli, almost all viral
genes are highly expressed, followed by genomic DNA
replication and mature virion release (Ye et al., 2011). KSHV is
known to hijack many aspects of the host’s immune response
such as viral detection and cytokine production. Interleukin-1
(IL-1) is an inflammatory cytokine family of 11 distinct proteins
that has a wide array of functions in innate immunity processes.
The IL-1 superfamily contains many pro-inflammatory
cytokines (IL-1a, IL-1b, IL-18, IL-33, IL-36a, IL-36b, and IL-
36g) and a few anti-inflammatory cytokines (IL-36Ra, IL-37, and
IL-38) (Boraschi and Tagliabue, 2013). Among them, IL-1 is the
defining member of this family and its physiology and
relationship to pathology has been thoroughly studied and
reported. IL-1 includes two activator cytokines, IL-1a and IL-
1b, and one inhibitory factor, the IL-1 receptor antagonist
(named as IL-1Ra). The main function of IL-1 is to respond to
tissue damage caused by pathogen-associated molecular patterns
(PAMPs) such as viral products, or damage-associated molecular
patterns (DAMPs) such as adenosine 5’-triphosphate (Xu et al.,
2019). Upon stimulation, IL-1a and IL-1b both bind to the type I
IL-1 receptor (IL-1R1) which then recruits the IL-1 receptor
accessory protein (IL-1RAP), as well as the adaptor protein
MyD88, which are necessary for triggering signal transduction.
Once the IL-1 receptor complex is formed, a downstream
signaling cascade is activated which then stimulates a
collection of related immune responses and/or inflammatory
genes (Jensen, 2017). Dysregulation of the IL-1 pathway has been
shown to be linked to a number of autoinflammatory and
autoimmune diseases, such as atherosclerosis and systemic
sclerosis, respectively, as well as cancers like gastric carcinoma
and lung cancer (El-Omar et al., 2001; Bhat et al., 2014; Ridker
et al., 2017; Xu et al., 2019).

KSHV infection has been found to induce the production of
a variety of host pro-inflammatory cytokines. For example,
primary KSHV infection in monocytes can increase the
release of IL-1a, IL-1, and IL-6 (Host et al., 2017). These
cytokines have been suggested to regulate early KS lesion
progression and have been found at high levels in the sera of
KS patients (Ensoli and Stürzl, 1998). Other IL-1 family
members such as IL-33 have recently been shown to play a
role in KSHV pathogenesis by regulating chromatin
compaction through nucleosome-nucleosome interactions
(Roussel et al., 2008). Therefore, in this mini-review, we will
summarize recent findings about the relationship between
KSHV and the IL-1 family members. We will try to highlight
how KSHV may utilize the IL-1 signaling pathway to facilitate
disease progression and how potential immunotherapies could
target such mechanisms.
THE IL-1 SIGNALING PATHWAY

IL-1 is a major mediator for inflammation and plays an
important role in both innate and adaptive immunity. IL-1a
and IL-1b both signal through the cell surface receptor, IL-1R1
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
(Jensen, 2017). Upon ligand binding, the transmembrane IL-1R
accessory protein, IL-1RAP, is recruited to the site. This
heterodimer formation leads to intracellular recruitment of the
adaptor protein, MyD88, and mobilization of IL-1R-associated
kinases (e.g., IRAK1, IRAK2, and IRAK4). These kinases, along
with additional signaling factors, lead to the phosphorylation and
degradation of nuclear factor kB (NF-kB) inhibitor IkB. The end
of this signaling pathway results in the translocation of activated
transcription factors, such as activator protein 1 (AP-1) and NF-
kB, to the nucleus where specific gene expression is activated. IL-
18 and IL-33 also stimulate gene expression through the same
intracellular pathway using their receptor-accessory protein
complexes (IL-18R1/IL-18RAP and IL-1R-like 1/IL-1RAP).
The other cytokines, IL-36a, IL-36b, and IL-36g, bind to the
receptor IL-1R-like 2 (IL-1RL2 or IL-36R), which then uses IL-
1RAP as its receptor-accessory protein and stimulates the same
signaling cascade as IL-1, IL-18, and IL-33 (Dinarello, 2019).
Interestingly, KSHV has developed strategies to manipulate the
functions of b1these different IL-1 signaling molecules after
invading host cells.
IL-1a/b AND RECEPTORS

Several studies have reported that KSHV infection or viral
protein infiltration can upregulate IL-1a and/or IL-1b
expression. For instance, one study showed that ectopic
expression of viral macrophage inflammatory protein-II
(vMIP-II) within endothelial cells upregulated multiple
proangiogenic factors, including IL-1a, resulting in enhanced
angiogenesis (Cherqui et al., 2007). Another viral protein, vOX2,
a glycosylated cell surface protein, was found to dramatically
stimulate primary monocytes, macrophages, and dendritic cells
to produce IL-1b (Chung et al., 2002). On the other hand, KSHV
Orf63, encoding a viral homolog of human NLRP1 (NACHT,
LRR, FIIND, CARD domain and PYD domains-containing
protein 1), was found to reduce IL-1b expression and related
signaling through inhibition of the inflammasome (Gregory
et al., 2011). In fact, many studies suggest that inflammatory
and angiogenic cytokines including IL-1b contribute to the
pathogenesis of KS by causing abnormal proliferation,
angiogenesis, and a KS-like phenotype independent of KSHV
(Ensoli et al., 1992). For example, IL-1b was markedly elevated in
most KS lesions (Samaniego et al., 1997). Furthermore, IL-1b
was elevated during initial KSHV-MCD flares compared with
remission (Polizzotto et al., 2013). Interestingly, our recent study
demonstrated that IL-1b was required for the upregulation of
PD-L1 expression by viral lytic reactivation from KSHV-infected
tumor cells (Chen et al., 2019), which may represent a novel
mechanism for virus-associated tumor cell immune escape. It
remains unclear about the situation of receptor and accessory
proteins of IL-1 in KSHV-infected cells. Our recent data indicate
that KSHV infection significantly upregulates IL1R1 and IL1RAP
from endothelial cells (Figure 1A). Moreover, both proteins are
found highly expressed in KS tumor cells, especially IL1R1
(Figure 1B).
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IL-18, IL-33, AND IL-36

KSHV latency, especially viral FADD-like interleukin-1-b–
converting enzyme [FLICE/caspase 8]-inhibitory protein
(vFLIP), was found to induce the expression of IL-18 (as well
as IL-1b) in an NF-kB dependent manner (Singh et al., 2013). In
contrast, one of the viral lytic products, KSHV polyadenylated
nuclear RNA (PAN RNA) decreased the expression of IL-18
(Rossetto and Pari, 2011). Similar inhibitory effects on IL-18
were observed with KSHV Orf63 in the study mentioned above
(Gregory et al., 2011).

The functional roles of IL-33 and IL-36, and their regulatory
mechanisms in KSHV-infected cells remain mostly unclear. One
very recent study reported that the plasma IL-33 concentrations
were higher in individuals with KS in Uganda, Africa (Byakwaga
et al., 2020), implying that this cytokine and its related signaling
may also play role in KSHV pathogenesis. Interestingly, IL-33
has also been demonstrated as a chromatin-associated factor in
the nucleus of endothelial cells, which has a short chromatin-
binding peptide that shares similarities with a motif found in
KSHV-encoded latency-associated nuclear antigen (LANA)
(Carriere et al., 2007; Roussel et al., 2008). As we know, LANA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
is responsible for the attachment of the viral episome to mitotic
chromosomes (Barbera et al., 2006); thus, this IL-33 peptide can
also dock into the acidic pocket formed by the H2A-H2B dimer
at the nucleosomal surface and regulate chromatin compaction
through nucleosome-nucleosome interactions. However, the
association between IL-33 and KSHV latency and lytic
reactivation remains unknown.
MYD88 AND IRAKs

One study using X chromosome-targeted sequencing identified
34 common missense mutations in 100% of PEL cases, including
a Phe196Ser change in the IRAK1 protein. Moreover, IRAK1 was
constitutively phosphorylated in PEL and required for tumor cell
survival (Yang et al., 2014). By using CRISPR/Cas9 knockout
technology, the same group recently reported that established
PEL cell lines were able to circumvent the loss of IRAK1, IRAK4,
and MyD88, while the deletion clones were deficient in IL-10
production (Seltzer et al., 2020). Due to the suppression of T cell
function by IL-10, the authors suggest that the IRAK pathway
may contribute to early-stage development of PEL. KSHV
A

B

FIGURE 1 | IL-1R1 and IL-1RAP are upregulated by KSHV and highly expressed within AIDS-KS tumor tissues. (A) Primary human umbilical vein endothelial cells
(HUVEC) were infected with KSHV (MOI~10) or not for 48 h, followed by qRT-PCR analysis. The data were normalized to the b-actin housekeeping gene expression.
Error bars represent the S.D. for three independent experiments. **p < 0.01. (B) Expression of IL-1R1 and IL-1RAP in representative formalin-fixed paraffin-
embedded KS tissues from HIV+ patient without treatment were determined by immunohistochemical staining (40×). The higher magnification for IL-1R1 and IL-
1RAP detection in KS tumor cells were also shown (60×). Normal skin tissues were used as a control.
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encodes 12 pre-microRNAs (pre-miRNAs), which are processed
into 25 mature microRNAs (miRNAs) (Qin et al., 2017).
Interestingly, Abend et al. reported that IRAK1 and MyD88
were directly targeted by several KSHV-microRNAs, particularly
miR-K12-9 and miR-K12-5, respectively (Abend et al., 2012).
The presence of miR-K12-9 and miR-K12-5 inhibited the
production of IL-6 and IL-8 upon IL-1a stimulation of
endothelial cells. In another study, Lingel et al. reported that
KSHV-encoded replication and transcription activator (RTA)
was able to bind to MyD88 RNA and suppress its RNA synthesis
(Lingel et al., 2016). Another group recently found that KSHV
RTA downregulated MyD88 expression at the protein level by
degrading MyD88 through the ubiquitin (Ub)-proteasome
pathway (Zhao et al., 2015).
IL-1 BLOCKADE

Since IL-1 is a master cytokine of local and systemic
inflammation, pharmacological blockade of IL-1 activity has
been applied in a variety of inflammatory diseases that results
in a rapid and sustained reduction in disease severity. There are
three major categories of IL-1 blockers which have been
approved by the Food and Drug Administration (FDA) for
clinical treatment: 1) The IL-1 receptor antagonist (e.g.,
Anakinra), blocks the IL-1 receptor and therefore reduces the
activity of IL-1a and IL-1b; 2) The soluble decoy receptor (e.g.,
Rilonacept, also known as IL-1 Trap), a dimeric fusion protein
consisting of the ligand-binding domains of the extracellular
portions of IL-1R1 and IL-1RAP linked in-line to the fragment-
crystallizable portion (Fc region) of human IgG1 that binds and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
neutralizes IL-1; 3) The neutralizing monoclonal anti-IL-1b
antibody (e.g., Canakinumab), which directly targets IL-1b
(Dinarello and van der Meer, 2013; Dinarello, 2013). There are
other neutralizing monoclonal antibodies targeting IL-1a or the
IL-1 receptor in different clinical trials (Dinarello and van der
Meer, 2013). Interestingly, Boehringer Ingelheim Company
recently developed a new IL1RAP antibody, BI-5041, which
targets a unique epitope on IL-1RAP and therefore blocks IL-1,
IL-33, and IL-36 signalling. Currently, there is limited data about
IL-1 blockade therapy in KSHV-related malignancies (El-Osta
et al., 2010). Two case reports detailed the successful treatment of
MCD by Anakinra for two patients, although their KSHV
infection status remains unclear (Galeotti et al., 2008; El-Osta
et al., 2010).
CONCLUSION AND PROSPECTIVE

Current research reveals that KSHV has developed different
strategies to manipulate IL-1 signaling activity (summarized in
Figure 2) in order to balance the host’s inflammatory response or
help the virus escape the host’s immune response. The virus-
encoded latent and lytic proteins and even viral non-coding RNAs
can target multiple components of the IL-1 signaling pathway.
However, there are still many questions in this field waiting for
further investigation. For example, the functions and regulatory
mechanisms of certain IL-1 family members (e.g., IL-36, IL-37, IL-
1Ra, and IL-1RAP) during KSHV infection or virus-induced
tumorigenesis remain unknown. It is also unclear whether the
intermediates of IL-1 signaling may affect KSHV replication,
especially the “latency to lytic” switch. Furthermore, the efficacy
FIGURE 2 | Schematic diagram of potential mechanisms for KSHV manipulating IL-1 signaling pathway. The brown and green rectangles represent viral and host
genes, respectively. The arrows and bars represent the activation and inhibition, respectively. Notably, the mechanisms of KSHV regulation of IL-33 and IL-36
signaling remain mostly unknown.
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of IL-1 blockade therapy either alone or combined with other
therapies for KSHV-related malignancies needs to be tested. Fully
understanding these questions will shed light on the molecular
mechanisms of KSHV pathogenesis and tumorigenesis and
facilitate the development of more efficacious antiviral and
anticancer treatments.
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