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Abstract

In the era of precision medicine, analyzing the transcriptomic profile of patients is essential

to tailor the appropriate therapy. In this study, we explored transcriptional differences

between two invasive breast cancer subtypes; infiltrating ductal carcinoma (IDC) and lobular

carcinoma (LC) using RNA-Seq data deposited in the TCGA-BRCA project. We revealed

3854 differentially expressed genes between normal ductal tissues and IDC. In addition,

IDC to LC comparison resulted in 663 differentially expressed genes. We then focused on

DNA repair genes because of their known effects on patients’ response to therapy and resis-

tance. We here report that 36 DNA repair genes are overexpressed in a significant number

of both IDC and LC patients’ samples. Despite the upregulation in a significant number of

samples, we observed a noticeable variation in the expression levels of the repair genes

across patients of the same cancer subtype. The same trend is valid for the expression of

miRNAs, where remarkable variations between patients’ samples of the same cancer sub-

type are also observed. These individual variations could lie behind the differential response

of patients to treatment. The future of cancer diagnostics and therapy will inevitably depend

on high-throughput genomic and transcriptomic data analysis. However, we propose that

performing analysis on individual patients rather than a big set of patients’ samples will be

necessary to ensure that the best treatment is determined, and therapy resistance is

reduced.

Introduction

Breast cancer is the most frequent cancer in women and the second most common cancer

overall. Incidence rates vary worldwide from 19.3 per 100,000 women in Eastern Africa to 89.7
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per 100,000 women in Western Europe [1]. In Egypt, it is the most prevalent cancer among

women (35.1%), and the second within the entire population (17.9%) [2]. Breast cancer is a

widely heterogeneous disease as it is classified into multiple subtypes varying in clinical and

molecular behavior, consequently leading to distinct prognosis and treatment inferences [3].

The most common histological subtypes of breast cancer are the invasive infiltrating ductal

carcinoma (IDC) and lobular carcinoma (LC). Their incidence among women account for

approximately 80% in case of IDC and 15% in LC [4,5].

IDC and LC differ on the molecular level and clinicopathological features. 90% of LC

patients express estrogen receptor (ER) more often than IDC. In addition, 50–70% of LC

patients are progesterone receptor positive (PR+), which is higher than IDC. Yet, only 10%

of LC are human epidermal growth factor receptor 2 positive (HER2+) [5]. LC also displays

a distinct genomic profile when compared to IDC. This includes a higher frequency of

CDH1, PIK3CA, HER2, HER3, TBX3 and FOXA1 mutations in addition to more frequent

loss of phosphatase and tensin homolog (PTEN) and amplifications of ESR1 [6–8]. A differ-

ential gene expression pattern between the two subtypes was also detected. Genes related to

cell adhesion and invasion are among the most significant differentially expressed genes

between the two subtypes [9]. LC has lower expression of E-cadherin; encoded by CDH1,

which is considered the most significant discriminator between the two subtypes. E-cad-

herin plays a role in cell adhesion, growth and migration and is regarded as a tumor sup-

pressor in breast cancer [10]. This suggests that the two subtypes may follow diverse

mechanisms for invasive growth, where it is promoted in LC by the loss of E-cadherin,

while in IDC by the overexpression of cathepsins and osteopontin, and down-regulation of

thrombospondin [4]. The expression of more genes; ERBB2, p21, SORBS1, VWF, AOC3,

MMRN, ITGA7, CD36, and ANXA1, were also found to be discriminative between LC and

IDC [5]. On the other hand, well-differentiated IDC and LC express some genes involved

in proliferation and cell cycle (cyclin D1, p16 and p27), apoptosis (MIB1 and BCL2),

hypoxia response (HIF-1 alpha) and DNA damage response (MDM2) in a similar manner

[11–13].

Defects in DNA repair proteins have long been associated with the development and pro-

gression of breast cancer [14]. Matta et al. has shown that DNA repair capacity in women with

breast cancer reduces by 60% [15]. Around 25–40% of breast cancers have deficiency in

homologous recombination (HR) and approximately 25% have Fanconi anemia-BRCA

(FA-BRCA) repair pathway deficiency [16]. Moreover, 0.8–1.7% of breast cancers in women

show defects in mismatch repair pathway (MMR) [17,18]. Single nucleotide polymorphisms

(SNPs) in the XRCC1 and APE1 base excision repair (BER) genes have also been reported to

increase the risk of breast cancer on the level of individuals. However, no population specific

data was reported [19,20]. Nucleotide excision repair (NER) deficiency has also been associ-

ated with early stage breast cancer. It increases breast cancer risk in women exposed to ciga-

rette smoke [21,22]. Furthermore, the ATM mutations account for more than 7% of breast

cancer patients. It was additionally estimated that heterozygous carriers of ATM mutations

have a two-fold higher risk of breast cancer [23–25].

Despite the rigorous analyses of DNA repair genes in breast cancer, the transcriptomic

changes of DNA repair genes in IDC and LC are not well studied. In this study, we focused on

transcriptomic analysis of IDC and LC patient tumors to reveal the expression profile of DNA

repair genes in these two breast cancer subtypes. Despite showing distinct transcriptomic pro-

files, to our surprise, the DNA repair genes were similarly expressed in both IDC and LC. Nev-

ertheless, we stress on the importance of taking individual variations into consideration upon

analyzing DNA repair genes in cancer patients.
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Methodology

Data retrieval

Both RNA sequencing (RNA-seq) and microRNA sequencing (miRNA-seq) data were

retrieved from The Cancer Genome Atlas—Breast Invasive Carcinoma (TCGA-BRCA) project

(accession date: March 05, 2020) in the format of HTSeq-Counts for RNA-seq and BCGSC

miRNA Profiling text files for miRNA-seq. The focus of this study is on females with ductal

and lobular neoplasms. We further selected the cases with either invasive ductal carcinoma

(IDC) or lobular carcinoma (LC) using the clinical datasheet of the TCGA-BRCA project. The

data included 947 cases with both RNA-seq and miRNA-seq data, and 17 cases with RNA-seq

data only (total of 964 cases). The 964 cases contributed 1,063 RNA-seq samples (89 normal_-

ductal, 771 IDC, and 203 LC) and 1,044 miRNA-seq samples (82 normal_ductal, 760 IDC, and

202 LC). Note that 7 RNA-seq and 6 miRNA-seq normal lobular samples were excluded

because of the small sample size. All the following analyses were done via R version 4.0 [26]

and the R-scripts are all available at the GitHub repository.

Identification of genes involved in DNA repair pathways using

REACTOME database

The 310 genes involved in 12 DNA repair pathways in Homosapiens were gathered from the

Reactome database [27]. Those pathways are:

1. BER Participating Molecules [R-HSA-73884].

2. DNA Bypass Participating Molecules [R-HSA-73893].

3. DNA damage Reversal Participating Molecules [R-HSA-73942].

4. DNA double strand break response Participating Molecules [R-HSA-5693606].

5. Fanconi Anemia Participating Molecules [R-HSA-6783310].

6. HDR through HRR alone Participating Molecules [R-HSA-5693567].

7. HDR through HRR and SSA Participating Molecules [R-HSA-5693567].

8. HDR through MMEJ Participating Molecules [R-HSA-5685939].

9. HDR through SSA Participating Molecules [R-HSA-5693567].

10. MMR Participating Molecules [R-HSA-5358508].

11. NER Participating Molecules [R-HSA-5696398].

12. Non-homologous end joining Participating Molecules [R-HSA-5693571]

� Note: No proteins existed in pathway 9 only, as all the players that function in HDR

through SSA, play a role in other pathways.

Differential gene expression and miRNAs analysis

RNA-seq data obtained consisted of the expression raw counts for 60483 transcripts. The org.

Hs.eg.db R package (version 3.11.4) was used to convert the Ensemble gene ID to Gene symbol

resulting in 25531 genes symbols. The miRNA-seq data obtained consisted of the expression

raw counts for 1881 miRNAs. In both analyses, DESeq2 R package (version 1.28.1) [28] was

used to collapse the five technical replicas and run the default differential expression analysis

on the datasets. DESeq2 utilizes median of ratios method to normalize gene raw counts and
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estimate size factors. Negative binomial generalized linear model is used for dispersion estima-

tion to model gene read counts. Differential analysis is performed with two-tailed Wald test.

The results for comparing IDC samples to normal_ductal samples, and IDC to LC samples

were obtained with |log2FC| > 1 and adjusted P-value < 0.05, for both DEGs and DEMs. For

the DNA repair genes, the DESeqResults object had 25177 genes. Of them, only 285 out of the

310 repair genes were found (see S3 Table for the full list of DNA repair genes, functions as per

Uniprot and excluded genes). Finally, Biomart R package was used to get the description of the

Genes from Ensemble database (version 2.44.1) [29]. For the miRNA differential expression

analysis, DNA repair targets were validated via miRTarBase 2020 and the miRNAs binding

regions on the DEGs mRNAs were obtained from TargetScan [30,31].

Generation of protein interaction subnetworks of DNA repair related

pathways

Protein-protein interactions (PPI) are retrieved from Reactome [27] and Biogrid databases

[32]. In total, 18572 interactions between 4515 proteins from Reactome and 50759 interactions

between 9983 proteins from Biogrid are obtained. These PPI networks are merged and

resulted in a reference interactome composed of 65464 unique interactions between 11061

proteins. Proteins associated with DNA repair related pathways in Reactome, are searched for

in the reference interactome. For each pathway, a subnetwork is generated. All networks are

visualized in Cytoscape [33] and networks are analyzed in networkx Python package [34].

Results

IDC and LC have different transcriptomic profiles

In order to determine the differentially expressed genes (DEGs) between normal ductal tissues

(normal_ductal) and IDC tissues of female patients, the TCGA-BRCA dataset was utilized.

The dataset includes RNA-seq data of 771 IDC and 89 normal_ductal samples. A total of

25177 genes have been analyzed and we could identify 3854 total DEGs between normal_duc-

tal and IDC at the set cutoff of |log2FC| > 1 and adjusted P-value < 0.05 (S1 Table). The 3854

DEGs are displayed in red in the Volcano plot, where the positive log2 fold change reflects

overexpression in IDC when compared to normal_ductal, and the negative log2 fold change

reflects downregulation in IDC in comparison to normal_ductal. As shown, there are slightly

more genes upregulated (2236) than downregulated (1618) (Fig 1A and S1 Table). The princi-

ple component analysis (PCA) representing the DEGs between the IDC and normal_ductal

samples showed two separate clusters for each of IDC and LC, with almost no overlap

(Fig 1A).

Previous studies analyzed the differences in the transcriptomic profiles of IDC and LC.

However, the small sample size was a limitation. For example, Bertucci et al. utilized both

array-CGH and cDNA microarray to analyze the DEGs between 29 IDC and 21 LC samples

[35]. Zhao et al. also conducted a cDNA microarray study to analyze the DEGs between 38

IDC and 21 LC samples [5]. In our study, we analyzed the DEGs between 771 IDC and 203 LC

samples from the TCGA-BRCA dataset. The utilization of RNA-Seq data, which is taking over

the array approaches, in addition to analyzing a larger number of samples, should increase our

ability to identify more DEGs and reach more accurate conclusions [36]. Since seven normal

lobular tissues were only provided in the dataset, we directly compared both breast cancer sub-

types instead of utilizing the normal tissues as a reference in each case. We identified a total of

663 DEGs between IDC and LC at the set cutoff of |log2FC| > 1 and adjusted P-value < 0.05

(S2 Table). We have a significantly larger number of upregulated DEGs (591) in IDC than
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downregulated (72), as shown in red in the Volcano plot; positive log2 fold change reflects

overexpression in IDC when compared to LC, and the negative log2 fold change reflects the

downregulation in IDC in comparison to LC (Fig 1B and S2 Table). The PCA plot shows an

overlap between the samples, indicating more similarity between the two cancer subtypes in

comparison to the dissimilarity between normal_ductal and IDC (Fig 1B).

The DNA repair genes are expressed in a similar manner in IDC and LC

DNA repair genes are known to be associated with the development and progression of breast

cancer. In addition, the response of breast cancer patients to therapy is usually affected by the

repair machinery in the cells [37]. However, no specific analysis for DNA repair genes in IDC

and LC was previously reported to our knowledge. We focused on the analysis of DNA repair

Fig 1. Analysis of DEGs and DNA repair DEGs in IDC and LC. A) Analysis of DEGs in IDC vs Normal_Ductal. Volcano plot of IDC vs Normal_Ductal (25,177

genes). The positive log2 fold change reflects overexpression in IDC when compared to normal_ductal (N_D), and the negative log2 fold change reflects

downregulation in IDC in comparison to normal_ductal. PCA of all DEGs (3854 genes) between normal_ductal vs IDC. B) Analysis of DEGs in IDC vs LC. Volcano

plot of IDC vs LC (25,177 genes). The positive log2 fold change reflects overexpression in IDC when compared to LC, and the negative values reflect the

downregulation in IDC in comparison to LC. PCA of all DEGs (663 genes) between IDC and LC. C) Analysis of DNA repair DEGs in IDC vs Normal_Ductal; Volcano

plot of IDC vs Normal_Ductal (285 genes). The positive log2 fold change reflects overexpression in IDC when compared to normal_ductal, and the negative log2 fold

change reflects downregulation in IDC in comparison to normal_ductal. PCA of repair DEGs (36 genes) between normal_ductal vs IDC. D) Analysis of DNA repair

DEGs in IDC vs LC; Volcano plot of IDC vs LC (285 genes). PCA of repair DEGs (36 genes) between IDC and LC. Color code for the volcano plots: Red; DEGs (|

log2FC|> 1 and adjusted P-value< 0.05), Green; (|log2FC|> 1 and adjusted P-value> 0.05), grey; not significant (NS).

https://doi.org/10.1371/journal.pone.0247837.g001
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genes in both subtypes, to identify novel DEGs and predict how their expression level can

affect response to treatment. We obtained a list of 310 DNA repair genes from the Reactome

database [27], then analyzed the differential expression of 285 genes between normal_ductal

and IDC, as 25 genes were excluded (see methods). The 25 excluded genes were histone genes

contributing to BER (see S3 Table for the full list of DNA repair genes, functions as per Uni-

prot and excluded genes). We could identify 36 DNA repair genes to be upregulated in IDC

when compared to normal_ductal (S4 Table and Fig 1C). The PCA plot of normal_ductal and

IDC showed a small overlap, which indicates more similarity between the samples upon focus-

ing on the DNA repair expression profile (Fig 1C). Upon comparing the DNA repair genes

between IDC and LC, no DEGs were found (Fig 1D and S5 Table). The PCA plot also shows a

great overlap between IDC and LC, indicating that repair genes are expressed in a similar man-

ner in the two subtypes (Fig 1D).

Our identified DNA repair DEGs function either in DNA bypass (Fig 2A), DNA double

strand break (DSB) response (Fig 2B), Homology-directed repair (HDR) (Fig 2C), Fanconi

anemia (FA) (Fig 2D), Base excision repair (BER) (Fig 2E) or in multiple repair pathways. The

Fig 2. Protein-protein interaction networks of five repair pathways. A) DNA bypass B) DNA DSB response C) HDR D) FA E) BER. Overexpressed genes are

highlighted in red and yellow. Red indicates that the genes function in other repair pathways besides the pathway indicated. Grey edges represent protein-protein

interactions.

https://doi.org/10.1371/journal.pone.0247837.g002
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proteins that were shown to be overexpressed in both IDC and LC are highlighted in either yel-

low or red. Yellow indicates that the proteins function solely in the indicated DNA repair path-

way and red indicates that the proteins function in multiple repair pathways (Fig 2).

For better visualization of the expression levels of the DNA repair DEGs in different indi-

viduals, we combined the normalized counts for each DEG in normal_ductal, IDC and LC

samples in individual box plots (Fig 3). The overexpressed genes include bypass genes; DTL,

ISG15 and PCLAF (Fig 3A), BER genes; FEN1 and NEIL3 (Fig 3B), KPNA2, the DNA double

strand break (DSB) response (Fig 3C), FA genes; CENPX, FAAP24, FANCA, FANCD2,

FANCI and UBE2T (Fig 3D). The HDR players are represented in Fig 3E–3G. BRCA2,

RAD51AP1 and XRCC2 that function in HDR through both HRR & SSA are represented in

Fig 3E. CHEK1, CLSPN, PPP4C, TIMELESS, BRIP1, RAD51, RMI1, RMI2, BLM and DNA2

functioning though MMEJ/alternative non-homologous end joining (alt-NHEJ) and both

HRR & SSA are represented in Fig 3F and CCNA2 functioning through MMEJ is represented

in Fig 3G. Finally, the overexpressed genes functioning in multiple repair pathways are EME1,

EME2 (Fig 3H), EXO1 (Fig 3I), PCNA (Fig 3J), POLE2 (Fig 3K), RFC4 (Fig 3L), H2BC4,

H4C1/Histone 4 (Fig 3M) and PARP1 (Fig 3N). For all repair DEGs, a remarkable variation

between the normalized counts in different individuals is observed. This indicates that despite

the fact that a significant number of patients overexpress the 36 genes, many patients show

downregulated expression or expression levels similar to the normal_IDC (Fig 3).

To focus on the individual variations, we plotted heatmaps to visualize the DNA repair

DEGs across different samples analyzed (Figs 4 and 5). Upon comparing the normal_ductal

and IDC samples, we observed clear subtypes clusters with a very small overlap (Fig 4). Never-

theless, a remarkable variation in the expression levels of the genes in different samples was

evident. The IDC samples represented in ‘I’ were also clustered very closely to the normal sam-

ples, indicating that their expression for DNA repair genes is more similar to normal_ductal

than IDC. However, CENPX, ISG15 and PPP4C were clearly overexpressed in the same sam-

ples, similar to other IDC samples and distinct from the normal_ductal. Interestingly, the IDC

samples represented in ‘IV’ show downregulation of the same genes; CENPX, ISG15 and

PPP4C, similar to normal_ductal. We also observed that samples represented in ‘II’ and ‘III’

show a significant overexpression for H4C1, which is distinct from normal_ductal and other

IDC samples (Fig 4). Overall, the data indicates clear individual variations among patients

despite having a pattern for normal_ductal and IDC, separately.

Upon comparing IDC and LC, we could not observe clear clusters for the samples, indicat-

ing a great similarity in the expression of DNA repair genes (Fig 5). Nevertheless, individual

variations were also clearly observed. For example, samples represented in ‘I’ and ‘II’ show a

clear overexpression of H4C1 in specific IDC patients. This indicates that this evident increase

in the expression of H4C1 is specific to IDC not LC. Finally, the samples represented in ‘III’

also show a huge variation in expression levels of all repair DEGs regardless of the breast can-

cer subtype (Fig 5).

Normal_ductal, IDC and LC show different miRNAs expression profiles

We have analyzed the differentially expressed miRNAs (DEMs) between 82 normal_ductal

and 760 IDC samples. In addition, we analyzed the DEMs between 760 IDC and 202 LC sam-

ples. S6 and S7 Tables show 32 DEMs between normal_ductal and IDC and 7 DEMs between

IDC and LC, respectively. We focused only on the miRNAs that were validated experimentally

to target our DNA repair DEGs and those with predicted target sequences to infer the possible

consequences of the miRNA-gene interaction (Table 1) [30,31]. We could find that hsa-miR-

375 and hsa-miR-665 were upregulated and downregulated, respectively in IDC in comparison
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to normal_ductal (S6 Table and Table 1). No significant differences were detected for both

miRNAs between IDC and LC, suggesting similar expression in both subtypes. Moreover, hsa-

miR-577 was found to be upregulated in IDC in comparison to LC (S7 Table and Table 1).

hsa-miR-375, hsa-miR-665 and hsa-miR-577 were validated to target EXO1, DNA2 and

PARP1, respectively (Table 1) [31]. The three miRNAs target the 3’UTR of the respective

mRNAs [30], which can result in either degradation, translation repression or translational

upregulation in some cases [38,39]. Looking carefully at the differential expression levels of the

miRNAs in different individuals, we could find a clear variation among different patients

(Fig 6).

Fig 3. Normalized counts of the DNA repair DEGs. A) DNA bypass DEGs, B) BER DEGs, C) DNA DSB response DEG and D) FA

DEGs. E-G) DEGs that function in HDR; E) through HRR&SSA F) through MMEJ and both HRR & SSA G) through MMEJ. H-N)

DNA repair DEGs functioning in multiple pathways; H) FA, HDR through both HRR & SSA, I) HDR through MMEJ, HRR&SSA,

MMR, J) DNA bypass, BER, NER, MMR and HDR through both HRR & SSA, K) DNA bypass, BER, NER and HDR though HRR &

SSA, L) DNA bypass, BER, NER and HDR through MMEJ and both HRR&SSA, M) BER, NHEJ, DNA DSB response, HDR through

both MMEJ, HRR & SSA and N) BER and NER. Boxplots represent normalized counts in normal_ductal ‘N_D’ (Green), IDC

(Orange) and LC (Purple).

https://doi.org/10.1371/journal.pone.0247837.g003

Fig 4. Heatmap representing the 36 DNA repair DEGs in normal_ductal vs IDC. Normal Ductal/normal_ductal (Green) and IDC (Orange).

https://doi.org/10.1371/journal.pone.0247837.g004
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Cohort analysis did not identify BRCA1 and TP53 as DEGs, despite huge

individual variations

In this study, we did not use a restrictive cutoff so that we increase the number of DEGs

between the samples. However, despite using a cutoff of |log2FC| > 1 and adjusted P-value <

0.05, we could not identify some DNA repair genes of known association to breast cancer;

Fig 5. Heatmap representing the 36 DNA repair DEGs in IDC vs LC. IDC (Orange) and LC (Purple).

https://doi.org/10.1371/journal.pone.0247837.g005

Table 1. Selected DEMs that target DNA repair DEGs.

miRNA Target DNA repair

Gene

miRNA binding region

(TargetScan)

Expression level of miRNA Expression level of DNA repair

gene

Validation

method

hsa-mir-

375

EXO1 3’UTR Up-regulated in tumor Gene Up-regulated Microarray

hsa-mir-

665

DNA2 3’UTR Down-regulated in tumor Gene Up-regulated NGS

hsa-mir-

577

PARP1 3’UTR Up-regulated in IDC in comparison

to LC

Gene Up-regulated NGS

The miRNA, its target DNA repair gene and the validation methods were obtained from miRTarBase 2020 [31]. The miRNAs binding regions on the DEGs mRNAs

were obtained from TargetScan [30].

https://doi.org/10.1371/journal.pone.0247837.t001
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such as BRCA1 and TP53 [40–43]. Therefore, we took BRCA1 and TP53 as examples for dem-

onstrating how cohort analysis may not identify certain genes as DEGs, while they could be

potentially associated with IDC and LC (S1 Fig). Observing the distribution of the normalized

counts in IDC and LC, it is evident that multiple patients have both genes downregulated and

other patients show overexpression as well. The huge distribution of counts is also more evi-

dent in IDC, which contains a greater number of samples (S1 Fig). Therefore, we believe not

considering BRCA1 and TP53 as DEGs in IDC and LC samples could be owed to the inter-

individual heterogeneity rather than the irrelevance of the genes analyzed to IDC and LC (S1

Fig). This can also apply for many other genes that we did not focus on in this study.

Discussion

Our transcriptomic analysis of RNA-Seq data of normal_ductal and IDC have revealed 3854

DEGs. In addition, 663 genes were differentially expressed between IDC and LC. We com-

pared our results to the previously mentioned studies; Bertucci et al. and Zhao et al., that inves-

tigated the transcriptomic differences between IDC and LC [5,35]. Consistent with both

studies, CDH1 was upregulated in IDC in comparison to LC [5,35]. Moreover, CIDEC and

MFAP4 were overexpressed in LC as reported in Bertucci et al. [35], PLIN1 was overexpressed

and FADS2, HIST1H2AL/H2AC11, HIST1H2BJ/H2BC11 and HIST1H3D/H3C8 were down-

regulated in LC as reported in Zhao et al. [5]. Nevertheless, we could find that GDPD2 is

downregulated in LC, which contradicts previous reports showing its upregulation [35]. In

addition, contradictory to our study, both Bertucci et al. and Zhao et al. reported that

ALDH1A1, FABP4 and VWF are upregulated in LC. We found FABP4 to be downregulated in

LC, while the other two genes were not differentially expressed in IDC and LC. The remaining

DEGs reported by either study were also not observed in our study and vice versa (S2 Table).

The discrepancies in the results can be owed to our utilization of RNA-Seq data and the larger

number of samples analyzed in our study, which is most likely to our advantage as the analysis

should be more reliable [36]. In addition, the utilization of different patients’ samples can also

lie behind the differences observed.

Previous studies have focused on analyzing DNA repair genes in breast cancer. For exam-

ple, a previous study has shown that 21 DNA repair genes were differentially expressed in His-

panic breast cancer female patients using DNA microarray [44]. In line with our results,

overexpression of NEIL3, EME1, PCNA and RAD51 genes were reported, but the study did

not report our other DEGs and vice versa. The study however, did not focus on IDC and LC

and also focused on a specific population, which could explain the discrepancies in the results.

Fig 6. Selected DEMs that are functionally validated to target DNA repair DEGs. Boxplots represent normalized

counts in normal_ductal ‘N_D’ (Green), IDC (Orange) and LC (Purple).

https://doi.org/10.1371/journal.pone.0247837.g006
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In our study, we analyzed DNA repair genes in IDC versus (vs) LC specifically. 36 DNA repair

genes were found to be overexpressed in both subtypes, which are all previously associated

with breast cancer.

Here, we discuss the previously reported associations. PCLAF and ISG15 overexpression

are associated with poor prognosis of breast cancer, and DTL knockdown decreases breast

cancer cells’ proliferation and metastasis [45–48]. FEN1 overexpression increases breast cancer

progression and its transcription is also activated following anti-cancer treatments. Therefore

its inhibition is a potential approach to overcome resistance mechanisms [49–53]. NEIL3 is

also overexpressed in breast invasive carcinoma and its upregulation positively correlates with

the decrease in the survival of triple negative breast cancer (TNBC) patients [54–56]. KPNA2,

which encodes for Karyopherin-α2 is also highly expressed in breast cancer and its expression

is associated with aggressiveness, poor outcomes in addition to chemotherapy and radiother-

apy resistance [57–61]. The FA genes we identified as DEGs; CENPX, FAAP24, FANCD2,

FANCI, UBE2T and FANCA are all overexpressed in breast cancer [62–65]. High FANCD2

expression correlated with poor breast cancer patients’ outcomes. However, 10–20% of breast

cancer patients also show loss of FANCD2 expression [66]. Finally, UBE2T knock-down also

suppresses tumor growth [62].

Germ-line mutations in BRCA2 act as a major cause of hereditary breast cancer and

increase the risk of its early-onset [16,67]. The BRCA2 mutation frequency was reported to be

1–3% in breast cancer [43]. RAD51AP1 is overexpressed in breast cancer stem cells population

(BCSCs) and its knockout/down reduced cancer stem cells population in breast, lung, and

colon cancer mouse models and improved chemotherapy and radiotherapy [68,69]. XRCC2 is

a breast cancer susceptibility gene [70]. Contradictory to our data, XRCC2 was reported to be

downregulated in lymph node metastatic breast cancer tissues [71].

The overexpression of CHEK1 was postulated to lead to tumor development and a risk fac-

tor in prognostics [72]. In ER- and TNBC, CHEK1 leads to shorter survival following chemo-

therapy, and its absence was correlated with better outcome [73]. Thus, Chk1 inhibitors such

as Prexasertib might serve as a promising therapeutic agent [74,75]. Overexpression of CLSPN

coding for Claspin was reported in ER- and/or PR- breast cancer [76]. Its overexpression is a

radiotherapy resistance marker in metastatic lung cancer [77], which could be potentially

applicable for IDC and LC as well. Timeless promotes breast cancer progression and contrib-

utes to poor prognosis [78]. ER alpha-positive (ERα+) breast cancer relapsed patients treated

with tamoxifen overexpress Timeless, suggesting its contribution to tamoxifen resistance [79].

Inhibition of the overexpressed PPP4C in breast cancer increases cisplatin sensitivity [80]. Fur-

thermore, RAD51 overexpression positively correlates with tumor grading in IDC, but an

inverse relationship was found with estrogen-receptor status [81]. Mutations in BRIP1

increases the risk of breast and ovarian cancer, and its impairment accounts for some breast

cancer familial cases [82,83]. Moreover, it is overexpressed in IDC followed by LC [84]. RMI2

is also upregulated in breast cancer [85] and SNPs in BLM and RMI1 were associated with

breast carcinoma [86]. Controversially, BLM was reported to be overexpressed in aggressive

clinicopathological breast cancer phenotypes, and also reported to be downregulated in other

breast cancer subtypes. Therefore, BLM could be a promising biomarker for subtype identifi-

cation [87]. DNA2 overexpression was reported in a breast cancer cohort with significant

higher expression in basal-like breast cancer more than other subtypes, and it positively corre-

lated to metastasis. Additionally, DNA2 partial depletion decreases breast cancer tumorigenic-

ity [88]. CCNA2 was also reported to be overexpressed in breast cancer and utilized as a

prognostic biomarker for ER+ subtype. CCNA2 overexpression is correlated with anti-estro-

gen tamoxifen drug resistance that is usually used for treating ER+ patients. However, CCNA2

repression to reverse the tamoxifen resistance or prevent it is still under study [89,90].
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EME1 Ile350Thr variant in Southern Chinese females is significantly associated with sus-

ceptibility and early onset of breast cancer and its overexpression is suggested to lead to cis-

platin resistance [91,92]. Additionally, EME2 is differentially expressed in tamoxifen resistant

breast cancer cells and associated with poor outcomes in patients who did not receive radio-

therapy, but not in patients who were subjected to radiotherapy [93]. EXO1 polymorphism is

linked to breast cancer susceptibility and the expression level is associated with poor prognosis

[94,95]. EXO1 inhibitors could diminish the repair of IR-induced DSBs, which possibly

improve radiotherapy and chemotherapy [96]. PCNA is usually known as a proliferating

marker in breast cancer. However, there is no evidence for correlation of its overexpression

with breast cancer progression [97]. Nevertheless, PCNA expression is a biomarker for pre-

dicting high risk of relapse in patients with lymph node-negative breast cancer [98]. A unique

acidic form of PCNA was revealed to be present in malignant breast cancer due to post transla-

tion modification alteration [97]. An AATT deletion in intron 18 of the POLE2 subunit of

Polymerase ε is associated with breast cancer, and POLE2 is suggested to contribute to lapati-

nib resistance in HER2+ breast cancer patients with acquired lapatinib resistance [99,100].

Furthermore, RFC4 overexpression contributes to the development of breast cancer [72].

H2BC4 and H4C1 are also overexpressed in breast cancer and the first is overexpressed in its

metastatic relapse [101,102]. Finally, Poly-ADP-ribose polymerase 1 (PARP1) was shown pre-

viously to be upregulated in breast cancer, acting as an independent biomarker for poor prog-

nosis [103].

Overall, our identified DNA repair DEGs show strong association to breast cancer. But

here we report their overexpression in both IDC and LC breast cancer subtypes in particular.

Rad51, NEIL3 and BLM, which were linked to invasive breast cancer and BRIP1 that was asso-

ciated with IDC and LC, are the only genes to our knowledge that were previously linked to

invasive breast carcinoma [81,84]. To confirm that most of the transcripts of the 36 genes are

functional variants that can potentially impact cellular functions upon their overexpression,

we gathered the simple somatic mutations (SSMs) data for the 36 genes in the TCGA-BRCA

cases of the TCGA project (S8 Table). The data clearly indicates that SSMs are rare in the sam-

ples analyzed for SSMs; 986 out of 1098. On the contrary, the CNV gains are high for our

genes. The overexpression of the genes in some of the cases analyzed can be owed to the CNV

gain. Interestingly, for some genes there were a significant number of patients who suffer from

CNV loss. This could explain the individual variations we have seen upon differential expres-

sion analysis.

Regarding the miRNA expression profiles in normal_ductal, IDC and LC, we believe reach-

ing a conclusion from cohort analysis is very difficult. Analysis of their expression in individ-

ual patients will provide much more accurate conclusions. Previous studies have also reported

variable expression levels in breast cancer when it comes to the DEMs represented in Table 1.

For miR-375, its downregulation suppresses epithelial-to-mesenchymal transition in invasive

basal-like tumor cells and its upregulation augments cellular proliferation in ERα+ breast can-

cer cells through a positive feedback loop [104–107]. miR-665 was also reported to be downre-

gulated in breast cancer, but a recent study reported its high expression in IDC validated by

microarray analysis of patients’ samples and qPCR analysis of IDC cell lines (MCF-7,

MDA-MB-415, and ZR-75-30). Its upregulation promotes tumor progression through

increased proliferation, cell growth and inhibition of apoptosis [108,109]. A previous study

identified PARP1 as a target for miR-577 causing its down regulation [110]. In this study, we

find PARP1 to be upregulated in IDC in spite of the upregulation of miR-577 (Table 1). Oppo-

site to our findings, miR-577 was previously reported to be downregulated in breast cancer.

The low levels of miR-577 were associated with increased invasiveness [111]. The differential

expression of miR-577 between IDC and LC could also be attributed to variability in
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expression levels in the patients’ samples. Interestingly, multiple IDC patients show a remark-

able overexpression of the miR-577 when compared to LC patients (Fig 6).

Implications of overexpression of DNA repair genes on precision medicine

for IDC and LC patients

The implementation of precision medicine in cancer treatment has gained a great attention in

recent years. Despite the advances in developing anti-cancer drugs and the clinical success and

effectiveness of certain drugs, some cancer types do not respond to treatment [112]. As a mat-

ter of fact, available therapies are actually limited to some patients with certain tumors, where

less than 50% of the patients show responsiveness to around 90% of the drugs. IDC and LC

also differ in response to neoadjuvant, with LC being less sensitive [4,113–115]. Nevertheless,

similar treatment is usually administered to stage-matched LC versus IDC. Studying the tran-

scriptomic profile of both subtypes is thus essential to identify the genes that contribute to the

development, progression and resistance of these distinct subtypes. In addition, tailor better

therapy for each subtype.

DNA repair-based targeted therapy for breast cancer induces cell death through impairing

DNA repair pathways and increasing the accumulation of DNA damage and breaks. Targeted

therapy has less off-target side effects and greater sensitivity than chemotherapy and radiation

[116]. Some of our DEGs are known to be very important drug targets for breast cancer

patients. For example, PARP inhibitors (PARPi) serve as an example of the targeted therapy

[117]. PARPi have shown effectiveness in tumors with deficiencies in our DEGs such as

RAD51, FANCD2, FANCA, CHK1 and XRCC2 [118–120]. For BRCA1/2 mutant breast can-

cers, PARPi olaparib and talazoparib are now FDA-approved monotherapies [119,121,122].

Other studies also showed that their effectiveness extend to tumors without BRCA-mutations

[117,123]. A potential therapeutic approach would be combining PARPi with specific inhibi-

tors for our DEGs to achieve better response.

As previously discussed, deciphering the DNA repair expression profile for each patient is

essential to understand the cellular consequences of the therapy. However, most studies follow

cohort analysis using standard statistical algorithms to determine DEGs, where various nor-

malization methods followed by negative binomial distributions or Poisson are utilized to

model the gene count data. Cutoff score based on P-value generated by statistical modeling is

then applied along with expression change threshold [124,125]. This method of analysis has

been successful in different ways, as they could identify biomarkers and prognostic markers

and determine which genes are usually overexpressed or downregulated in certain cancer

types [126]. However, the drawback of this approach is that focusing on average expression

levels across patient samples is of clinical relevance to many patients; but not all. Therefore, the

individuals whose expression levels can be thought of as outliers in the dataset, may not be

diagnosed correctly and will not respond to some of therapies that will work for others.

Recently, other analysis approaches have evolved to address such limitations where the focus is

on the individual level or what is known as ‘single-subject analysis (SSA)’. SSA has been per-

formed through utilizing either a specific individual sample versus a cohort of reference sam-

ples or a paired sample; tumor and control from the same subject [127]. Rankcomp is an

example of the first method, where a ranking methodology and pairwise comparison is per-

formed to ensure stable ranking against normal samples cohort. Then a Fisher’s exact test is

utilized to detect DEGs [128]. However, Rankcomp can result in high false discovery rate

[129]. PenDA is another analysis technique developed to avoid high false discovery [129].

Some of the already developed techniques for cohort analysis have also been evaluated for

paired sample analysis such as EdgeR and DESeq [130]. A more advanced approach that aims
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at better specificity is single cell analysis via single-cell RNA sequencing (scRNA-seq). Unlike

bulk analysis, which reports the predominant malignant clone, scRNA-seq has enabled the

identification of the cellular heterogeneity and transcriptomic changes present in tumor micro-

environment, either between the patients of same cancer types or even within the same patient

[131,132]. These individualized approaches are very effective in determining the appropriate

therapy for patients, and ensure the patient’s response to treatment and reduce resistance.

Conclusion

Overall, our data indicate that LC and IDC have different transcriptomic profiles, while they

express DNA repair genes in a more similar manner. The cohort analysis performed in this

study identifies 36 DNA repair genes to be overexpressed in a significant number of IDC and

LC patients, which could significantly affect patients’ response to specific therapy. However,

the findings can be used as an indicator for the changes in transcription of a specific gene in a

certain disease subtype, but not for reaching general conclusions on patients of a specific can-

cer type. The exact transcriptomic profile of each patient should be taken into consideration to

decide for the appropriate therapy and foresee whether the patient will respond to the therapy.

We suggest that a great attention should be given to the transcriptomic changes in DNA repair

genes, and not only the changes on the genomic level. This should be done through utilizing

the appropriate Next generation sequencing diagnostic panels, to reach the most accurate con-

clusions for individual patients.
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