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ADAM = protein with a disintegrin and metalloproteinase domain; ADAMTS = a disintegrin and metalloproteinase domain with thrombospondin
motif; ECM = extracellular matrix; G1 = N-terminal globular domain; GAG = glycosaminoglycan; IC50 = inhibitor concentration that gives 50%
enzyme inhibition; IGD = interglobular domain; IL = interleukin; Ki = inhibition constant; MMP = matrix metalloproteinase; OA = osteoarthritis; RA =
rheumatoid arthritis; TNF-α = tumour necrosis factor alpha.
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Introduction
Cartilage consists of a relatively small number of chondro-
cytes and abundant extracellular matrix (ECM) components.
While numerous macromolecules have been identified in
cartilage, the major constituents are collagen fibrils and
aggrecan, a large aggregating proteoglycan [1]. Collagen
fibrils consisting mainly of type II collagen and, to a lesser
extent, of collagen type IX and type XI form an oriented
meshwork that provides the cartilage with tensile strength.
Aggrecans fill the interstices of the collagen meshwork by
forming large aggregated complexes interacting with
hyaluronan and link proteins. Aggrecan monomers are
approximately 2.5 million Da and consist of a 250-kDa core
protein to which chondroitin sulfate and keratan sulfate gly-
cosaminoglycan (GAG) chains are covalently attached.
Aggrecans are highly hydrated because of their negatively
charged long polysaccharide chains, and thus provide the
cartilage with its ability to resist compressive loads.

Chondrocytes synthesize and catabolize ECM macromole-
cules, while the matrix in turn functions to maintain the
homeostasis of the cellular environment and the structure

of cartilage. In diseases such as osteoarthritis (OA) and
rheumatoid arthritis (RA), degradation of the ECM
exceeds its synthesis, resulting in a net decrease in the
amount of cartilage matrix or even in the complete erosion
of the cartilage overlying the bone at the joint surface.
Although many possible causes of cartilage destruction
have been suggested, such as hypoxic conditions and
oxygen-derived free radicals [2,3], the primary cause of
this process is thought to be an elevation in the activities
of proteolytic enzymes. The loss of aggrecan is consid-
ered a critical early event of arthritis, occurring initially at
the joint surface and progressing to the deeper zones.
This is followed by degradation of collagen fibrils and
mechanical failure of the tissue.

The matrix metalloproteinases (MMPs) have been consid-
ered the main enzymes responsible for degradation of
aggrecan and collagens in cartilage [4]. The expression of
several MMPs is elevated in cartilage and synovial tissues
of patients with RA and OA [4,5]. Those overexpressed in
cartilage (e.g. MMP-3, MMP-13 and MMP-14) are consid-
ered to be key enzymes in the development of OA, as
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Abstract

The loss of extracellular matrix macromolecules from the cartilage results in serious impairment of joint
function. Metalloproteinases called ‘aggrecanases’ that cleave the Glu373–Ala374 bond of the aggrecan
core protein play a key role in the early stages of cartilage destruction in rheumatoid arthritis and in
osteoarthritis. Three members of the ADAMTS family of proteinases, ADAMTS-1, ADAMTS-4 and
ADAMTS-5, have been identified as aggrecanases. Matrix metalloproteinases, which are also found in
arthritic joints, cleave aggrecans, but at a distinct site from the aggrecanases (i.e. Asn341–Phe342). The
present review discuss the enzymatic properties of the three known aggrecanases, the regulation of
their activities, and their role in cartilage matrix breakdown during the development of arthritis in relation
to the action of matrix metalloproteinases.
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characteristic lesions develop in the centre of the articular
cartilage surface, well away from the synovial membrane,
with no infiltration of inflammatory cells [6]. A recently dis-
covered group of metalloproteinases called ‘aggre-
canases’, however, are now thought to also play an
important role in aggrecan breakdown. This topic has
been covered by several recent reviews [7–11]. In the
present article, we describe recent progress in the field
and discuss the role of aggrecanases in cartilage matrix
degradation in relation to the actions of MMPs.

Discovery of aggrecanases
One well-characterized site that MMPs cleave in the
aggrecan core protein is the Asn341–Phe342 bond in the
interglobular domain (IGD) between the N-terminal globu-
lar domain (G1) and the second globular domain (G2)
[12–14] (see Fig. 1). In 1991, however, Sandy et al. [15]
reported that when bovine articular cartilage was treated
with IL-1, an inflammatory cytokine that evokes cartilage
breakdown, aggrecan cleavage occurred at the
Glu373–Ala374 bond in the IGD, but not at the
Asn341–Phe342 bond. The enzyme responsible for this new
proteolytic activity was referred to as ‘aggrecanase’.

Additional hydrolysis found at TAQE1819 ~ AGEG and
VSQE1919 ~ LGQR (~ denoting the scissile bond) was

also thought to be aggrecanase mediated [16,17]. Aggre-
can fragments resulting from the cleavage of the
Glu373–Ala374 bond accumulate in the synovial fluids of
patients with OA and inflammatory arthritis [18,19], empha-
sizing the potential importance of aggrecanases in vivo.

The first aggrecanase, called ‘aggrecanase 1’, was
reported by a research group at DuPont in 1999 [20],
who subsequently reported a second enzyme, ‘aggre-
canase 2’ [21]. Aggrecanase 1 and aggrecanase 2 are
now designated as ADAMTS-4 and ADAMTS-5, respec-
tively. They are zinc metalloproteinases whose structure
and domain arrangements are homologous to ADAMTS (a
disintegrin and a metalloproteinase domain with throm-
bospondin motifs) proteins (see [22,23]). More recent
studies have shown that ADAMTS-1 also has aggre-
canase activity [24,25]. ADAMTS-1 transcripts are found
in cartilage [26].

Aggrecanase structure and function
The ADAMTSs and the proteins with a disintegrin and
metalloproteinase (ADAMs) belong to the metallopepti-
dase family M12 [27]. The metalloproteinase domains of
ADAMs are related to snake venom metalloproteinases or
reprolysins. There are currently 30 ADAM genes [28] and
18 ADAMTS genes known in humans [29].

Figure 1

Aggrecan cleaved by aggrecanases and matrix metalloproteinases (MMPs). Aggrecan core protein has three globular domains (G1, G2 and G3).
The N-terminal G1 domain interacts with hyaluronan with the help of a link protein. G1-VDIPEN341 and G1-NITEGE373 are G1-bearing N-terminal
products generated by MMPs and aggrecanases, respectively. Sites cleaved by aggrecanases are shown as (A)–(E), and sites cleaved by MMPs
are shown as 1–6. The dotted arrows are sites predicted based on SDS-PAGE analysis of Little et al. [90] and of Sandy and Verscharen [96]. KS,
keratansulfate rich region; CS, chondroitinsulfate rich region. Residues and numbering in parentheses indicate bovine sequences.
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ADAMs are type I transmembrane proteins with extracellu-
larly located N-termini. Their genes encode an N-terminal
signal peptide, a relatively large prodomain (about 170
amino acids), a metalloproteinase domain (about 230
amino acids), a disintegrin domain, a cysteine-rich region
usually containing an epidermal growth factor-like domain,
and a transmembrane domain followed by a cytoplasmic
tail at the C-terminus (Fig. 2). The metalloproteinase
domains are well conserved, but only 19 out of 30 have
the zinc binding catalytic site consensus sequence
HEXXHXXGXXH. Other ADAMs lacking this motif are
likely to be proteolytically inactive.

Biological functions of many ADAMs are not clearly under-
stood. Among those whose function is known are:
ADAM-1 and ADAM-2 (fertilin α and fertilin β), which play
a role in sperm–egg fusion during fertilization [30];
ADAM-12 (metrin α), which participates in myoblast fusion
[31] and which releases heparin-binding epidermal growth
factor from the plasma membrane [32]; ADAM-10
(Kuzbanian in Drosophila), which processes Notch and
Notch ligand Delta during neural development [33,34];
and ADAM-17 (tumour necrosis factor alpha [TNF-α] con-
verting enzyme), which releases TNF-α, TNF-α receptors
and other cell surface molecules [35,36].

ADAMTS proteins are related to ADAMs, but they are not
membrane-anchored proteins as they lack a transmembrane

domain (Fig.2). The common domain modules of ADAMTSs
are a signal peptide, a prodomain, a metalloproteinase
domain, a disintegrin domain, a thrombospondin type I motif,
a spacer domain, and a second thrombospondin module of
a variable number of repeats at the C-terminal region. Some
ADAMTSs have a PLAC (protease and lacunin) domain
[37] and a CUB (complement C1r/C1s–urchin epidermal
growth factor–bone morphogenetic protein-1) domain [38]
at the C-terminus (see Fig.2).

ADAMTSs have highly selective proteolytic activities
(Table 1). ADAMTS-2, ADAMTS-3 and ADAMTS-14 have
N-procollagen processing activity [39–41]. ADAMTS-13
cleaves von Willebrand factor, and a decrease in
ADAMTS-13 activity results in congenital and acquired
thrombotic thrombocytopaenic purpura [42–44].
ADAMTS-1 (METH-1) has been identified as an IL-1-
inducible gene in mice, and ADAMTS-1 and ADAMTS-8
(METH-2) have anti-angiogenic activity [45]. The prote-
olytic activity of ADAMTS-8 has not been investigated.
The functions of other ADAMTSs remain unknown.

Catalytic activity of aggrecanases
Besides the Glu373–Ala374 bond in the IGD, ADAMTS-4
and ADAMTS-5 cleave at least four other sites in the
chondroitin sulfate-rich CS-2 region of bovine aggrecan:
GELE1480 ~ GRGD, KEEE1667 ~ GLGS, TAQE1771 ~
AGEG, and VSQE1871 ~ LGQR [46–48]. These sites are

Figure 2

Domain arrangements of ADAMTS, ADAMs and MMPs. N-linked glycosylation sites (�) and post-translational processing sites of ADAMTS-1 and
ADAMTS-4 (↑) are indicated. Some ADAMTSs have PLAC and CUB domain at the C terminus. ADAMs are type I membrane proteins but
ADAMTSs lack a transmembrane domain. MMP-2 and MMP-9 have three repeats of a fibronectin type II-like domain and membrane-type MMPs
have a transmembrane domain and a cytoplasmic tail. SP, signal peptide; Dis, disintegrin-like domain; TS, thrombospondin type I motif; Cys,
cysteine-rich domain; PLAC, proteinase and lacunin domain; CUB, complement C1r/C1s–urchin epidermal growth factor–bone morphogenetic
protein-1 domain; TM, transmembrane domain; Fn, fibronectin.



97

much more readily cleaved than the Glu373–Ala374 bond
[46,47] (Fig. 1). The structural requirements for different
rates of hydrolysis are not known, but they may be influ-
enced by the location of polysaccharide chains as well as
of amino acid sequences around the cleavage site in the
core protein. ADAMTS-1 cleaves the Glu1480–Gly1481 and
Glu1871–Leu1872 bonds of bovine aggrecan [25]. In addi-
tion, ADAMTS-1 [25] and ADAMTS-4 [49] hydrolyse the
Asn341–Phe342 bond at a high enzyme to substrate ratio,
suggesting that these two ADAMTSs may also cleave at
the so-called ‘MMP-cleavage site’. Other substrates
include versican and α2-macroglobulin for ADAMTS-1
[50,51], and brevican and versican for ADAMTS-4
[50,52]. When the ‘bait region’ of α2-macroglobulin is
hydrolyzed by a proteinase, α2-macroglobulin entraps the
enzyme and sterically hinders it from accessing large
protein substrates [53]. It is therefore likely that
α2-macroglobulin is an endogenous inhibitor of
ADAMTS-1.

ECM components such as collagens, fibronectin and
thrombospondin, and general proteinase substrates such
as casein and gelatin are not cleaved by ADAMTS-1,
ADAMTS-4 or ADAMTS-5 [47]. The highly selective
specificity of these enzymes can be attributed to the non-
catalytic domains. Tortorella et al. [54], who reported that
the ADAMTS-4 proteinase domain alone does not cleave
aggrecan core protein, suggest that the thrombospondin
type I domain is critical for aggrecan recognition and
cleavage. The cleavage of the Glu373–Ala374 bond in the
IGD by aggrecanases is enhanced by the presence of
keratan sulfate chains in this domain [55]. Little activity is
detected when the full-length ADAMTS-4 is incubated
with the deglycosylated aggrecan [54], indicating that
interaction of polysaccharide chains and the enzyme is
important for the aggrecanase activity. A study using a
recombinant IGD and its deletion mutants has indicated
that at least 32 residues at the N-terminal side of the

cleavage site (P residues of substrate) and 13 residues at
the C-terminal side (P′ residues) are required for aggre-
canases to cleave the Glu373–Ala374 bond [56]. MMP-
cleaved IGD is no longer susceptible to aggrecanase,
whereas aggrecanase-cleaved IGD is hydrolyzed by
MMPs at the Asn341–Phe342 bond [57]. Not only the
primary sequence, but also the secondary structure of the
IGD thus appears to be critical for substrate recognition
by aggrecanases.

Post-translational processing of ADAMTSs
ADAMTSs are synthesized as pre-proproteins and are tar-
geted to the secretory pathway. All members possess a
furin cleavage site just before the proteinase domain, and
therefore they are most probably activated intracellularly
by a proprotein convertase and secreted as active
enzymes. ADAMTS-1 may undergo further processing
extracellularly, with a C-terminal part of the spacer domain
and the two thrombospondin type I domains being
removed [58] (see Fig. 2). This processing reduces both
the affinity of the enzyme for heparin and the ability of the
enzyme to suppress endothelial cell proliferation [58]. The
mature full-length ADAMTS-4 (75 kDa) is also further
processed extracellularly to 60-kDa and 50-kDa forms by
MMPs [59]. These additional processing events greatly
increase the aggrecanase activity of the enzyme [59], indi-
cating that post-translational processing may be an impor-
tant regulatory mechanism for this enzyme in vivo.

TIMP-3 as an endogenous inhibitor of
aggrecanases
The aggrecanase activity from bovine cartilage is inhibited
by TIMP-1 with an IC50 (inhibitor concentration that gives
50% enzyme inhibition) of 210 nM [60]. ADAMTS-1 is
inhibited by TIMP-2 and TIMP-3, but only a very high con-
centration (500 nM) was tested [25]. TIMP-3 is a potent
inhibitor of ADAMTS-4 and ADAMTS-5 [61,62]. The
recombinant N-terminal inhibitory domain of human
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Table 1

Biological activities of ADAMTSs

Enzyme Substrate Activity Reference

ADAMTS-1 Aggrecan, versican, α2-macroglobulin Cleavage of proteoglycan core proteins, anti-angiogenic [25,45,50,51]

ADAMTS-2 Procollagen I, procollagen II Processing of N-propeptide of procollagen [39]

ADAMTS-3 Procollagen II Processing of N-propeptide of procollagen [40]

ADAMTS-4 Aggrecan, versican, brevican Cleavage of proteoglycan core proteins [20,52,50]

ADAMTS-5 Aggrecan Cleavage of aggrecan core protein [21]

ADAMTS-8 Anti-angiogenic [45]

ADAMTS-13 von Willebrand factor Reduced activity results in thrombotic Thrombocytopaenic purpura [43]

ADAMTS-14 Procollagen I Procollagen N-proteinase [41]

ADAMTS, a disintegrin and metalloproteinase domain with thrombospondin motif.
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TIMP-3 inhibits ADAMTS-4 and ADAMTS-5 with Ki values
in the subnanomolar range, considerably lower than those
for MMPs [61], indicating that TIMP-3 is a potent endoge-
nous inhibitor of aggrecanase 1 and aggrecanase 2.

TIMPs are generally considered specific inhibitors of
MMPs, but TIMP-3 is exceptional in that it also inhibits
some other metalloproteinases, such as TNF-α converting
enzyme (ADAM-17) [63], ADAM-10 [64] and ADAM-12
[65]. Another unique feature of TIMP-3 is its ability to
tightly bind to negatively charged polysaccharides [66].
TIMP-3 is expressed in skeletal tissues during develop-
ment of mouse embryos [67] and in normal bovine and
human chondrocytes and synoviocytes, and the levels of
expression are elevated in human OA synovium [68].
TIMP-3 expression in cultured chondrocytes, and synovial
fibroblasts is upregulated by transforming growth factor
beta [69] or oncostatin M [70]. Treatment of human
rheumatoid synovial fibroblasts with the anti-arthritic agent
calcium pentosan polysulfate increases TIMP-3 protein
levels, without altering its mRNA levels [71]. This increase
of TIMP-3 is due to an enhanced transition of the mRNA
without affecting the stability and secretion of newly syn-
thesized TIMP-3 [71]. The increase of TIMP-3 production
is further augmented by cotreatment of the cells with IL-1
[71]. Calcium pentosan polysulfate inhibits the IL-1-stimu-
lated and retinoic acid-stimulated aggrecan breakdown in
bovine articular cartilage [72]. This effect is probably due
to an elevated production of TIMP-3 in the cartilage [71]
and to direct inhibition of aggrecanase activity [73].
Increased levels of TIMP-3 may therefore be beneficial for
protecting cartilage from degradation.

Synthetic aggrecanase inhibitors
Synthetic inhibitors designed for MMPs often inhibit
aggrecanase activity [74], but some selective inhibitors for
aggrecanase have been reported recently. Succinate-
based hydroxamic acid compounds containing 3-hydrox-
yphenyl and cis-(1S)-(2R)-amino-2-indanol moieties have
good selectivity for aggrecanases [75]. The best com-
pound has an IC50 value of 12 nM against aggrecanase,
with the Ki values for MMP-1, MMP-2 and MMP-9 in a
micromolar range (4–33 µM), and it is orally available [75].

Compounds with a biphenylmethyl group in the P1′ posi-
tion show improved potency for aggrecanase with IC50
values in the low nanomolar range [76]. These com-
pounds have excellent selectivity over MMP-1 and MMP-9,
but only moderate selectivity over MMP-2. Information
about other MMPs and specific ADAMTSs is not available
as the aggrecanase enzyme used was not defined in these
studies, but once the inhibitory activities of these com-
pounds against each aggrecanase (ADAMTS-1,
ADAMTS-4 and ADAMTS-5) and other MMPs are known,
they may be useful agents to test the role of aggrecanases
and MMPs in various models of cartilage degradation.

Regulation of aggrecanase activity and the
expression of ADAMTS-1, ADAMTS-4 and
ADAMTS-5
Aggrecanase activity was first described in bovine articu-
lar cartilage treated with IL-1 [15], but it is also enhanced
in cartilage treated with TNF-α, retinoic acid [7], IL-17
[77], ceramide [78] or the 45 kDa fibronectin fragment
containing collagen/gelatin binding motifs [79]. It is there-
fore reasonable to consider that some ADAMTS genes
are transcriptionally regulated. However, reports describ-
ing mRNA levels of aggrecanases in response to inductive
stimuli are not consistent at present.

For example, the treatment of normal human cartilage in
culture with IL-1, TNF-α or retinoic acid increases aggre-
canase activity, but it has no effect on mRNA levels for
ADAMTS-1, ADAMTS-4 and ADAMTS-5 [26]. This sug-
gests that enhanced aggrecanase activity may be regulated
post-transcriptionally or that the increased activity is due to
unidentified aggrecanases. On the other hand, human chon-
drocytes [80], bovine chondrocytes [81], bovine articular
cartilage [81,82] and porcine articular cartilage [83] treated
with IL-1 increase ADAMTS-4 mRNA levels. In the case of
immortalized human chondrocytes, however, the levels of
ADAMTS-4 mRNA increase only if treated with IL-1 and
oncostatin M, but not with either cytokine alone [84].
Several studies indicate that IL-1 has little or no effect on
ADAMTS-5 mRNA levels [80–82]. Two studies report that
IL-1 treatment increases ADAMTS-5 mRNA levels in
porcine articular cartilage [83] and in immortalized human
chondrocytes [84]. The variability and inconsistency among
these reports may indicate that the regulatory mechanisms
of ADAMTS-4 and ADAMTS-5 transcription and translation
depend on the species and age of the tissue and culture
conditions of isolated cells. The stability and half-life of the
mRNA may also affect results.

Synovial tissues in culture also produce and release
soluble aggrecanase activity [48]. However, the treatment
of bovine synovium with IL-1 or retinoic acid does not alter
mRNA levels of ADAMTS-4 and ADAMTS-5 [48]. Similar
results have been obtained for human synoviocytes
treated with IL-1 or TNF-α [85], even though these
cytokines are potent inducers of MMP production in syn-
oviocytes. Nevertheless, Yamanishi et al. [85] found that
transforming growth factor beta significantly increases
ADAMTS-4 mRNA in human synoviocytes along with
increasing the production of a 90-kDa protein thought to
be the precursor form of the enzyme. ADAMTS-5 mRNA is
constitutively produced in both RA and OA synoviocytes,
and the 70-kDa protein is detected in cell lysates, but
neither mRNA nor protein levels are regulated by trans-
forming growth factor beta [85]. These observations again
emphasize that the regulation of ADAMTS-4 and
ADAMTS-5 genes in response to cytokines and growth
factors depends on the cell type.

Arthritis Research & Therapy    Vol 5 No 2 Nagase and Kashiwagi
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Other important findings regarding the regulation of
aggrecanase activity have been made by Caterson and
colleagues, who reported that cyclosporin A and n-3 fatty
acids downregulate ADAMTS-4 and/or ADAMTS-5
mRNAs [81,83,86]. Treatment of porcine articlar cartilage
with cyclosporin A abrogates the IL-1-enhanced
ADAMTS-4 and ADAMTS-5 mRNAs [83]. Supplementa-
tion of bovine chondrocytes with n-3 fatty acid reduces
the IL-1-inducible mRNAs for ADAMTS-4 and cyclooxyge-
nase 2, but not those for ADAMTS-5 [81]. A similar sup-
pressive effect on ADAMTS-4 mRNA is seen in human
OA cartilage treated with n-3 fatty acid along with reduc-
tion of aggrecanase activity in the cartilage [86]. Supple-
mentation with n-3 fatty acid also reduced mRNA levels of
MMP-3, MMP-13, cyclooxygenase 2, 5-lipoxygenase,
5-lipoxygenase activating protein, TNF-α, IL-1α and IL-1β
[86]. The mechanisms by which these genes are regu-
lated by n-3 fatty acid and cyclosporin A are not known,
but elucidation of such mechanisms could suggest useful
ways to manipulate expression of the genes associated
with inflammation and joint destruction.

Aggrecanases versus MMPs in cartilage
degradation
Because several MMPs are elevated in arthritic joints
[4,5], and because the MMP-generated G1-VDIPEN341

fragment and the aggrecanase-generated G1-NITEGE373

fragment are found in cartilage [87] and synovial fluids
[18,19,88] from patients with RA and OA, there is a
debate regarding which group of enzymes plays the major
role in aggrecan degradation under biological and patho-
logical conditions. In short-term in vitro models of cartilage
explants stimulated with IL-1, TNF-α or retinoic acid,
aggrecanases appear to be the primary enzymes that
degrade aggrecan, at least in the first week [89,90]. Little
contribution is made by MMPs although the mRNA levels
of MMP-3 and MMP-13 are elevated [89]. After about
3 weeks of incubation, however, MMP-dependent cleav-
age of aggrecan core protein can be detected, at which
time collagen breakdown also starts to occur [90].

Fosang et al. [91] reported that porcine cartilage treated
with IL-1 or retinoic acid for 5 days increased the MMP-
generated aggrecan fragments in cartilage, but a later
report indicated that this is an experimental artefact [92].
Thus, in the in vitro cartilage explant systems, the initial
enzymes responsible for degrading aggrecan are aggre-
canases, followed by MMPs at a later stage [90]. It is
notable, however, that the responses to catabolic stimuli
differ in various tissues [93]. Bovine nasal cartilage stimu-
lated with IL-1 or retinoic acid releases GAG primarily due
to aggrecanase. In human cartilage, little GAG release is
seen with IL-1, but aggrecanase-dependent GAG release
is seen with retinoic acid [93]. By contrast, treatment of
foetal bovine epiphyseal cartilage with retinoic acid, but
not with IL-1, releases GAG without degrading the core

protein [93]. This novel mechanism of GAG release is yet
to be investigated.

Both G1-VDIPEN341 and G1-NITEGE373 fragments
remain in the cartilage by interacting with hyaluronan, and
they can be detected by antibodies detecting the C-termi-
nal neoepitope of each fragment (Fig. 1). Using this
approach, both MMPs and aggrecanases are shown to
contribute to the lysis of aggrecan at distinct sites during
the development of the secondary ossification centre in
the cartilaginous epiphysis of rat long bone [94]. In normal
human cartilage, both neoepitopes are also found and
increase with age, but they remain at a steady state after
the age of 20–30 years [87]. This probably reflects the
much slower turnover rate of the G1 domain (0.027/year
with a half-life of 25 years) compared with that of the large
aggrecan monomer (0.206/year with a half-life of
3.4 years) [95]. The concentration of the MMP-generated
VDIPEN neoepitope in adult joint cartilage represents
15–20% of the resident aggrecan molecules within the
matrix, and the proportion of G1-VDIPEN in OA and RA
cartilage is about the same as in adult joint cartilage,
although high levels of staining are seen in areas of carti-
lage damage [87]. The distribution of the aggrecanase-
generated NITEGE neoepitope is similar to the VDIPEN
neoepitope in most cases, but in some cases the NITEGE
neoepitope is detected in regions where the VDIPEN
neoepitope is not found [87], indicating that two groups of
enzymes may function at different sites in cartilage.

More recent studies by Sandy and Verscharen [96] have
indicated that normal human adult cartilage contains at
least seven main G1-bearing species, which include the
full-length, G1-NITEGE373 and G1-VDIPEN341 fragments,
and four other fragments (90 kDa, 110 kDa, 160 kDa and
250 kDa after deglycosylation). The latter four fragments
(see Fig. 2 for the potential cleavage sites) represent at
least 50% of the total core protein, and they are most
probably generated by MMPs in vivo. Interestingly, the
core protein composition in the cartilage does not change
in OA cartilage. Synovial fluids, on the other hand, contain
primarily the fragments generated by aggrecanases, and
fluids from patients with late-stage OA contain more
excessively cleaved fragments. In acutely injured joints
there is a marked increase in the ratio of G1-NITEGE to
G1-VDIPEN both in the cartilage and synovial fluids.
Based on these observations, these investigators propose
that excessive aggrecanase activity is destructive to carti-
lage matrix, whereas MMP activity is nondestructive since
it trims mostly the C-terminal region of the aggrecan mole-
cule and much of the GAG-bearing product is retained in
the tissue [96] (see Fig. 1).

Some in vivo models of arthritis indicate that MMPs may
participate in cartilage destruction. In antigen-induced
arthritis and collagen-induced arthritis mouse models,

Available online http://arthritis-research.com/content/5/2/94



100

NITEGE neoepitopes are present, but VDIPEN neoepi-
topes are not, during the early phase of aggrecan deple-
tion [97]. VDIPEN neoepitopes are detected in the
antigen-induced arthritis model when aggrecan degrada-
tion has progressed, and this coincides with collagenase
cleavage of type II collagen [98]. However, cartilage from
MMP-3(–/–) mice exhibits neither VDIPEN neoepitopes nor
collagenase-cleaved neoepitopes during antigen-induced
arthritis, but proteoglycan depletion occurs to a similar
extent in MMP-3(–/–) and wild-type mice [98]. The proba-
ble mediators of aggrecan degradation are aggrecanases.
Nevertheless, cartilage destruction was not observed in
MMP-3(–/–) mice even 2 weeks after arthritis induction,
suggesting that MMP-3 may play a key role in later pro-
gression of cartilage erosion in the antigen-induced arthri-
tis model. By contrast, in the more severe
collagen-induced arthritis model, MMP-3(–/–) mice develop
arthritis to a similar extent as the wild-type mice, and there
is no obvious decrease of VDIPEN epitope [99]. This
activity is most probably due to the induction of other
MMPs. It is also possible that ADAMTS-1 and ADAMTS-4
[25,49] or cathepsin B [100] released from chondrocytes,
in part, participate in this process.

STR/ort mice spontaneously develop OA in the medial
tibial cartilage of the knee joint. The lesions are not
accompanied by inflammation and they closely resemble
those in the knee of human OA [101]. In nonarthritic joints,
MMP and aggrecanase neoepitopes map to different loca-
tions in cartilage, suggesting that two groups of enzymes
function at different sites in normal turnover of aggrecan
[102]. When the disease progresses, distributions of
VDIPEN and NITEGE neoepitopes become similar, sug-
gesting that both MMPs and aggrecanases play a role in
cartilage destruction in STR/ort mice [102].

Concluding remarks
Three ADAMTSs have been identified as aggrecanases.
Aggrecan products generated by these metallopro-
teinases are found in normal, OA and RA cartilage, and in
synovial fluids, supporting the notion that these enzymes
participate in aggrecan catabolism in the tissue. Since
the ADAMTSs have been only recently discovered,
however, limited information is available regarding the
biological and pathological significance of these
enzymes. It is yet to be investigated which and to what
extent these ADAMTSs are responsible for cartilage
degradation in vivo. It is also not known whether other
ADAMTSs can degrade the aggrecan core protein. The
ADAMTSs have highly selective substrate specificities,
seemingly associated with the noncatalytic domains of
these enzymes, as exemplified by ADAMTS-4. An under-
standing of the molecular interactions mediating such
specificities will shed light on the mechanism of action of
ADAMTSs on aggrecan and may suggest novel ways of
inhibiting aggrecan breakdown.

The regulation of various ADAMTS genes in articular carti-
lage needs further investigation since data on the expres-
sion patterns of these enzymes in response to stimulatory
factors are variable. Aggrecanases are also expressed in
other tissues [21]. The expression of ADAMTS-1 mRNA
increases in the injured motor neurons [103], and aggre-
canase-mediated degradation of nerve tissue proteogly-
cans is seen in mouse brain and peripheral nerves [104],
in developing and adult rat spinal cord, and after injury
[105]. Levels of ADAMTS-4 mRNA increase in astrocytes
treated with β-amyloid [106]. These observations indicate
that aggrecanases also play an important role in the catab-
olism of aggrecan and other aggrecan-like molecules in
normal nerves and in neuronal tissue remodelling. Little is
known about the promoter regions of ADAMTSs or about
the enhancer elements that increase expression. Further
studies on this topic may help explain tissue- and age-
dependent aggrecanase expression.

Several lines of evidence have been provided that MMPs
also function as aggrecan-degrading enzymes in vivo.
However, it is yet to be investigated whether MMPs func-
tion primarily in the normal turnover of aggrecan or
whether they are actively involved in cartilage degradation
during disease progression. Elevated levels of MMPs
including MMP-3 and MMP-13 are found in OA cartilage,
and levels of a number of other MMPs are increased in the
rheumatoid synovium, but they are produced as inactive
zymogens. Once activated, they may also participate in
aggressive aggrecan degradation. As the disease pro-
gresses, the local pH of the cartilage may fall [107], and
cathepsin B, cathepsin L [108] and cathepsin K [107]
from chondrocytes may participate in further cartilage
destruction. Several proteinases are therefore likely to be
involved in cartilage destruction in the advanced stages of
arthritis. To further advance our understanding of the
precise in vivo functions of these proteinases in cartilage
degradation during the progression of OA and RA, selec-
tive inhibitors of each enzyme and the deletion of specific
proteinase genes may be necessary. The information
obtained by such experiments may also provide useful
insights for developing therapeutic agents to prevent pro-
gressive destruction of the cartilage matrix.
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