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Abstract: Osteoporosis is a disorder, with a largely unknown pathomechanism, that is often marked
as a “silent thief”, because it usually only becomes undisguised when fractures occur. This implies
that the pathological damage occurs earlier than the sensation of pain. The current authors put
forward a non-contact injury model in which the chronic overloading of an earlier autologously
microinjured Piezo2 ion channel of the spinal proprioceptor terminals could lead the way to re-
injury and earlier aging in a dose-limiting and threshold-driven way. As a result, the aging process
could eventually lead the way to the metabolic imbalance of primary osteoporosis in a quad-phasic
non-contact injury pathway. Furthermore, it is emphasised that delayed onset muscle soreness,
non-contact anterior cruciate injury and osteoporosis could have the same initiating proprioceptive
non-contact Piezo2 channelopathy, at different locations, however, with different environmental risk
factors and a different genetic predisposition, therefore producing different outcomes longitudinally.
The current injury model does not intend to challenge any running pathogenic theories or findings,
but rather to highlight a principal injury mechanism.

Keywords: osteoporosis; delayed onset muscle soreness; non-contact injury; Piezo2 ion channel;
channelopathy; quad-phasic non-contact injury model

1. Introduction

Osteoporosis is a disorder associated with fragility due to the systemic microdeteri-
oration of the bone tissue and is often marked as a “silent thief”, because it usually only
becomes undisguised when fractures occur [1,2]. Delayed onset muscle soreness (DOMS)
is defined by delayed onset soreness, muscle stiffness, loss of force-generating capacity,
reduced joint range of motion and decreased proprioceptive function [3]. Non-contact
anterior cruciate ligament (NC-ACL) injuries comprise approximately 3/4 of all anterior
cruciate ligament (ACL) injuries that occur when the ligament fibres are stretched or par-
tially or completely torn on a non-contact (NC) basis [4]. None of the above disorders
have an entirely known pathomechanism. However, the pathological damage is suspected
earlier than the sensation of pain in all three cases, which implies differing lengths of silent
pathological periods prior to pain manifestation. New hypotheses might provide us with
an explanation for these earlier “silent” courses, not to mention their possible common
origin. The objective of this current study is to apply the quad-phasic non-contact injury
model (Table 1) [5] to osteoporosis where the primary microdamage is suggested to be
the same proprioceptive terminal Piezo2 channelopathy, like in other NC injuries such as
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DOMS or NC-ACL. It is important to note that the current opinion of the authors does
not intend to challenge any earlier pathogenic theories or findings, but rather highlights a
principal non-contact injury mechanism that could eventually evolve into osteoporosis, if
re-injury, environmental risk factors or genetic predisposition are present. Furthermore,
this manuscript intends to facilitate an interdisciplinary approach between physiology,
pathology, neuroscience, endocrinology, rheumatology, orthopaedics and immunology in
order to better understand and improve the management of osteoporosis, as well as to find
even more tailored therapeutic interventions.

Table 1. The quad-phasic non-contact injury model [5].

PIEZO2 MICROINJURY-INDUCED QUAD-PHASIC NON-CONTACT INJURY MODEL [5]
PRIMARY INJURY PHASE
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2. Primary Non-Contact Injury Phase 
The acute compression axonopathy theory of DOMS puts forward that it is a dichot-

omous muscular NC injury where the primary microdamage evolves in the Type Ia pro-
prioceptive terminal of the muscle spindle (MS) [6]. Unaccustomed or strenuous eccentric 
contractions lead the neuromodulator muscle and neighbouring tissue cells to hyperexci-
tation by the Cox2-PGE2 and Cox2-bradykinin-nerve growth factor (NGF) pathways [6]. 
However, when the performance of muscle cells is not sustained sufficiently, then a cog-
nitive-demand-induced acute stress response (ASR) could kick in as a driver [6,7]. Never-
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undergo a mechano-energetic microinjury during an ASR [6]. The eccentric-contractions-
derived superposition of compression forces could have relevance in this microdamage 
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2. Primary Non-Contact Injury Phase

The acute compression axonopathy theory of DOMS puts forward that it is a di-
chotomous muscular NC injury where the primary microdamage evolves in the Type
Ia proprioceptive terminal of the muscle spindle (MS) [6]. Unaccustomed or strenuous
eccentric contractions lead the neuromodulator muscle and neighbouring tissue cells to
hyperexcitation by the Cox2-PGE2 and Cox2-bradykinin-nerve growth factor (NGF) path-
ways [6]. However, when the performance of muscle cells is not sustained sufficiently, then
a cognitive-demand-induced acute stress response (ASR) could kick in as a driver [6,7].
Nevertheless, the terminal arbours of the Type Ia proprioceptive sensory nerves in the
MS could undergo a mechano-energetic microinjury during an ASR [6]. The eccentric-
contractions-derived superposition of compression forces could have relevance in this
microdamage in a dose-limiting, threshold-driven manner [6]. The notion of the exis-
tence of this distinct somatosensory terminal impairment mechanism could be learnt from
chemotherapy, and it could evolve in an acute and chronic way without causing classi-
cal Wallerian degeneration [6,8]. Furthermore, it is proposed that the critical gateway to
pathology could be a silent and transient channelopathy of Piezo2 ion channels [5,9]. It
is noteworthy that these Piezo2 ion channel microinjuries could remain pain-free in cases
when the superseding lengthening contractions are abruptly terminated right after the
initiation of channelopathy [9].
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It is important to note that bones and muscles construct a continuum when it comes to
the neuromodulation and hyperexcitation of the proprioceptive system, not to mention their
similar signalling pathways [10]. Furthermore, the proposed ASR is also bone-derived,
namely osteocalcin-induced [6,11]. Correspondingly, another new theory for NC-ACL
injury argues that the primary injury is also a silent proprioceptive terminal lesion, but in
the periosteum of the medial proximal tibia, like in the case of DOMS [6]. Indeed, similar
primary afferent mechano-sensitive encapsulated endings could be found in the spine
as well [12,13]. Only the secondary harsher tissue damage, derived from the impaired
proprioceptive capacity, could entail actual ACL injury [10]. It is noteworthy that this new
hypothesis could also explain the significant sex differences in the epidemiology of NC-
ACL as neuronal, namely by the pre-ovulatory transient luteinising-hormone-derived NGF-
tropomyosin receptor kinase A (TrkA) signalling pathway [5,10]. This signalling axis could
further facilitate the noxious hyperexcitation of the sensory terminals, rendering it even
more prone to microinjury under an ASR [10]. Moreover, Piezo2 ion channels are mainly
located on proprioceptive and tactile fibres, but a significant proportion of Aδ mechano-
nociceptors in the bone tissue express these channels as well [14]. Accordingly, recent
animal research shows that a group of bone afferent sensory neurons that express Piezo2
and co-express TrkA are the ones that have high affinity for NGF [14]. Moreover, Piezo2
has a role in bone afferent neurons when it comes to noxious mechanical stimulation, not to
mention its role in NGF-induced bone afferent sensitisation to mechanical stimulation [14],
substantiating the hypothesis that Piezo2 is a critical player in these pathologies [5,6,9,10].

The proprioceptive signalling of MSs and Golgi tendon organs (GTOs) is essen-
tial for the non-autonomous morphologic restoration of microfractured bones or remod-
elling [15,16]. Moreover, it is suggested that the primary transient proprioceptive terminal
Piezo2 microinjury concomitant with microfractures impairs the static phase firing encod-
ing of the stretch reflex [7,10,17,18] and correspondingly, this impairment could be realigned
by the dynamic encoding of MSs and GTOs [19,20]. Hence, proprioceptive sensory neurons
are proposed to have a role not only in the guidance of growth and regeneration, but also
remodelling [6,9,10].

3. Secondary Injury Phase

The secondary phase of NC injuries is a harsher tissue damage in a subluxated position
due to impaired proprioception [6,10,21]. C sensory fibre contribution comes into play
in this phase, providing the temporal summation of pain [22]. The parallel that vertebral
compression fractures [10], NC-ACL injury [10], DOMS [6,9] and osteoporosis may pertain
to the same primary proprioceptive microinjury in a dichotomous NC injury mechanism
could carry relevance, especially if we consider the theory that the termination of lengthen-
ing contractions and the lack of harsher secondary tissue damage or compression fractures
after the transient primary injury keep these microinjuries and concomitant microcracks
pain-free [9,10].

Notably, it is hypothesised that the repetitive recurrence of the primary microdamage
could initiate the tertiary injury phase even in the absence of the secondary injury phase [9].
However, C-fibre involvement with harsher tissue damage in the form of fractures, which
is the equivalent of the secondary injury phase, must come into play in a later stage, when
pain sensation becomes part of the clinical picture.

4. Tertiary Injury Phase

The new DOMS and NC-ACL theories also suggest a tertiary phase of the initial
primary Piezo2 channelopathy [9,10]. In the case of DOMS, it is called the repeated bout
effect (RBE), while in the case of NC-ACL it is re-injury and osteoarthritis (OA) [6,9,10,23].
It is noteworthy that earlier aging of the knee joint is the consequence of NC-ACL injury
and that 4/5 of cases develop into OA [24]. In particular, recent findings of OA research are
interesting in regard to osteoporosis. Acid-sensing ion channel 3 (ASIC3) plays a crucial
role in the secondary hyperalgesia of joint inflammation in OA rats [25,26], as it does
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in osteoporosis [1], but not in primary hyperalgesia [25]. Correspondingly, the gradual
upregulation of ASIC3 channels detected in dorsal root ganglion (DRG) primary afferent
neurons of knee joints in OA and the activated immune cells in neural tissues are key
players in the development of secondary hyperalgesia and the degeneration process of
OA [25]. The current authors propose that the repeated or chronic Piezo2 microdamage-
induced upregulation of ASIC3 is the equivalent of the tertiary injury phase [23,25,27]. The
activation and upregulation of ASIC3, together with transient receptor potential cation
channel subfamily V member 1 (TRPV1), are also driven by the release of inflammatory
mediators, NGF and the osteoclast hyperactivity, causing a decrease in extracellular pH [28].

Accordingly, Lin et al., demonstrated in mice that ASIC3 also contributes to mechano-
transduction in proprioceptors [29], as Piezo2 primarily does [30]. Indeed, ASIC-like
acid-induced inward currents persisted in proprioceptive ASIC3 DRG neurons under
this pathological environment [29]. Moreover, ASIC3 channels could also have a longi-
tudinal role in memory formation [31], once activated N-methyl-D-aspartate (NMDA)
receptors open memory pathways, including immune memory on the spinal dorsal horn as
a consequence of the primary Piezo2 microdamage [7,9,10]. In summary, these persistent
ASIC-like currents are suggested to be evoked in osteoporosis as well and sustained by
the subthreshold-imbalanced Piezo Ca2+ currents due to the Piezo2 microinjury-derived
“leakiness” [5,9].

Longitudinally, the microinjured Piezo2 channels in the periosteum, or spine, could
facilitate the gradual upregulation of ASIC3 channels in the DRG under a chronic over-
loaded environment [23]. Furthermore, another consequence of this Piezo2 microdamage
on the periphery of OA could be the upregulation of Piezo1 in the affected neuromodulator
tissues, such as the chondrocytes in a feed-forward mechanism [32]. It is noteworthy that
Piezo1 channels contribute to detecting cell alignment based on their shear stress sensor
capability [33,34]; therefore, this signalling could also be essential for remodelling [23].
Furthermore, it should not be excluded that Piezo1 microinjury could evolve into Piezo2
microinjury gradually in osteoporosis, as is suggested in the paradox continuum of initially
pain-free dry eye disease into neuropathic corneal pain [5], not to mention that the “leak-
iness” to subthreshold-imbalanced Piezo Ca2+ currents due to these Piezo microinjuries
could explain the “calcium stealing” from bones for years before pain evolves due to
fractures [1].

This degenerative process of the tertiary phase is costly in terms of neuro-energetics,
because it uses progressively more synaptic connections and secondary compensatory
microcircuits in the central nervous system (CNS), and as a result facilitates augmented
neuroinflammation in the CNS and the upregulation of cytokines and inflammatory media-
tors on the periphery [6,7,10], not to mention that bone sensory innervation increases with
age [1,35]. Consequently, the progressive activation of NMDA receptors, the activation of
microglia, the overexpression of ASIC3 and TRPV1 ion channels on nociceptive sensory
neurons and the increase in TrkA+ nerve fibres are the consequence of this third NC injury
phase in osteoporosis, leading to changes in spinal cord dorsal horn circuits, as is explained
in the narrative review of Mattia et al. [1]. Central sensitisation mechanisms further involve
the potentiation of NMDA receptor function, the activation of both microglia and astrocytes
and the release of peptides, such as substance P [1,28]. Synaptic gamma-aminobutyric acid
(GABA)-mediated inhibition (both at the pre- and post-synaptic level [36]) could also be
impaired longitudinally by changes in GABA vesicular transport, GABA re-uptake, the
alteration of intracellular chloride concentration and the modification of GABA receptor
composition [37–39]. Indeed, aging women with osteoporotic fracture have significantly
lower GABA levels [40]. However, in the absence of secondary harsher tissue injury or
compression fractures and C-fibre temporal summation, all of these microfractures and
concomitant Piezo channelopathies could remain silent [9].
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5. Quadric Injury Phase

It is important to note that the aging process, also termed inflammaging, could further
augment the tertiary degeneration process both in the CNS and on the periphery, and it
is described by the current authors as the quadric phase of the primary proprioceptive
Piezo2 microinjury [7,10], not to mention that the aging-augmented processes could lead to
suppressed sensory signalling, e.g., the NGF-TrkA axis [41] and osteocalcin [42], paving the
way to osteoporosis. The chronic microinjury of spinal proprioceptive Piezo2 and the aging
process together could accelerate the imbalance of the aforementioned alignment process
and could lead to osteoporotic fractures, in parallel with the imbalance of osteoblastic and
osteoclastic activity [43]. It is important to remark that proprioceptive sensory function is
progressively diminished by aging [44].

6. Future Targeted Therapeutic Interventions

It is important to note that the remodelling process involves the role of interleukin-6
in DOMS, anterior cruciate ligament injury, OA and osteoporosis as well [45–48]. Un-
fortunately, an increased rate of bone remodelling will result in lower bone mass [47].
Accordingly, the elevated interleukin-6 in the above chronic conditions is suggested to
increase the bone remodelling rate. Indeed, the reduction in the elevated serum levels
of interleukin-6 in the above chronic conditions by monoclonal antibodies against the
interleukin-6 receptor or by oxygen-ozone therapy seems to be a promising therapeutic
strategy for the future [46,47].

It was proposed that the chronic somatosensory Piezo2 channelopathy or the perma-
nent unwanted leakiness of these ion channels could be interpreted as “part of wound
healing is kept alive” permanently instead of transiently [5]. Furthermore, it was hypoth-
esised that if canonical Wnt signalling is inhibited by interleukin-6, then the osteogenic
differentiation will be blocked [47]. On the contrary, if the non-canonical Wnt signalling
pathway is induced by interleukin-6, then osteogenic differentiation will be promoted [47].
Correspondingly, mesenchymal stem cell therapy in combination with hyperbaric oxy-
genation treatment is a promising therapeutic approach [49] in order to promote adequate
“wound healing” in chronic Piezo2 channelopathy.

It is noteworthy that not only is pain missing in loss-of-function mutations in Piezo2,
but sensitisation as well [50]. However, the paradox exists in osteoporosis, like in dry eye
disease [5], that it is a pain-free condition in most cases, although it could be regarded as
a pain condition as well [51]. As noted earlier, C-fibre contribution, that is, the secondary
injury phase, and noxious mechanical stimulation are needed for chronic nociceptive and
neuropathic pain evolvement, but the primary injury phase is silent, as is the tertiary injury
phase in the absence of the secondary injury phase. Therefore, not only is the acute or
chronic trauma-related pain management important [51,52], but the prevention of re-injury
and the prevention of overloading Piezo2 channelopathy is recommended [23].

7. Limitations

The current opinion manuscript does not represent a systemic review with limited
evidence, but rather provides a theory about a possible parallel between the quad-phasic
non-contact injury model and the pathomechanism of osteoporosis. Furthermore, it intends
to facilitate an interdisciplinary approach between different disciplines (including physiol-
ogy, pathology, neuroscience, endocrinology, rheumatology, orthopaedics and immunol-
ogy), in order to better understand the pathomechanism and improve the management
of osteoporosis.

8. Conclusions

In summary, the current authors put forward that the chronic overloading of the
previously microinjured Piezo2 of the spinal proprioceptor terminals could lead the way to
re-injury and earlier aging in a dose-limiting and threshold-driven way [10], but the aging
process could eventually lead the way to the metabolic imbalance of primary osteoporosis
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in a quad-phasic non-contact injury pathway. Furthermore, it is emphasised that DOMS,
NC-ACL injury, OA and osteoporosis could have the same initiating proprioceptive Piezo2
microinjury, at different locations, however, with different environmental risk factors and
a different genetic predisposition, therefore producing different outcomes longitudinally.
Taking a neural and interdisciplinary view could promote a better understanding of the
pathomechanism of osteoporosis, which could result in even more precise therapeutic
management in the future.
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